Articles | Volume 16, issue 11
https://doi.org/10.5194/gmd-16-3123-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-16-3123-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Differentiable programming for Earth system modeling
Maximilian Gelbrecht
CORRESPONDING AUTHOR
Earth System Modelling, School of Engineering and Design, Technical University of Munich, Munich, Germany
Potsdam Institute for Climate Impact Research, Potsdam, Germany
Alistair White
Earth System Modelling, School of Engineering and Design, Technical University of Munich, Munich, Germany
Potsdam Institute for Climate Impact Research, Potsdam, Germany
Sebastian Bathiany
Earth System Modelling, School of Engineering and Design, Technical University of Munich, Munich, Germany
Potsdam Institute for Climate Impact Research, Potsdam, Germany
Niklas Boers
Earth System Modelling, School of Engineering and Design, Technical University of Munich, Munich, Germany
Potsdam Institute for Climate Impact Research, Potsdam, Germany
Department of Mathematics and Global Systems Institute, University of Exeter, Exeter, UK
Related authors
No articles found.
Vasilis Dakos, Chris A. Boulton, Josh E. Buxton, Jesse F. Abrams, David I. Armstrong McKay, Sebastian Bathiany, Lana Blaschke, Niklas Boers, Daniel Dylewsky, Carlos López-Martínez, Isobel Parry, Paul Ritchie, Bregje van der Bolt, Larissa van der Laan, Els Weinans, and Sonia Kéfi
EGUsphere, https://doi.org/10.5194/egusphere-2023-1773, https://doi.org/10.5194/egusphere-2023-1773, 2023
Short summary
Short summary
Tipping points are abrupt, rapid and sometimes irreversible changes and numerous approaches have been proposed to detect them in advance. Such approaches have been termed early-warning signals and represent a set of methods for identifying changes in the underlying behavior of a system across time or space that would be indicative of an approaching tipping point. Here we review the literature to find where, how, and which early-warnings have been used so far in real-world case studies.
Nico Wunderling, Anna von der Heydt, Yevgeny Aksenov, Stephen Barker, Robbin Bastiaansen, Victor Brovkin, Maura Brunetti, Victor Couplet, Thomas Kleinen, Caroline H. Lear, Johannes Lohmann, Rosa Maria Roman-Cuesta, Sacha Sinet, Didier Swingedouw, Ricarda Winkelmann, Pallavi Anand, Jonathan Barichivich, Sebastian Bathiany, Mara Baudena, John T. Bruun, Christiano M. Chiessi, Helen K. Coxall, David Docquier, Jonathan F. Donges, Swinda K. J. Falkena, Ann Kristin Klose, David Obura, Juan Rocha, Stefanie Rynders, Norman Julius Steinert, and Matteo Willeit
EGUsphere, https://doi.org/10.5194/egusphere-2023-1576, https://doi.org/10.5194/egusphere-2023-1576, 2023
Short summary
Short summary
This paper reviews the state-of-the-art literature on interactions between tipping elements and discusses the risk of potential tipping cascades under ongoing global warming. Specifically, we review the current knowledge on interactions between pairs of tipping elements from models to observations, review archetypal examples of tipping cascades in the past, and outline how future developments could improve our understanding of climate tipping element interactions.
Sara M. Vallejo-Bernal, Frederik Wolf, Niklas Boers, Dominik Traxl, Norbert Marwan, and Jürgen Kurths
Hydrol. Earth Syst. Sci., 27, 2645–2660, https://doi.org/10.5194/hess-27-2645-2023, https://doi.org/10.5194/hess-27-2645-2023, 2023
Short summary
Short summary
Employing event synchronization and complex networks analysis, we reveal a cascade of heavy rainfall events, related to intense atmospheric rivers (ARs): heavy precipitation events (HPEs) in western North America (NA) that occur in the aftermath of land-falling ARs are synchronized with HPEs in central and eastern Canada with a delay of up to 12 d. Understanding the effects of ARs in the rainfall over NA will lead to better anticipating the evolution of the climate dynamics in the region.
Takahito Mitsui and Niklas Boers
EGUsphere, https://doi.org/10.31223/X54S90, https://doi.org/10.31223/X54S90, 2023
Short summary
Short summary
In general, the variance and the autocorrelation with small lag increase in a system approaching a bifurcation point. Using these indicators, we identify statistical precursor signals for the Dansgaard-Oeschger cooling events recorded in two climatic proxies of three Greenland ice core records. We then provide a dynamical systems theory that bridges the gap between observing statistical precursor signals and the physical precursor signs empirically known in paleoclimate research.
Takahito Mitsui, Matteo Willeit, and Niklas Boers
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2023-16, https://doi.org/10.5194/esd-2023-16, 2023
Revised manuscript accepted for ESD
Short summary
Short summary
The glacial-interglacial cycles of the Quaternary exhibit 41-kyr periodicity before the Mid-Pleistocene Transition (MPT) around 1.2–0.8 Myr ago and ~100-kyr periodicity after that. The mechanism generating these periodicities remains elusive. Through an analysis of an Earth system model of intermediate complexity CLIMBER-2, we show that the dominant periodicities of glacial cycles can be explained from the viewpoint of synchronization theory.
Keno Riechers, Leonardo Rydin Gorjão, Forough Hassanibesheli, Pedro G. Lind, Dirk Witthaut, and Niklas Boers
Earth Syst. Dynam., 14, 593–607, https://doi.org/10.5194/esd-14-593-2023, https://doi.org/10.5194/esd-14-593-2023, 2023
Short summary
Short summary
Paleoclimate proxy records show that the North Atlantic climate repeatedly transitioned between two regimes during the last glacial interval. This study investigates a bivariate proxy record from a Greenland ice core which reflects past Greenland temperatures and large-scale atmospheric conditions. We reconstruct the underlying deterministic drift by estimating first-order Kramers–Moyal coefficients and identify two separate stable states in agreement with the aforementioned climatic regimes.
Taylor Smith, Ruxandra-Maria Zotta, Chris A. Boulton, Timothy M. Lenton, Wouter Dorigo, and Niklas Boers
Earth Syst. Dynam., 14, 173–183, https://doi.org/10.5194/esd-14-173-2023, https://doi.org/10.5194/esd-14-173-2023, 2023
Short summary
Short summary
Multi-instrument records with varying signal-to-noise ratios are becoming increasingly common as legacy sensors are upgraded, and data sets are modernized. Induced changes in higher-order statistics such as the autocorrelation and variance are not always well captured by cross-calibration schemes. Here we investigate using synthetic examples how strong resulting biases can be and how they can be avoided in order to make reliable statements about changes in the resilience of a system.
Eirik Myrvoll-Nilsen, Keno Riechers, Martin Wibe Rypdal, and Niklas Boers
Clim. Past, 18, 1275–1294, https://doi.org/10.5194/cp-18-1275-2022, https://doi.org/10.5194/cp-18-1275-2022, 2022
Short summary
Short summary
In layer counted proxy records each measurement is accompanied by a timestamp typically measured by counting periodic layers. Knowledge of the uncertainty of this timestamp is important for a rigorous propagation to further analyses. By assuming a Bayesian regression model to the layer increments we express the dating uncertainty by the posterior distribution, from which chronologies can be sampled efficiently. We apply our framework to dating abrupt warming transitions during the last glacial.
Keno Riechers, Takahito Mitsui, Niklas Boers, and Michael Ghil
Clim. Past, 18, 863–893, https://doi.org/10.5194/cp-18-863-2022, https://doi.org/10.5194/cp-18-863-2022, 2022
Short summary
Short summary
Building upon Milancovic's theory of orbital forcing, this paper reviews the interplay between intrinsic variability and external forcing in the emergence of glacial interglacial cycles. It provides the reader with historical background information and with basic theoretical concepts used in recent paleoclimate research. Moreover, it presents new results which confirm the reduced stability of glacial-cycle dynamics after the mid-Pleistocene transition.
Keno Riechers and Niklas Boers
Clim. Past, 17, 1751–1775, https://doi.org/10.5194/cp-17-1751-2021, https://doi.org/10.5194/cp-17-1751-2021, 2021
Short summary
Short summary
Greenland ice core data show that the last glacial cycle was punctuated by a series of abrupt climate shifts comprising significant warming over Greenland, retreat of North Atlantic sea ice, and atmospheric reorganization. Statistical analysis of multi-proxy records reveals no systematic lead or lag between the transitions of proxies that represent different climatic subsystems, and hence no evidence for a potential trigger of these so-called Dansgaard–Oeschger events can be found.
Denis-Didier Rousseau, Pierre Antoine, Niklas Boers, France Lagroix, Michael Ghil, Johanna Lomax, Markus Fuchs, Maxime Debret, Christine Hatté, Olivier Moine, Caroline Gauthier, Diana Jordanova, and Neli Jordanova
Clim. Past, 16, 713–727, https://doi.org/10.5194/cp-16-713-2020, https://doi.org/10.5194/cp-16-713-2020, 2020
Short summary
Short summary
New investigations of European loess records from MIS 6 reveal the occurrence of paleosols and horizon showing slight pedogenesis similar to those from the last climatic cycle. These units are correlated with interstadials described in various marine, continental, and ice Northern Hemisphere records. Therefore, these MIS 6 interstadials can confidently be interpreted as DO-like events of the penultimate climate cycle.
Niklas Boers, Mickael D. Chekroun, Honghu Liu, Dmitri Kondrashov, Denis-Didier Rousseau, Anders Svensson, Matthias Bigler, and Michael Ghil
Earth Syst. Dynam., 8, 1171–1190, https://doi.org/10.5194/esd-8-1171-2017, https://doi.org/10.5194/esd-8-1171-2017, 2017
Short summary
Short summary
We use a Bayesian approach for inferring inverse, stochastic–dynamic models from northern Greenland (NGRIP) oxygen and dust records of subdecadal resolution for the interval 59 to 22 ka b2k. Our model reproduces the statistical and dynamical characteristics of the records, including the Dansgaard–Oeschger variability, with no need for external forcing. The crucial ingredients are cubic drift terms, nonlinear coupling terms between the oxygen and dust time series, and non-Markovian contributions.
Denis-Didier Rousseau, Anders Svensson, Matthias Bigler, Adriana Sima, Jorgen Peder Steffensen, and Niklas Boers
Clim. Past, 13, 1181–1197, https://doi.org/10.5194/cp-13-1181-2017, https://doi.org/10.5194/cp-13-1181-2017, 2017
Short summary
Short summary
We show that the analysis of δ18O and dust in the Greenland ice cores, and a critical study of their source variations, reconciles these records with those observed on the Eurasian continent. We demonstrate the link between European and Chinese loess sequences, dust records in Greenland, and variations in the North Atlantic sea ice extent. The sources of the emitted and transported dust material are variable and relate to different environments.
Niklas Boers, Bedartha Goswami, and Michael Ghil
Clim. Past, 13, 1169–1180, https://doi.org/10.5194/cp-13-1169-2017, https://doi.org/10.5194/cp-13-1169-2017, 2017
Short summary
Short summary
We introduce a Bayesian framework to represent layer-counted proxy records as probability distributions on error-free time axes, accounting for both proxy and dating errors. Our method is applied to NGRIP δ18O data, revealing that the cumulative dating errors lead to substantial uncertainties for the older parts of the record. Applying our method to the widely used radiocarbon comparison curve derived from varved sediments of Lake Suigetsu provides the complete uncertainties of this curve.
Milan Flach, Fabian Gans, Alexander Brenning, Joachim Denzler, Markus Reichstein, Erik Rodner, Sebastian Bathiany, Paul Bodesheim, Yanira Guanche, Sebastian Sippel, and Miguel D. Mahecha
Earth Syst. Dynam., 8, 677–696, https://doi.org/10.5194/esd-8-677-2017, https://doi.org/10.5194/esd-8-677-2017, 2017
Short summary
Short summary
Anomalies and extremes are often detected using univariate peak-over-threshold approaches in the geoscience community. The Earth system is highly multivariate. We compare eight multivariate anomaly detection algorithms and combinations of data preprocessing. We identify three anomaly detection algorithms that outperform univariate extreme event detection approaches. The workflows have the potential to reveal novelties in data. Remarks on their application to real Earth observations are provided.
Helge F. Goessling and Sebastian Bathiany
Earth Syst. Dynam., 7, 697–715, https://doi.org/10.5194/esd-7-697-2016, https://doi.org/10.5194/esd-7-697-2016, 2016
Short summary
Short summary
Carbon dioxide, while warming the Earth's surface, cools the atmosphere beyond about 15 km (the middle atmosphere). This cooling is considered a fingerprint of anthropogenic global warming, yet the physical reason behind it remains prone to misconceptions. Here we use a simple radiation model to illustrate the physical essence of stratospheric cooling, and a complex climate model to quantify how strongly different mechanisms contribute.
Sebastian Bathiany, Bregje van der Bolt, Mark S. Williamson, Timothy M. Lenton, Marten Scheffer, Egbert H. van Nes, and Dirk Notz
The Cryosphere, 10, 1631–1645, https://doi.org/10.5194/tc-10-1631-2016, https://doi.org/10.5194/tc-10-1631-2016, 2016
Short summary
Short summary
We examine if a potential "tipping point" in Arctic sea ice, causing abrupt and irreversible sea-ice loss, could be foreseen with statistical early warning signals. We assess this idea by using several models of different complexity. We find robust and consistent trends in variability that are not specific to the existence of a tipping point. While this makes an early warning impossible, it allows to estimate sea-ice variability from only short observational records or reconstructions.
Mark S. Williamson, Sebastian Bathiany, and Timothy M. Lenton
Earth Syst. Dynam., 7, 313–326, https://doi.org/10.5194/esd-7-313-2016, https://doi.org/10.5194/esd-7-313-2016, 2016
Short summary
Short summary
We find early warnings of abrupt changes in complex dynamical systems such as the climate where the usual early warning indicators do not work. In particular, these are systems that are periodically forced, for example by the annual cycle of solar insolation. We show these indicators are good theoretically in a general setting then apply them to a specific system, that of the Arctic sea ice, which has been conjectured to be close to such a tipping point. We do not find evidence of it.
S. Bathiany, M. Claussen, and K. Fraedrich
Earth Syst. Dynam., 4, 63–78, https://doi.org/10.5194/esd-4-63-2013, https://doi.org/10.5194/esd-4-63-2013, 2013
S. Bathiany, M. Claussen, and K. Fraedrich
Earth Syst. Dynam., 4, 79–93, https://doi.org/10.5194/esd-4-79-2013, https://doi.org/10.5194/esd-4-79-2013, 2013
Related subject area
Climate and Earth system modeling
A sub-grid parameterization scheme for topographic vertical motion in CAM5-SE
Technology to aid the analysis of large-volume multi-institute climate model output at a central analysis facility (PRIMAVERA Data Management Tool V2.10)
A diffusion-based kernel density estimator (diffKDE, version 1) with optimal bandwidth approximation for the analysis of data in geoscience and ecological research
Monte Carlo drift correction – quantifying the drift uncertainty of global climate models
Improvements in the Canadian Earth System Model (CanESM) through systematic model analysis: CanESM5.0 and CanESM5.1
Earth System Model Aerosol–Cloud Diagnostics (ESMAC Diags) package, version 2: assessing aerosols, clouds, and aerosol–cloud interactions via field campaign and long-term observations
CIOFC1.0: a common parallel input/output framework based on C-Coupler2.0
Overcoming computational challenges to realize meter- to submeter-scale resolution in cloud simulations using the super-droplet method
Introducing a new floodplain scheme in ORCHIDEE (version 7885): validation and evaluation over the Pantanal wetlands
URock 2023a: an open-source GIS-based wind model for complex urban settings
DASH: a MATLAB toolbox for paleoclimate data assimilation
Comparing the Performance of Julia on CPUs versus GPUs and Julia-MPI versus Fortran-MPI: a case study with MPAS-Ocean (Version 7.1)
All aboard! Earth system investigations with the CH2O-CHOO TRAIN v1.0
The Canadian Atmospheric Model version 5 (CanAM5.0.3)
The Teddy tool v1.1: temporal disaggregation of daily climate model data for climate impact analysis
Assimilation of the AMSU-A radiances using the CESM (v2.1.0) and the DART (v9.11.13)–RTTOV (v12.3)
Modernizing the open-source community Noah with multi-parameterization options (Noah-MP) land surface model (version 5.0) with enhanced modularity, interoperability, and applicability
Simulated stable water isotopes during the mid-Holocene and pre-industrial periods using AWI-ESM-2.1-wiso
Truly Conserving with Conservative Remapping Methods
Rainbows and climate change: a tutorial on climate model diagnostics and parameterization
ModE-Sim – a medium-sized atmospheric general circulation model (AGCM) ensemble to study climate variability during the modern era (1420 to 2009)
MESMAR v1: a new regional coupled climate model for downscaling, predictability, and data assimilation studies in the Mediterranean region
Climate model Selection by Independence, Performance, and Spread (ClimSIPS v1.0.1) for regional applications
IceTFT v1.0.0: interpretable long-term prediction of Arctic sea ice extent with deep learning
Earth system modeling on Modular Supercomputing Architectures: coupled atmosphere-ocean simulations with ICON 2.6.6-rc
The KNMI Large Ensemble Time Slice (KNMI–LENTIS)
ENSO statistics, teleconnections, and atmosphere–ocean coupling in the Taiwan Earth System Model version 1
Using probabilistic machine learning to better model temporal patterns in parameterizations: a case study with the Lorenz 96 model
The Regional Aerosol Model Intercomparison Project (RAMIP)
DSCIM-Coastal v1.1: an open-source modeling platform for global impacts of sea level rise
TIMBER v0.1: a conceptual framework for emulating temperature responses to tree cover change
Recalibration of a three-dimensional water quality model with a newly developed autocalibration toolkit (EFDC-ACT v1.0.0): how much improvement will be achieved with a wider hydrological variability?
Description and evaluation of the JULES-ES set-up for ISIMIP2b
Simplified Kalman smoother and ensemble Kalman smoother for improving reanalyses
Understanding Changes in Cloud Simulations from E3SM Version 1 to Version 2
Modelling the terrestrial nitrogen and phosphorus cycle in the UVic ESCM
Modeling river water temperature with limiting forcing data: Air2stream v1.0.0, machine learning and multiple regression
WRF (v4.0)-SUEWS (v2018c) Coupled System: Development, Evaluation and Application
A machine learning approach targeting parameter estimation for plant functional type coexistence modeling using ELM-FATES (v2.0)
Resolving the mesoscale at reduced computational cost with FESOM 2.5: efficient modeling approaches applied to the Southern Ocean
Modeling and evaluating the effects of irrigation on land-atmosphere interaction in South-West Europe with the regional climate model REMO2020-iMOVE using a newly developed parameterization
The fully coupled regionally refined model of E3SM version 2: overview of the atmosphere, land, and river results
The mixed-layer depth in the Ocean Model Intercomparison Project (OMIP): impact of resolving mesoscale eddies
A new simplified parameterization of secondary organic aerosol in the Community Earth System Model Version 2 (CESM2; CAM6.3)
Deep learning for stochastic precipitation generation – deep SPG v1.0
Developing spring wheat in the Noah-MP land surface model (v4.4) for growing season dynamics and responses to temperature stress
Deep Learning Model based on Multi-scale Feature Fusion for Precipitation Nowcasting
Robust 4D climate-optimal flight planning in structured airspace using parallelized simulation on GPUs: ROOST V1.0
High resolution downscaling of CMIP6 Earth System and Global Climate Models using deep learning for Iberia
The Earth system model CLIMBER-X v1.0 – Part 2: The global carbon cycle
Yaqi Wang, Lanning Wang, Juan Feng, Zhenya Song, Qizhong Wu, and Huaqiong Cheng
Geosci. Model Dev., 16, 6857–6873, https://doi.org/10.5194/gmd-16-6857-2023, https://doi.org/10.5194/gmd-16-6857-2023, 2023
Short summary
Short summary
In this study, to noticeably improve precipitation simulation in steep mountains, we propose a sub-grid parameterization scheme for the topographic vertical motion in CAM5-SE to revise the original vertical velocity by adding the topographic vertical motion. The dynamic lifting effect of topography is extended from the lowest layer to multiple layers, thus improving the positive deviations of precipitation simulation in high-altitude regions and negative deviations in low-altitude regions.
Jon Seddon, Ag Stephens, Matthew S. Mizielinski, Pier Luigi Vidale, and Malcolm J. Roberts
Geosci. Model Dev., 16, 6689–6700, https://doi.org/10.5194/gmd-16-6689-2023, https://doi.org/10.5194/gmd-16-6689-2023, 2023
Short summary
Short summary
The PRIMAVERA project aimed to develop a new generation of advanced global climate models. The large volume of data generated was uploaded to a central analysis facility (CAF) and was analysed by 100 PRIMAVERA scientists there. We describe how the PRIMAVERA project used the CAF's facilities to enable users to analyse this large dataset. We believe that similar, multi-institute, big-data projects could also use a CAF to efficiently share, organise and analyse large volumes of data.
Maria-Theresia Pelz, Markus Schartau, Christopher J. Somes, Vanessa Lampe, and Thomas Slawig
Geosci. Model Dev., 16, 6609–6634, https://doi.org/10.5194/gmd-16-6609-2023, https://doi.org/10.5194/gmd-16-6609-2023, 2023
Short summary
Short summary
Kernel density estimators (KDE) approximate the probability density of a data set without the assumption of an underlying distribution. We used the solution of the diffusion equation, and a new approximation of the optimal smoothing parameter build on two pilot estimation steps, to construct such a KDE best suited for typical characteristics of geoscientific data. The resulting KDE is insensitive to noise and well resolves multimodal data structures as well as boundary-close data.
Benjamin S. Grandey, Zhi Yang Koh, Dhrubajyoti Samanta, Benjamin P. Horton, Justin Dauwels, and Lock Yue Chew
Geosci. Model Dev., 16, 6593–6608, https://doi.org/10.5194/gmd-16-6593-2023, https://doi.org/10.5194/gmd-16-6593-2023, 2023
Short summary
Short summary
Global climate models are susceptible to spurious trends known as drift. Fortunately, drift can be corrected when analysing data produced by models. To explore the uncertainty associated with drift correction, we develop a new method: Monte Carlo drift correction. For historical simulations of thermosteric sea level rise, drift uncertainty is relatively large. When analysing data susceptible to drift, researchers should consider drift uncertainty.
Michael Sigmond, James Anstey, Vivek Arora, Ruth Digby, Nathan Gillett, Viatcheslav Kharin, William Merryfield, Catherine Reader, John Scinocca, Neil Swart, John Virgin, Carsten Abraham, Jason Cole, Nicolas Lambert, Woo-Sung Lee, Yongxiao Liang, Elizaveta Malinina, Landon Rieger, Knut von Salzen, Christian Seiler, Clint Seinen, Andrew Shao, Reinel Sospedra-Alfonso, Libo Wang, and Duo Yang
Geosci. Model Dev., 16, 6553–6591, https://doi.org/10.5194/gmd-16-6553-2023, https://doi.org/10.5194/gmd-16-6553-2023, 2023
Short summary
Short summary
We present a new activity which aims to organize the analysis of biases in the Canadian Earth System model (CanESM) in a systematic manner. Results of this “Analysis for Development” (A4D) activity includes a new CanESM version, CanESM5.1, which features substantial improvements regarding the simulation of dust and stratospheric temperatures, a second CanESM5.1 variant with reduced climate sensitivity, and insights into potential avenues to reduce various other model biases.
Shuaiqi Tang, Adam C. Varble, Jerome D. Fast, Kai Zhang, Peng Wu, Xiquan Dong, Fan Mei, Mikhail Pekour, Joseph C. Hardin, and Po-Lun Ma
Geosci. Model Dev., 16, 6355–6376, https://doi.org/10.5194/gmd-16-6355-2023, https://doi.org/10.5194/gmd-16-6355-2023, 2023
Short summary
Short summary
To assess the ability of Earth system model (ESM) predictions, we developed a tool called ESMAC Diags to understand how aerosols, clouds, and aerosol–cloud interactions are represented in ESMs. This paper describes its version 2 functionality. We compared the model predictions with measurements taken by planes, ships, satellites, and ground instruments over four regions across the world. Results show that this new tool can help identify model problems and guide future development of ESMs.
Xinzhu Yu, Li Liu, Chao Sun, Qingu Jiang, Biao Zhao, Zhiyuan Zhang, Hao Yu, and Bin Wang
Geosci. Model Dev., 16, 6285–6308, https://doi.org/10.5194/gmd-16-6285-2023, https://doi.org/10.5194/gmd-16-6285-2023, 2023
Short summary
Short summary
In this paper we propose a new common, flexible, and efficient parallel I/O framework for earth system modeling based on C-Coupler2.0. CIOFC1.0 can handle data I/O in parallel and provides a configuration file format that enables users to conveniently change the I/O configurations. It can automatically make grid and time interpolation, output data with an aperiodic time series, and accelerate data I/O when the field size is large.
Toshiki Matsushima, Seiya Nishizawa, and Shin-ichiro Shima
Geosci. Model Dev., 16, 6211–6245, https://doi.org/10.5194/gmd-16-6211-2023, https://doi.org/10.5194/gmd-16-6211-2023, 2023
Short summary
Short summary
A particle-based cloud model was developed for meter- to submeter-scale resolution in cloud simulations. Our new cloud model's computational performance is superior to a bin method and comparable to a two-moment bulk method. A highlight of this study is the 2 m resolution shallow cloud simulations over an area covering ∼10 km2. This model allows for studying turbulence and cloud physics at spatial scales that overlap with those covered by direct numerical simulations and field studies.
Anthony Schrapffer, Jan Polcher, Anna Sörensson, and Lluís Fita
Geosci. Model Dev., 16, 5755–5782, https://doi.org/10.5194/gmd-16-5755-2023, https://doi.org/10.5194/gmd-16-5755-2023, 2023
Short summary
Short summary
The present paper introduces a floodplain scheme for a high-resolution land surface model river routing. It was developed and evaluated over one of the world’s largest floodplains: the Pantanal in South America. This shows the impact of tropical floodplains on land surface conditions (soil moisture, temperature) and on land–atmosphere fluxes and highlights the potential impact of floodplains on land–atmosphere interactions and the importance of integrating this module in coupled simulations.
Jérémy Bernard, Fredrik Lindberg, and Sandro Oswald
Geosci. Model Dev., 16, 5703–5727, https://doi.org/10.5194/gmd-16-5703-2023, https://doi.org/10.5194/gmd-16-5703-2023, 2023
Short summary
Short summary
The UMEP plug-in integrated in the free QGIS software can now calculate the spatial variation of the wind speed within urban settings. This paper shows that the new wind model, URock, generally fits observations well and highlights the main needed improvements. According to this work, pedestrian wind fields and outdoor thermal comfort can now simply be estimated by any QGIS user (researchers, students, and practitioners).
Jonathan King, Jessica Tierney, Matthew Osman, Emily J. Judd, and Kevin J. Anchukaitis
Geosci. Model Dev., 16, 5653–5683, https://doi.org/10.5194/gmd-16-5653-2023, https://doi.org/10.5194/gmd-16-5653-2023, 2023
Short summary
Short summary
Paleoclimate data assimilation is a useful method that allows researchers to combine climate models with natural archives of past climates. However, it can be difficult to implement in practice. To facilitate this method, we present DASH, a MATLAB toolbox. The toolbox provides routines that implement common steps of paleoclimate data assimilation, and it can be used to implement assimilations for a wide variety of time periods, spatial regions, data networks, and analytical algorithms.
Siddhartha Bishnu, Robert R. Strauss, and Mark R. Petersen
Geosci. Model Dev., 16, 5539–5559, https://doi.org/10.5194/gmd-16-5539-2023, https://doi.org/10.5194/gmd-16-5539-2023, 2023
Short summary
Short summary
Here we test Julia, a relatively new programming language, which is designed to be simple to write, but also fast on advanced computer architectures. We found that Julia is both convenient and fast, but there is no free lunch. Our first attempt to develop an ocean model in Julia was relatively easy, but the code was slow. After several months of further development, we created a Julia code that is as fast on supercomputers as a Fortran ocean model.
Tyler Kukla, Daniel E. Ibarra, Kimberly V. Lau, and Jeremy K. C. Rugenstein
Geosci. Model Dev., 16, 5515–5538, https://doi.org/10.5194/gmd-16-5515-2023, https://doi.org/10.5194/gmd-16-5515-2023, 2023
Short summary
Short summary
The CH2O-CHOO TRAIN model can simulate how climate and the long-term carbon cycle interact across millions of years on a standard PC. While efficient, the model accounts for many factors including the location of land masses, the spatial pattern of the water cycle, and fundamental climate feedbacks. The model is a powerful tool for investigating how short-term climate processes can affect long-term changes in the Earth system.
Jason Neil Steven Cole, Knut von Salzen, Jiangnan Li, John Scinocca, David Plummer, Vivek Arora, Norman McFarlane, Michael Lazare, Murray MacKay, and Diana Verseghy
Geosci. Model Dev., 16, 5427–5448, https://doi.org/10.5194/gmd-16-5427-2023, https://doi.org/10.5194/gmd-16-5427-2023, 2023
Short summary
Short summary
The Canadian Atmospheric Model version 5 (CanAM5) is used to simulate on a global scale the climate of Earth's atmosphere, land, and lakes. We document changes to the physics in CanAM5 since the last major version of the model (CanAM4) and evaluate the climate simulated relative to observations and CanAM4. The climate simulated by CanAM5 is similar to CanAM4, but there are improvements, including better simulation of temperature and precipitation over the Amazon and better simulation of cloud.
Florian Zabel and Benjamin Poschlod
Geosci. Model Dev., 16, 5383–5399, https://doi.org/10.5194/gmd-16-5383-2023, https://doi.org/10.5194/gmd-16-5383-2023, 2023
Short summary
Short summary
Today, most climate model data are provided at daily time steps. However, more and more models from different sectors, such as energy, water, agriculture, and health, require climate information at a sub-daily temporal resolution for a more robust and reliable climate impact assessment. Here we describe and validate the Teddy tool, a new model for the temporal disaggregation of daily climate model data for climate impact analysis.
Young-Chan Noh, Yonghan Choi, Hyo-Jong Song, Kevin Raeder, Joo-Hong Kim, and Youngchae Kwon
Geosci. Model Dev., 16, 5365–5382, https://doi.org/10.5194/gmd-16-5365-2023, https://doi.org/10.5194/gmd-16-5365-2023, 2023
Short summary
Short summary
This is the first attempt to assimilate the observations of microwave temperature sounders into the global climate forecast model in which the satellite observations have not been assimilated in the past. To do this, preprocessing schemes are developed to make the satellite observations suitable to be assimilated. In the assimilation experiments, the model analysis is significantly improved by assimilating the observations of microwave temperature sounders.
Cenlin He, Prasanth Valayamkunnath, Michael Barlage, Fei Chen, David Gochis, Ryan Cabell, Tim Schneider, Roy Rasmussen, Guo-Yue Niu, Zong-Liang Yang, Dev Niyogi, and Michael Ek
Geosci. Model Dev., 16, 5131–5151, https://doi.org/10.5194/gmd-16-5131-2023, https://doi.org/10.5194/gmd-16-5131-2023, 2023
Short summary
Short summary
Noah-MP is one of the most widely used open-source community land surface models in the world, designed for applications ranging from uncoupled land surface and ecohydrological process studies to coupled numerical weather prediction and decadal climate simulations. To facilitate model developments and applications, we modernize Noah-MP by adopting modern Fortran code and data structures and standards, which substantially enhance model modularity, interoperability, and applicability.
Xiaoxu Shi, Alexandre Cauquoin, Gerrit Lohmann, Lukas Jonkers, Qiang Wang, Hu Yang, Yuchen Sun, and Martin Werner
Geosci. Model Dev., 16, 5153–5178, https://doi.org/10.5194/gmd-16-5153-2023, https://doi.org/10.5194/gmd-16-5153-2023, 2023
Short summary
Short summary
We developed a new climate model with isotopic capabilities and simulated the pre-industrial and mid-Holocene periods. Despite certain regional model biases, the modeled isotope composition is in good agreement with observations and reconstructions. Based on our analyses, the observed isotope–temperature relationship in polar regions may have a summertime bias. Using daily model outputs, we developed a novel isotope-based approach to determine the onset date of the West African summer monsoon.
Karl E. Taylor
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-177, https://doi.org/10.5194/gmd-2023-177, 2023
Revised manuscript accepted for GMD
Short summary
Short summary
Remapping gridded data in a way that preserves the conservative properties of the climate system can be essential in coupling model components and for accurate assessment of the system’s energy and mass constituents. Remapping packages capable of handling a wide variety of grids can, for common grids, calculate remapping weights that are somewhat inaccurate. Correcting for these errors, guidelines are provided to ensure conservation when the weights are used in practice.
Andrew Gettelman
Geosci. Model Dev., 16, 4937–4956, https://doi.org/10.5194/gmd-16-4937-2023, https://doi.org/10.5194/gmd-16-4937-2023, 2023
Short summary
Short summary
A representation of rainbows is developed for a climate model. The diagnostic raises many common issues. Simulated rainbows are evaluated against limited observations. The pattern of rainbows in the model matches observations and theory about when and where rainbows are most common. The diagnostic is used to assess the past and future state of rainbows. Changes to clouds from climate change are expected to increase rainbows as cloud cover decreases in a warmer world.
Ralf Hand, Eric Samakinwa, Laura Lipfert, and Stefan Brönnimann
Geosci. Model Dev., 16, 4853–4866, https://doi.org/10.5194/gmd-16-4853-2023, https://doi.org/10.5194/gmd-16-4853-2023, 2023
Short summary
Short summary
ModE-Sim is an ensemble of simulations with an atmosphere model. It uses observed sea surface temperatures, sea ice conditions, and volcanic aerosols for 1420 to 2009 as model input while accounting for uncertainties in these conditions. This generates several representations of the possible climate given these preconditions. Such a setup can be useful to understand the mechanisms that contribute to climate variability. This paper describes the setup of ModE-Sim and evaluates its performance.
Andrea Storto, Yassmin Hesham Essa, Vincenzo de Toma, Alessandro Anav, Gianmaria Sannino, Rosalia Santoleri, and Chunxue Yang
Geosci. Model Dev., 16, 4811–4833, https://doi.org/10.5194/gmd-16-4811-2023, https://doi.org/10.5194/gmd-16-4811-2023, 2023
Short summary
Short summary
Regional climate models are a fundamental tool for a very large number of applications and are being increasingly used within climate services, together with other complementary approaches. Here, we introduce a new regional coupled model, intended to be later extended to a full Earth system model, for climate investigations within the Mediterranean region, coupled data assimilation experiments, and several downscaling exercises (reanalyses and long-range predictions).
Anna L. Merrifield, Lukas Brunner, Ruth Lorenz, Vincent Humphrey, and Reto Knutti
Geosci. Model Dev., 16, 4715–4747, https://doi.org/10.5194/gmd-16-4715-2023, https://doi.org/10.5194/gmd-16-4715-2023, 2023
Short summary
Short summary
Using all Coupled Model Intercomparison Project (CMIP) models is unfeasible for many applications. We provide a subselection protocol that balances user needs for model independence, performance, and spread capturing CMIP’s projection uncertainty simultaneously. We show how sets of three to five models selected for European applications map to user priorities. An audit of model independence and its influence on equilibrium climate sensitivity uncertainty in CMIP is also presented.
Bin Mu, Xiaodan Luo, Shijin Yuan, and Xi Liang
Geosci. Model Dev., 16, 4677–4697, https://doi.org/10.5194/gmd-16-4677-2023, https://doi.org/10.5194/gmd-16-4677-2023, 2023
Short summary
Short summary
To improve the long-term forecast skill for sea ice extent (SIE), we introduce IceTFT, which directly predicts 12 months of averaged Arctic SIE. The results show that IceTFT has higher forecasting skill. We conducted a sensitivity analysis of the variables in the IceTFT model. These sensitivities can help researchers study the mechanisms of sea ice development, and they also provide useful references for the selection of variables in data assimilation or the input of deep learning models.
Abhiraj Bishnoi, Olaf Stein, Catrin I. Meyer, René Redler, Norbert Eicker, Helmuth Haak, Lars Hoffmann, Daniel Klocke, Luis Kornblueh, and Estela Suarez
EGUsphere, https://doi.org/10.5194/egusphere-2023-1476, https://doi.org/10.5194/egusphere-2023-1476, 2023
Short summary
Short summary
We enabled the weather and climate model ICON to run in a high-resolution coupled atmosphere-ocean setup on the JUWELS supercomputer, where the ocean and the model I/O runs on the CPU Cluster, while the atmosphere is running simultaneously on GPUs. Compared to a simulation performed on CPUs only, our approach reduces energy consumption by 59 % with comparable runtimes. The experiments serve as preparation for efficient computing of kilometer-scale climate models on future supercomputing systems.
Laura Muntjewerf, Richard Bintanja, Thomas Reerink, and Karin van der Wiel
Geosci. Model Dev., 16, 4581–4597, https://doi.org/10.5194/gmd-16-4581-2023, https://doi.org/10.5194/gmd-16-4581-2023, 2023
Short summary
Short summary
The KNMI Large Ensemble Time Slice (KNMI–LENTIS) is a large ensemble of global climate model simulations with EC-Earth3. It covers two climate scenarios by focusing on two time slices: the present day (2000–2009) and a future +2 K climate (2075–2084 in the SSP2-4.5 scenario). We have 1600 simulated years for the two climates with (sub-)daily output frequency. The sampled climate variability allows for robust and in-depth research into (compound) extreme events such as heat waves and droughts.
Yi-Chi Wang, Wan-Ling Tseng, Yu-Luen Chen, Shih-Yu Lee, Huang-Hsiung Hsu, and Hsin-Chien Liang
Geosci. Model Dev., 16, 4599–4616, https://doi.org/10.5194/gmd-16-4599-2023, https://doi.org/10.5194/gmd-16-4599-2023, 2023
Short summary
Short summary
This study focuses on evaluating the performance of the Taiwan Earth System Model version 1 (TaiESM1) in simulating the El Niño–Southern Oscillation (ENSO), a significant tropical climate pattern with global impacts. Our findings reveal that TaiESM1 effectively captures several characteristics of ENSO, such as its seasonal variation and remote teleconnections. Its pronounced ENSO strength bias is also thoroughly investigated, aiming to gain insights to improve climate model performance.
Raghul Parthipan, Hannah M. Christensen, J. Scott Hosking, and Damon J. Wischik
Geosci. Model Dev., 16, 4501–4519, https://doi.org/10.5194/gmd-16-4501-2023, https://doi.org/10.5194/gmd-16-4501-2023, 2023
Short summary
Short summary
How can we create better climate models? We tackle this by proposing a data-driven successor to the existing approach for capturing key temporal trends in climate models. We combine probability, allowing us to represent uncertainty, with machine learning, a technique to learn relationships from data which are undiscoverable to humans. Our model is often superior to existing baselines when tested in a simple atmospheric simulation.
Laura J. Wilcox, Robert J. Allen, Bjørn H. Samset, Massimo A. Bollasina, Paul T. Griffiths, James Keeble, Marianne T. Lund, Risto Makkonen, Joonas Merikanto, Declan O'Donnell, David J. Paynter, Geeta G. Persad, Steven T. Rumbold, Toshihiko Takemura, Kostas Tsigaridis, Sabine Undorf, and Daniel M. Westervelt
Geosci. Model Dev., 16, 4451–4479, https://doi.org/10.5194/gmd-16-4451-2023, https://doi.org/10.5194/gmd-16-4451-2023, 2023
Short summary
Short summary
Changes in anthropogenic aerosol emissions have strongly contributed to global and regional climate change. However, the size of these regional impacts and the way they arise are still uncertain. With large changes in aerosol emissions a possibility over the next few decades, it is important to better quantify the potential role of aerosol in future regional climate change. The Regional Aerosol Model Intercomparison Project will deliver experiments designed to facilitate this.
Nicholas Depsky, Ian Bolliger, Daniel Allen, Jun Ho Choi, Michael Delgado, Michael Greenstone, Ali Hamidi, Trevor Houser, Robert E. Kopp, and Solomon Hsiang
Geosci. Model Dev., 16, 4331–4366, https://doi.org/10.5194/gmd-16-4331-2023, https://doi.org/10.5194/gmd-16-4331-2023, 2023
Short summary
Short summary
This work presents a novel open-source modeling platform for evaluating future sea level rise (SLR) impacts. Using nearly 10 000 discrete coastline segments around the world, we estimate 21st-century costs for 230 SLR and socioeconomic scenarios. We find that annual end-of-century costs range from USD 100 billion under a 2 °C warming scenario with proactive adaptation to 7 trillion under a 4 °C warming scenario with minimal adaptation, illustrating the cost-effectiveness of coastal adaptation.
Shruti Nath, Lukas Gudmundsson, Jonas Schwaab, Gregory Duveiller, Steven J. De Hertog, Suqi Guo, Felix Havermann, Fei Luo, Iris Manola, Julia Pongratz, Sonia I. Seneviratne, Carl F. Schleussner, Wim Thiery, and Quentin Lejeune
Geosci. Model Dev., 16, 4283–4313, https://doi.org/10.5194/gmd-16-4283-2023, https://doi.org/10.5194/gmd-16-4283-2023, 2023
Short summary
Short summary
Tree cover changes play a significant role in climate mitigation and adaptation. Their regional impacts are key in informing national-level decisions and prioritising areas for conservation efforts. We present a first step towards exploring these regional impacts using a simple statistical device, i.e. emulator. The emulator only needs to train on climate model outputs representing the maximal impacts of aff-, re-, and deforestation, from which it explores plausible in-between outcomes itself.
Chen Zhang and Tianyu Fu
Geosci. Model Dev., 16, 4315–4329, https://doi.org/10.5194/gmd-16-4315-2023, https://doi.org/10.5194/gmd-16-4315-2023, 2023
Short summary
Short summary
A new automatic calibration toolkit was developed and implemented into the recalibration of a 3-D water quality model, with observations in a wider range of hydrological variability. Compared to the model calibrated with the original strategy, the recalibrated model performed significantly better in modeled total phosphorus, chlorophyll a, and dissolved oxygen. Our work indicates that hydrological variability in the calibration periods has a non-negligible impact on the water quality models.
Camilla Mathison, Eleanor Burke, Andrew J. Hartley, Douglas I. Kelley, Chantelle Burton, Eddy Robertson, Nicola Gedney, Karina Williams, Andy Wiltshire, Richard J. Ellis, Alistair A. Sellar, and Chris D. Jones
Geosci. Model Dev., 16, 4249–4264, https://doi.org/10.5194/gmd-16-4249-2023, https://doi.org/10.5194/gmd-16-4249-2023, 2023
Short summary
Short summary
This paper describes and evaluates a new modelling methodology to quantify the impacts of climate change on water, biomes and the carbon cycle. We have created a new configuration and set-up for the JULES-ES land surface model, driven by bias-corrected historical and future climate model output provided by the Inter-Sectoral Impacts Model Intercomparison Project (ISIMIP). This allows us to compare projections of the impacts of climate change across multiple impact models and multiple sectors.
Bo Dong, Ross Bannister, Yumeng Chen, Alison Fowler, and Keith Haines
Geosci. Model Dev., 16, 4233–4247, https://doi.org/10.5194/gmd-16-4233-2023, https://doi.org/10.5194/gmd-16-4233-2023, 2023
Short summary
Short summary
Traditional Kalman smoothers are expensive to apply in large global ocean operational forecast and reanalysis systems. We develop a cost-efficient method to overcome the technical constraints and to improve the performance of existing reanalysis products.
Yuying Zhang, Shaocheng Xie, Yi Qin, Wuyin Lin, Jean-Christophe Golaz, Xue Zheng, Po-Lun Ma, Yun Qian, Qi Tang, Christopher R. Terai, and Meng Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2023-1263, https://doi.org/10.5194/egusphere-2023-1263, 2023
Short summary
Short summary
We performed systematic evaluation of clouds simulated in the E3SMv2 to document model performance on clouds and understand what updates in E3SMv2 have caused the changes in clouds from E3SMv1 to E3SMv2. We find that stratocumulus clouds along the subtropical west coast of continents are dramatically improved primarily due to the re-tuning of cloud macrophysics parameters. This study offers additional insights about clouds simulated in E3SMv2 and will benefit the future E3SM developments.
Makcim L. De Sisto, Andrew H. MacDougall, Nadine Mengis, and Sophia Antoniello
Geosci. Model Dev., 16, 4113–4136, https://doi.org/10.5194/gmd-16-4113-2023, https://doi.org/10.5194/gmd-16-4113-2023, 2023
Short summary
Short summary
In this study, we developed a nitrogen and phosphorus cycle in an intermediate-complexity Earth system climate model. We found that the implementation of nutrient limitation in simulations has reduced the capacity of land to take up atmospheric carbon and has decreased the vegetation biomass, hence, improving the fidelity of the response of land to simulated atmospheric CO2 rise.
Manuel C. Almeida and Pedro S. Coelho
Geosci. Model Dev., 16, 4083–4112, https://doi.org/10.5194/gmd-16-4083-2023, https://doi.org/10.5194/gmd-16-4083-2023, 2023
Short summary
Short summary
Water temperature (WT) datasets of low-order rivers are scarce. In this study, five different models are used to predict the WT of 83 rivers. Generally, the results show that the models' hyperparameter optimization is essential and that to minimize the prediction error it is relevant to apply all the models considered in this study. Results also show that there is a logarithmic correlation among the error of the predicted river WT and the watershed time of concentration.
Ting Sun, Hamidreza Omidvar, Zhenkun Li, Ning Zhang, Wenjuan Huang, Simone Kotthaus, Helen C. Ward, Zhiwen Luo, and Sue Grimmond
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-117, https://doi.org/10.5194/gmd-2023-117, 2023
Revised manuscript accepted for GMD
Short summary
Short summary
For the first time, we coupled a state-of-the-art urban land surface model – Surface Urban Energy and Water Scheme (SUEWS) – with the widely-used Weather Research and Forecasting (WRF) model, creating an open-source tool that may benefit multiple applications. We tested our new system at two UK sites and demonstrated its potential by examining how human activities in various areas of Greater London influence local weather conditions.
Lingcheng Li, Yilin Fang, Zhonghua Zheng, Mingjie Shi, Marcos Longo, Charles D. Koven, Jennifer A. Holm, Rosie A. Fisher, Nate G. McDowell, Jeffrey Chambers, and L. Ruby Leung
Geosci. Model Dev., 16, 4017–4040, https://doi.org/10.5194/gmd-16-4017-2023, https://doi.org/10.5194/gmd-16-4017-2023, 2023
Short summary
Short summary
Accurately modeling plant coexistence in vegetation demographic models like ELM-FATES is challenging. This study proposes a repeatable method that uses machine-learning-based surrogate models to optimize plant trait parameters in ELM-FATES. Our approach significantly improves plant coexistence modeling, thus reducing errors. It has important implications for modeling ecosystem dynamics in response to climate change.
Nathan Beech, Thomas Rackow, Tido Semmler, and Thomas Jung
EGUsphere, https://doi.org/10.5194/egusphere-2023-1496, https://doi.org/10.5194/egusphere-2023-1496, 2023
Short summary
Short summary
Ocean models struggle to simulate small-scale ocean flows due to the computational cost of high-resolution simulations. Several cost-reducing strategies are applied to simulations of the Southern Ocean and evaluated with respect to observations and traditional, lower-resolution modelling methods. The high-resolution simulations effectively reproduce small-scale flows seen in satellite data and are largely consistent with traditional model simulations regarding their response to climate change.
Christina Asmus, Peter Hoffmann, Joni-Pekka Pietikäinen, Jürgen Böhner, and Diana Rechid
EGUsphere, https://doi.org/10.5194/egusphere-2023-890, https://doi.org/10.5194/egusphere-2023-890, 2023
Short summary
Short summary
Irrigation modifies the land surface and soil conditions. The caused effects can be quantified using numerical climate models. Our study introduces a new irrigation parameterization, which is simulating the effects of irrigation on land, atmosphere, and vegetation. We applied the parameterization and evaluated the results in their physical consistency. We found an improvement in the model results in the 2 m temperature representation in comparison with observational data for our study.
Qi Tang, Jean-Christophe Golaz, Luke P. Van Roekel, Mark A. Taylor, Wuyin Lin, Benjamin R. Hillman, Paul A. Ullrich, Andrew M. Bradley, Oksana Guba, Jonathan D. Wolfe, Tian Zhou, Kai Zhang, Xue Zheng, Yunyan Zhang, Meng Zhang, Mingxuan Wu, Hailong Wang, Cheng Tao, Balwinder Singh, Alan M. Rhoades, Yi Qin, Hong-Yi Li, Yan Feng, Yuying Zhang, Chengzhu Zhang, Charles S. Zender, Shaocheng Xie, Erika L. Roesler, Andrew F. Roberts, Azamat Mametjanov, Mathew E. Maltrud, Noel D. Keen, Robert L. Jacob, Christiane Jablonowski, Owen K. Hughes, Ryan M. Forsyth, Alan V. Di Vittorio, Peter M. Caldwell, Gautam Bisht, Renata B. McCoy, L. Ruby Leung, and David C. Bader
Geosci. Model Dev., 16, 3953–3995, https://doi.org/10.5194/gmd-16-3953-2023, https://doi.org/10.5194/gmd-16-3953-2023, 2023
Short summary
Short summary
High-resolution simulations are superior to low-resolution ones in capturing regional climate changes and climate extremes. However, uniformly reducing the grid size of a global Earth system model is too computationally expensive. We provide an overview of the fully coupled regionally refined model (RRM) of E3SMv2 and document a first-of-its-kind set of climate production simulations using RRM at an economic cost. The key to this success is our innovative hybrid time step method.
Anne Marie Treguier, Clement de Boyer Montégut, Alexandra Bozec, Eric P. Chassignet, Baylor Fox-Kemper, Andy McC. Hogg, Doroteaciro Iovino, Andrew E. Kiss, Julien Le Sommer, Yiwen Li, Pengfei Lin, Camille Lique, Hailong Liu, Guillaume Serazin, Dmitry Sidorenko, Qiang Wang, Xiaobio Xu, and Steve Yeager
Geosci. Model Dev., 16, 3849–3872, https://doi.org/10.5194/gmd-16-3849-2023, https://doi.org/10.5194/gmd-16-3849-2023, 2023
Short summary
Short summary
The ocean mixed layer is the interface between the ocean interior and the atmosphere and plays a key role in climate variability. We evaluate the performance of the new generation of ocean models for climate studies, designed to resolve
ocean eddies, which are the largest source of ocean variability and modulate the mixed-layer properties. We find that the mixed-layer depth is better represented in eddy-rich models but, unfortunately, not uniformly across the globe and not in all models.
Duseong S. Jo, Simone Tilmes, Louisa K. Emmons, Siyuan Wang, and Francis Vitt
Geosci. Model Dev., 16, 3893–3906, https://doi.org/10.5194/gmd-16-3893-2023, https://doi.org/10.5194/gmd-16-3893-2023, 2023
Short summary
Short summary
A new simple secondary organic aerosol (SOA) scheme has been developed for the Community Atmosphere Model (CAM) based on the complex SOA scheme in CAM with detailed chemistry (CAM-chem). The CAM with the new SOA scheme shows better agreements with CAM-chem in terms of aerosol concentrations and radiative fluxes, which ensures more consistent results between different compsets in the Community Earth System Model. The new SOA scheme also has technical advantages for future developments.
Leroy J. Bird, Matthew G. W. Walker, Greg E. Bodeker, Isaac H. Campbell, Guangzhong Liu, Swapna Josmi Sam, Jared Lewis, and Suzanne M. Rosier
Geosci. Model Dev., 16, 3785–3808, https://doi.org/10.5194/gmd-16-3785-2023, https://doi.org/10.5194/gmd-16-3785-2023, 2023
Short summary
Short summary
Deriving the statistics of expected future changes in extreme precipitation is challenging due to these events being rare. Regional climate models (RCMs) are computationally prohibitive for generating ensembles capable of capturing large numbers of extreme precipitation events with statistical robustness. Stochastic precipitation generators (SPGs) provide an alternative to RCMs. We describe a novel single-site SPG that learns the statistics of precipitation using a machine-learning approach.
Zhe Zhang, Yanping Li, Fei Chen, Phillip Harder, Warren Helgason, James Famiglietti, Prasanth Valayamkunnath, Cenlin He, and Zhenhua Li
Geosci. Model Dev., 16, 3809–3825, https://doi.org/10.5194/gmd-16-3809-2023, https://doi.org/10.5194/gmd-16-3809-2023, 2023
Short summary
Short summary
Crop models incorporated in Earth system models are essential to accurately simulate crop growth processes on Earth's surface and agricultural production. In this study, we aim to model the spring wheat in the Northern Great Plains, focusing on three aspects: (1) develop the wheat model at a point scale, (2) apply dynamic planting and harvest schedules, and (3) adopt a revised heat stress function. The results show substantial improvements and have great importance for agricultural production.
Jinkai Tan, Qiqiao Huang, and Sheng Chen
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-109, https://doi.org/10.5194/gmd-2023-109, 2023
Revised manuscript accepted for GMD
Short summary
Short summary
1. This study present a deep learning architecture MFF to improve the forecast skills of precipitations especially for heavy precipitations. 2. MFF uses multi-scale receptive fields so that the movement features of precipitation systems are well captured. 3. MFF uses the mechanism of discrete probability to reduce uncertainties and forecast errors, so that heavy precipitations are produced.
Abolfazl Simorgh, Manuel Soler, Daniel González-Arribas, Florian Linke, Benjamin Lührs, Maximilian M. Meuser, Simone Dietmüller, Sigrun Matthes, Hiroshi Yamashita, Feijia Yin, Federica Castino, Volker Grewe, and Sabine Baumann
Geosci. Model Dev., 16, 3723–3748, https://doi.org/10.5194/gmd-16-3723-2023, https://doi.org/10.5194/gmd-16-3723-2023, 2023
Short summary
Short summary
This paper addresses the robust climate optimal trajectory planning problem under uncertain meteorological conditions within the structured airspace. Based on the optimization methodology, a Python library has been developed, which can be accessed using the following DOI: https://doi.org/10.5281/zenodo.7121862. The developed tool is capable of providing robust trajectories taking into account all probable realizations of meteorological conditions provided by an EPS computationally very fast.
Pedro M. M. Soares, Frederico Johannsen, Daniela C. A. Lima, Gil Lemos, Virgílio Bento, and Angelina Bushenkova
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-136, https://doi.org/10.5194/gmd-2023-136, 2023
Revised manuscript accepted for GMD
Short summary
Short summary
This study uses deep learning (DL) to downscale global climate models for the Iberian Peninsula. Four DL architectures were evaluated and trained using historical climate data, and then used to downscale future projections from the global models. These show agreement with the original models and reveal a warming of 2 ºC to 6 ºC, along with decreasing precipitation in western Iberia after 2040. This approach offers key regional climate change information for adaptation strategies in the region.
Matteo Willeit, Tatiana Ilyina, Bo Liu, Christoph Heinze, Mahé Perrette, Malte Heinemann, Daniela Dalmonech, Victor Brovkin, Guy Munhoven, Janine Börker, Jens Hartmann, Gibran Romero-Mujalli, and Andrey Ganopolski
Geosci. Model Dev., 16, 3501–3534, https://doi.org/10.5194/gmd-16-3501-2023, https://doi.org/10.5194/gmd-16-3501-2023, 2023
Short summary
Short summary
In this paper we present the carbon cycle component of the newly developed fast Earth system model CLIMBER-X. The model can be run with interactive atmospheric CO2 to investigate the feedbacks between climate and the carbon cycle on temporal scales ranging from decades to > 100 000 years. CLIMBER-X is expected to be a useful tool for studying past climate–carbon cycle changes and for the investigation of the long-term future evolution of the Earth system.
Cited articles
Arias, P., Bellouin, N., Coppola, E., Jones, R., Krinner, G., Marotzke, J.,
Naik, V., Palmer, M., Plattner, G.-K., Rogelj, J., Rojas, M., Sillmann, J.,
Storelvmo, T., Thorne, P., Trewin, B., Achuta Rao, K., Adhikary, B., Allan,
R., Armour, K., Bala, G., Barimalala, R., Berger, S., Canadell, J., Cassou,
C., Cherchi, A., Collins, W., Collins, W., Connors, S., Corti, S., Cruz, F.,
Dentener, F., Dereczynski, C., Di Luca, A., Diongue Niang, A., Doblas-Reyes,
F., Dosio, A., Douville, H., Engelbrecht, F., Eyring, V., Fischer, E.,
Forster, P., Fox-Kemper, B., Fuglestvedt, J., Fyfe, J., Gillett, N.,
Goldfarb, L., Gorodetskaya, I., Gutierrez, J., Hamdi, R., Hawkins, E.,
Hewitt, H., Hope, P., Islam, A., Jones, C., Kaufman, D., Kopp, R., Kosaka,
Y., Kossin, J., Krakovska, S., Lee, J.-Y., Li, J., Mauritsen, T., Maycock,
T., Meinshausen, M., Min, S.-K., Monteiro, P., Ngo-Duc, T., Otto, F., Pinto,
I., Pirani, A., Raghavan, K., Ranasinghe, R., Ruane, A., Ruiz, L., Sallée,
J.-B., Samset, B., Sathyendranath, S., Seneviratne, S., Sörensson, A.,
Szopa, S., Takayabu, I., Tréguier, A.-M., van den Hurk, B., Vautard, R., von
Schuckmann, K., Zaehle, S., Zhang, X., and Zickfeld, K.: Technical Summary, in: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New
York, NY, USA,
33–144, https://doi.org/10.1017/9781009157896.002, 2021. a
Berger, M., Aftosmis, M., and Muman, S.: Analysis of Slope Limiters on
Irregular Grids, 43rd AIAA Aerospace Sciences Meeting and Exhibit
10–13 January 2005, https://doi.org/10.2514/6.2005-490, 2005. a
Beucler, T., Rasp, S., Pritchard, M., and Gentine, P.: Achieving Conservation
of Energy in Neural Network Emulators for Climate Modeling, ArXiv,
https://doi.org/10.48550/ARXIV.1906.06622, 2019. a
Beucler, T., Pritchard, M., Rasp, S., Ott, J., Baldi, P., and Gentine, P.:
Enforcing Analytic Constraints in Neural Networks Emulating Physical Systems,
Phys. Rev. Lett., 126, 098302, https://doi.org/10.1103/PhysRevLett.126.098302, 2021. a
Bezgin, D. A., Buhendwa, A. B., and Adams, N. A.: JAX-Fluids: A
fully-differentiable high-order computational fluid dynamics solver for
compressible two-phase flows, Comput. Phys. Commun., 282, 108527,
https://doi.org/10.1016/j.cpc.2022.108527, 2023. a
Blondel, M., Berthet, Q., Cuturi, M., Frostig, R., Hoyer, S., Llinares-López,
F., Pedregosa, F., and Vert, J.-P.: Efficient and Modular Implicit
Differentiation, ArXiv, https://doi.org/10.48550/ARXIV.2105.15183, 2021. a
Blonigan, P. J., Fernandez, P., Murman, S. M., Wang, Q., Rigas, G., and Magri,
L.: Toward a chaotic adjoint for LES, ArXiv, https://doi.org/10.48550/ARXIV.1702.06809, 2017. a
Bolton, T. and Zanna, L.: Applications of Deep Learning to Ocean Data Inference
and Subgrid Parameterization, J. Adv. Model. Earth Sy.,
11, 376–399, https://doi.org/10.1029/2018MS001472, 2019. a
Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C., Maclaurin,
D., Necula, G., Paszke, A., VanderPlas, J., Wanderman-Milne, S., and
Zhang, Q.: JAX: composable transformations of Python+NumPy programs, GitHub [code],
http://github.com/google/jax (last access: 30 May 2023), 2018. a, b, c, d
Campagne, J.-E., Lanusse, F., Zuntz, J., Boucaud, A., Casas, S., Karamanis, M.,
Kirkby, D., Lanzieri, D., Li, Y., and Peel, A.: JAX-COSMO: An End-to-End
Differentiable and GPU Accelerated Cosmology Library, 6, Cosmology and Nongalactic Astrophysics, https://doi.org/10.21105/astro.2302.05163, 2023. a
Chen, R. T. Q., Rubanova, Y., Bettencourt, J., and Duvenaud, D.: Neural
Ordinary Differential Equations, ArXiv, https://doi.org/10.48550/ARXIV.1806.07366, 2018. a
Chizat, L., Oyallon, E., and Bach, F.: On Lazy Training in Differentiable
Programming, in: Advances in Neural Information Processing Systems, edited by:
Wallach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox, E., and Garnett, R., Curran Associates, vol. 32,
Inc.,
https://proceedings.neurips.cc/paper/2019/file/ae614c557843b1df326cb29c57225459-Paper.pdf (last access: 30 May 2023),
2019. a
Dauvergne, B. and Hascoët, L.: The Data-Flow Equations of Checkpointing in
Reverse Automatic Differentiation, in: Computational Science – ICCS 2006,
edited by: Alexandrov, V. N., van Albada, G. D., Sloot, P. M. A., and
Dongarra, J., 566–573, Springer Berlin Heidelberg, Berlin, Heidelberg,
2006. a
de Bézenac, E., Pajot, A., and Gallinari, P.: Deep learning for physical
processes: incorporating prior scientific knowledge, J. Statist.
Mech. Theory and Experiment, 2019, 124009,
https://doi.org/10.1088/1742-5468/ab3195, 2019. a
Duane, S., Kennedy, A., Pendleton, B. J., and Roweth, D.: Hybrid Monte Carlo,
Phys. Lett. B, 195, 216–222,
https://doi.org/10.1016/0370-2693(87)91197-X, 1987. a
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016. a
Farrell, P. E., Ham, D. A., Funke, S. W., and Rognes, M. E.: Automated
Derivation of the Adjoint of High-Level Transient Finite Element Programs,
SIAM J. Sci. Comput., 35, C369–C393,
https://doi.org/10.1137/120873558, 2013. a, b, c, d
Ge, H., Xu, K., and Ghahramani, Z.: Turing: A Language for Flexible
Probabilistic Inference, in: Proceedings of the Twenty-First International
Conference on Artificial Intelligence and Statistics, edited by: Storkey, A.
and Perez-Cruz, F., Proc. Mach. Learn.
Res., 84, 1682–1690,
https://proceedings.mlr.press/v84/ge18b.html (last access: 30 May 2023), 2018. a
Gelbrecht, M., Boers, N., and Kurths, J.: Neural partial differential equations
for chaotic systems, New J. Phys., 23, 043005,
https://doi.org/10.1088/1367-2630/abeb90, 2021. a
Giering, R. and Kaminski, T.: Recipes for Adjoint Code Construction, ACM Trans.
Math. Softw., 24, 437–474, https://doi.org/10.1145/293686.293695, 1998. a, b
Griewank, A. and Walther, A.: Algorithm 799: Revolve: An Implementation of
Checkpointing for the Reverse or Adjoint Mode of Computational
Differentiation, ACM Trans. Math. Softw., 26, 19–45,
https://doi.org/10.1145/347837.347846, 2000. a
Guillaumin, A. P. and Zanna, L.: Stochastic-Deep Learning Parameterization of
Ocean Momentum Forcing, J. Adv. Model. Earth Sy., 13,
e2021MS002534, https://doi.org/10.1029/2021MS002534, 2021. a
Gutiérrez, M. S. and Lucarini, V.: Response and Sensitivity Using Markov
Chains, J. Stat. Phys., 179, 1572–1593,
https://doi.org/10.1007/s10955-020-02504-4, 2020. a
Häfner, D., Jacobsen, R. L., Eden, C., Kristensen, M. R. B., Jochum, M., Nuterman, R., and Vinter, B.: Veros v0.1 – a fast and versatile ocean simulator in pure Python, Geosci. Model Dev., 11, 3299–3312, https://doi.org/10.5194/gmd-11-3299-2018, 2018. a
Häfner, D., Nuterman, R., and Jochum, M.: Fast, Cheap, and
Turbulent—Global Ocean Modeling With GPU Acceleration in Python, J.
Adv. Model. Earth Sy., 13, e2021MS002717,
https://doi.org/10.1029/2021MS002717, 2021. a, b
Hascoët, L. and Pascual, V.: The Tapenade Automatic Differentiation tool:
Principles, Model, and Specification, ACM T. Math.
Softw., 39, 20:1–20:43,
https://doi.org/10.1145/2450153.2450158, 2013. a, b
Hatfield, S., Chantry, M., Dueben, P., Lopez, P., Geer, A., and Palmer, T.:
Building Tangent-Linear and Adjoint Models for Data Assimilation With Neural
Networks, J. Adv. Model. Earth Sy., 13, e2021MS002521,
https://doi.org/10.1029/2021MS002521, 2021. a
Holl, P., Thuerey, N., and Koltun, V.: Learning to Control PDEs with Differentiable Physics, International Conference on Learning Representations, https://openreview.net/forum?id=HyeSin4FPB (last access: 31 May 2023), 2020. a
Hopcroft, P. O. and Valdes, P. J.: Paleoclimate-conditioning reveals a North
Africa land–atmosphere tipping point, P. Natl.
Acad. Sci. USA, 118, e2108783118, https://doi.org/10.1073/pnas.2108783118, 2021. a
Hourdin, F., Mauritsen, T., Gettelman, A., Golaz, J.-C., Balaji, V., Duan, Q.,
Folini, D., Ji, D., Klocke, D., Qian, Y., Rauser, F., Rio, C., Tomassini, L.,
Watanabe, M., and Williamson, D.: The Art and Science of Climate Model
Tuning, B. Am. Meteorol. Soc., 98, 589–602,
https://doi.org/10.1175/BAMS-D-15-00135.1, 2017. a, b, c, d
Irrgang, C., Boers, N., Sonnewald, M., Barnes, E. A., Kadow, C., Staneva, J.,
and Saynisch-Wagner, J.: Towards neural Earth system modelling by integrating
artificial intelligence in Earth system science, Nat. Mach. Int.,
3, 667–674, https://doi.org/10.1038/s42256-021-00374-3, 2021. a, b
Jouvet, G., Cordonnier, G., Kim, B., Lüthi, M., Vieli, A., and Aschwanden, A.:
Deep learning speeds up ice flow modelling by several orders of magnitude,
J. Glaciol., 68, 651–664, https://doi.org/10.1017/jog.2021.120, 2022. a
Kalmikov, A. G. and Heimbach, P.: A Hessian-Based Method for Uncertainty
Quantification in Global Ocean State Estimation, SIAM J. Sci.
Comput., 36, S267–S295, https://doi.org/10.1137/130925311, 2014. a
Kaminski, T., Knorr, W., Schürmann, G., Scholze, M., Rayner, P. J., Zaehle,
S., Blessing, S., Dorigo, W., Gayler, V., Giering, R., Gobron, N., Grant,
J. P., Heimann, M., Hooker-Stroud, A., Houweling, S., Kato, T., Kattge, J.,
Kelley, D., Kemp, S., Koffi, E. N., Köstler, C., Mathieu, P.-P., Pinty,
B., Reick, C. H., Rödenbeck, C., Schnur, R., Scipal, K., Sebald, C.,
Stacke, T., van Scheltinga, A. T., Vossbeck, M., Widmann, H., and Ziehn, T.:
The BETHY/JSBACH Carbon Cycle Data Assimilation System: experiences and
challenges, J. Geophys. Res.-Biogeo., 118, 1414–1426,
https://doi.org/10.1002/jgrg.20118, 2013. a
Kennedy, M. C. and O'Hagan, A.: Bayesian calibration of computer models,
J. Ro. Stat. Soc. B,
63, 425–464, https://doi.org/10.1111/1467-9868.00294, 2001. a
Kim, S., Ji, W., Deng, S., Ma, Y., and Rackauckas, C.: Stiff neural ordinary
differential equations, Chaos, 31, 093122, https://doi.org/10.1063/5.0060697, 2021. a
Klöwer, M., Hatfield, S., Croci, M., Düben, P. D., and Palmer, T. N.:
Fluid simulations accelerated with 16 bits: Approaching 4x speedup on A64FX
by squeezing ShallowWaters.jl into Float16, J. Adv. Model.
Earth Sy., 14, e2021MS002684, https://doi.org/10.1029/2021MS002684, 2022. a
Logg, A., Mardal, K.-A., and Wells, G. (Eds.): Automated Solution of Differential Equations by the Finite Element Method, vol. 84, Springer
Science & Business Media, https://doi.org/10.1007/978-3-642-23099-8, 2012. a, b
Loose, N. and Heimbach, P.: Leveraging Uncertainty Quantification to Design
Ocean Climate Observing Systems, J. Adv. Model. Earth Sy., 13, e2020MS002386, https://doi.org/10.1029/2020MS002386, 2021. a, b
Lucarini, V., Ragone, F., and Lunkeit, F.: Predicting Climate Change Using
Response Theory: Global Averages and Spatial Patterns, J. Stat.
Phys., 166, 1036–1064, https://doi.org/10.1007/s10955-016-1506-z, 2017. a
Lyu, G., Köhl, A., Matei, I., and Stammer, D.: Adjoint-Based Climate Model
Tuning: Application to the Planet Simulator, J. Adv. Model.
Earth Sy., 10, 207–222, https://doi.org/10.1002/2017MS001194,
2018. a, b, c
Marotzke, J., Giering, R., Zhang, K. Q., Stammer, D., Hill, C., and Lee, T.:
Construction of the adjoint MIT ocean general circulation model and
application to Atlantic heat transport sensitivity, J. Geophys. Res.-Oceans, 104, 29529–29547,
https://doi.org/10.1029/1999JC900236, 1999. a
Mauritsen, T., Stevens, B., Roeckner, E., Crueger, T., Esch, M., Giorgetta, M.,
Haak, H., Jungclaus, J., Klocke, D., Matei, D., Mikolajewicz, U., Notz, D.,
Pincus, R., Schmidt, H., and Tomassini, L.: Tuning the climate of a global
model, J. Adv. Model. Earth Sy., 4,
https://doi.org/10.1029/2012MS000154, 2012. a, b, c, d, e
Metz, L., Freeman, C. D., Schoenholz, S. S., and Kachman, T.: Gradients are Not
All You Need, ArXiv, https://doi.org/10.48550/ARXIV.2111.05803, 2021. a, b
Michalak, K. and Ollivier-Gooch, C.: Differentiability of slope limiters on
unstructured grids, in: Proceedings of fourteenth annual conference of the
computational fluid dynamics society of Canada, https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Differentiability+of+Slope+Limiters+on+Unstructured+Grids&btnG= (last access: 31 May 2023), 2006. a
Mitusch, S. K., Funke, S. W., and Dokken, J. S.: dolfin-adjoint 2018.1:
automated adjoints for FEniCS and Firedrake, J. Open Source Softw.,
4, 1292, https://doi.org/10.21105/joss.01292, 2019. a, b, c, d
Moses, W. and Churavy, V.: Instead of Rewriting Foreign Code for Machine
Learning, Automatically Synthesize Fast Gradients, in: Advances in Neural
Information Processing Systems, edited by: Larochelle, H., Ranzato, M.,
Hadsell, R., Balcan, M. F., and Lin, H., 33, 12472–12485,
Curran Associates, Inc.,
https://proceedings.neurips.cc/paper/2020/file/9332c513ef44b682e9347822c2e457ac-Paper.pdf (last access: 30 May 2023),
2020. a, b, c, d, e
Ni, A. and Wang, Q.: Sensitivity analysis on chaotic dynamical systems by
Non-Intrusive Least Squares Shadowing (NILSS), J. Comput.
Phys., 347, 56–77, https://doi.org/10.1016/j.jcp.2017.06.033, 2017. a
OpenAI: ChatGPT: Optimizing Language Models for Dialogue,
https://openai.com/blog/chatgpt/ (last access: 30 May 2023), 2022. a
Palmer, T. and Stevens, B.: The scientific challenge of understanding and
estimating climate change, P. Natl. Acad. Sci. USA,
116, 24390–24395, https://doi.org/10.1073/pnas.1906691116, 2019. a
Petra, N., Martin, J., Stadler, G., and Ghattas, O.: A Computational Framework
for Infinite-Dimensional Bayesian Inverse Problems, Part II: Stochastic
Newton MCMC with Application to Ice Sheet Flow Inverse Problems, SIAM J. Sci. Comput., 36, A1525–A1555, https://doi.org/10.1137/130934805, 2014. a
Rabier, F., Thépaut, J.-N., and Courtier, P.: Extended assimilation and
forecast experiments with a four-dimensional variational assimilation system,
Q. J. Roy. Meteor. Soc., 124, 1861–1887,
https://doi.org/10.1002/qj.49712455005, 1998. a
Rackauckas, C., Ma, Y., Martensen, J., Warner, C., Zubov, K., Supekar, R.,
Skinner, D., Ramadhan, A., and Edelman, A.: Universal Differential Equations
for Scientific Machine Learning, ArXiv, https://doi.org/10.48550/ARXIV.2001.04385, 2020. a, b, c
Raissi, M., Perdikaris, P., and Karniadakis, G.: Physics-informed neural
networks: A deep learning framework for solving forward and inverse problems
involving nonlinear partial differential equations, J. Comput.
Phys., 378, 686–707, https://doi.org/10.1016/j.jcp.2018.10.045,
2019. a
Rasp, S.: Coupled online learning as a way to tackle instabilities and biases in neural network parameterizations: general algorithms and Lorenz 96 case study (v1.0), Geosci. Model Dev., 13, 2185–2196, https://doi.org/10.5194/gmd-13-2185-2020, 2020. a, b
Rasp, S., Pritchard, M. S., and Gentine, P.: Deep learning to represent subgrid
processes in climate models, P. Natl. Acad. Sci. USA,
115, 9684–9689, https://doi.org/10.1073/pnas.1810286115, 2018. a, b
Rathgeber, F., Ham, D. A., Mitchell, L., Lange, M., Luporini, F., Mcrae, A.
T. T., Bercea, G.-T., Markall, G. R., and Kelly, P. H. J.: Firedrake, ACM
T. Math. Softw., 43, 1–27, https://doi.org/10.1145/2998441,
2016. a, b
Rayner, P. J., Scholze, M., Knorr, W., Kaminski, T., Giering, R., and Widmann,
H.: Two decades of terrestrial carbon fluxes from a carbon cycle data
assimilation system (CCDAS), Global Biogeochem. Cycles, 19, GB2026,
https://doi.org/10.1029/2004GB002254, 2005. a
Ruelle, D.: General linear response formula in statistical mechanics, and the
fluctuation-dissipation theorem far from equilibrium, Phys. Lett. A, 245,
220–224, https://doi.org/10.1016/S0375-9601(98)00419-8, 1998. a
Schneider, T., Lan, S., Stuart, A., and Teixeira, J.: Earth System Modeling
2.0: A Blueprint for Models That Learn From Observations and Targeted
High-Resolution Simulations, Geophys. Res. Lett., 44,
12396–12417, https://doi.org/10.1002/2017GL076101, 2017. a
Schoenholz, S. and Cubuk, E. D.: JAX MD: A Framework for Differentiable
Physics, in: Advances in Neural Information Processing Systems, edited by:
Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., and Lin, H., 33,
11428–11441, Curran Associates, Inc.,
https://proceedings.neurips.cc/paper_files/paper/2020/file/83d3d4b6c9579515e1679aca8cbc8033-Paper.pdf (last access: 30 May 2023),
2020. a
Souhar, O., Faure, J. B., and Paquier, A.: Automatic sensitivity analysis of a
finite volume model for two-dimensional shallow water flows, Environ.
Fluid Mech., 7, 303–315, https://doi.org/10.1007/s10652-007-9028-5, 2007. a
Stammer, D., Wunsch, C., Giering, R., Eckert, C., Heimbach, P., Marotzke, J.,
Adcroft, A., Hill, C. N., and Marshall, J.: Global ocean circulation during
1992–1997, estimated from ocean observations and a general circulation
model, J. Geophys. Res.-Oceans, 107, 1-1–1-27,
https://doi.org/10.1029/2001JC000888, 2002. a
Thacker, W. C.: The role of the Hessian matrix in fitting models to
measurements, J. Geophys. Res.-Oceans, 94, 6177–6196,
https://doi.org/10.1029/JC094iC05p06177, 1989.
a
Tsai, W.-P., Feng, D., Pan, M., Beck, H., Lawson, K., Yang, Y., Liu, J., and
Shen, C.: From calibration to parameter learning: Harnessing the scaling
effects of big data in geoscientific modeling, Nat. Commun., 12,
5988, https://doi.org/10.1038/s41467-021-26107-z, 2021. a
Valdes, P.: Built for stability, Nat. Geosci., 4, 414–416,
https://doi.org/10.1038/ngeo1200, 2011. a
Vettoretti, G., Ditlevsen, P., Jochum, M., and Rasmussen, S. O.: Atmospheric
CO2 control of spontaneous millennial-scale ice age climate oscillations,
Nat. Geosci., 15, 300–306, https://doi.org/10.1038/s41561-022-00920-7, 2022. a
Villa, U., Petra, N., and Ghattas, O.: HIPPYlib: An Extensible Software
Framework for Large-Scale Inverse Problems Governed by PDEs: Part I:
Deterministic Inversion and Linearized Bayesian Inference, ACM Trans. Math.
Softw., 47, 1–34, https://doi.org/10.1145/3428447, 2021. a
Volodina, V. and Challenor, P.: The importance of uncertainty quantification in
model reproducibility, Philosophical Transactions of the Royal Society A:
Mathematical, Phys. Eng. Sci., 379, 20200071,
https://doi.org/10.1098/rsta.2020.0071, 2021. a
Wang, P., Jiang, J., Lin, P., Ding, M., Wei, J., Zhang, F., Zhao, L., Li, Y., Yu, Z., Zheng, W., Yu, Y., Chi, X., and Liu, H.: The GPU version of LASG/IAP Climate System Ocean Model version 3 (LICOM3) under the heterogeneous-compute interface for portability (HIP) framework and its large-scale application , Geosci. Model Dev., 14, 2781–2799, https://doi.org/10.5194/gmd-14-2781-2021, 2021. a
Wang, Q., Hu, R., and Blonigan, P.: Least Squares Shadowing sensitivity
analysis of chaotic limit cycle oscillations, J. Comput.
Phys., 267, 210–224, https://doi.org/10.1016/j.jcp.2014.03.002, 2014. a, b
Williamson, D. B., Blaker, A. T., and Sinha, B.: Tuning without over-tuning: parametric uncertainty quantification for the NEMO ocean model, Geosci. Model Dev., 10, 1789–1816, https://doi.org/10.5194/gmd-10-1789-2017, 2017. a
Yuval, J., O'Gorman, P. A., and Hill, C. N.: Use of Neural Networks for Stable,
Accurate and Physically Consistent Parameterization of Subgrid Atmospheric
Processes With Good Performance at Reduced Precision, Geophys. Res. Lett., 48, e2020GL091363, https://doi.org/10.1029/2020GL091363, 2021. a
Zanna, L. and Bolton, T.: Deep Learning of Unresolved Turbulent Ocean Processes
in Climate Models, John Wiley & Sons, Ltd, chap. 20, 298–306,
https://doi.org/10.1002/9781119646181.ch20, 2021. a
Executive editor
This paper reviews the technique of differentiable programming in Earth System Modeling.
Short summary
Differential programming is a technique that enables the automatic computation of derivatives of the output of models with respect to model parameters. Applying these techniques to Earth system modeling leverages the increasing availability of high-quality data to improve the models themselves. This can be done by either using calibration techniques that use gradient-based optimization or incorporating machine learning methods that can learn previously unresolved influences directly from data.
Differential programming is a technique that enables the automatic computation of derivatives of...