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Abstract. Earth system models (ESMs) are the primary tools
for investigating future Earth system states at timescales from
decades to centuries, especially in response to anthropogenic
greenhouse gas release. State-of-the-art ESMs can reproduce
the observational global mean temperature anomalies of the
last 150 years. Nevertheless, ESMs need further improve-
ments, most importantly regarding (i) the large spread in
their estimates of climate sensitivity, i.e., the temperature re-
sponse to increases in atmospheric greenhouse gases; (ii) the
modeled spatial patterns of key variables such as tempera-
ture and precipitation; (iii) their representation of extreme
weather events; and (iv) their representation of multistable
Earth system components and the ability to predict associ-
ated abrupt transitions. Here, we argue that making ESMs
automatically differentiable has a huge potential to advance
ESMs, especially with respect to these key shortcomings.
First, automatic differentiability would allow objective cal-
ibration of ESMs, i.e., the selection of optimal values with
respect to a cost function for a large number of free param-
eters, which are currently tuned mostly manually. Second,
recent advances in machine learning (ML) and in the num-
ber, accuracy, and resolution of observational data promise
to be helpful with at least some of the above aspects because
ML may be used to incorporate additional information from
observations into ESMs. Automatic differentiability is an es-
sential ingredient in the construction of such hybrid mod-
els, combining process-based ESMs with ML components.
We document recent work showcasing the potential of au-
tomatic differentiation for a new generation of substantially
improved, data-informed ESMs.

1 Introduction

Comprehensive Earth system models (ESMs) are the key
tools to model the dynamics of the Earth system and its cli-
mate and in particular to estimate the impacts of increasing
atmospheric greenhouse gas concentrations in the context of
anthropogenic climate change (Arias et al., 2021). Despite
their remarkable success in reproducing observed character-
istics of the Earth’s climate system, such as the spatial pat-
terns of the increasing temperatures of the last century, there
remain many great challenges for state-of-the-art Earth sys-
tem models (Palmer and Stevens, 2019). In particular, fur-
ther improvements are needed to (i) reduce uncertainties in
the models’ estimates of climate sensitivity, i.e., temperature
increase resulting from increasing atmospheric greenhouse
gas concentrations; (ii) better reproduce spatial patterns of
key climate variables such as temperature and precipitation;
(iii) obtain better representations of extreme weather events;
and (iv) be able to better represent multistable Earth system
components such as the polar ice sheets, the Atlantic Merid-
ional Overturning Circulation, or the Amazon rainforest and
to reduce uncertainties in the critical forcing thresholds at
which abrupt transitions in these subsystems are expected.

With the recent advances in the number, accuracy, and
resolution of observational data, it has been suggested that
ESMs could benefit from more direct ways of includ-
ing observation-based information, e.g., in the parameters
of ESMs (Schneider et al., 2017). Systematic and objec-
tive techniques to learn from observational data are there-
fore needed. Differentiable programming, a programming
paradigm that enables building parameterized models whose
derivative evaluations can be computed via automatic differ-
entiation (AD), can provide such a way of learning from data.
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AD works by decomposing a function evaluation into a chain
of elementary operations whose derivatives are known so that
the desired derivative can be computed using the chain rule of
differentiation. Modern AD systems are able to differentiate
most typical operations that appear in ESMs, but there also
remain limitations. Applying differentiable programming to
ESMs means that each component of the ESM needs to be
accessible for AD. This enables the possibility to perform
gradient- and Hessian-based optimization of ESMs with re-
spect to their parameters, initial conditions, or boundary con-
ditions.

ESMs couple general circulation models (GCMs) of the
ocean and atmosphere with models of land surface processes,
hydrology, ice, vegetation, atmosphere and ocean chemistry,
and the carbon cycle. To our knowledge, there are currently
no comprehensive, fully differentiable ESMs, and there are
only select ESM components which are differentiable. Most
commonly, these are GCMs used for numerical weather pre-
diction, as they usually need to utilize gradient-based data
assimilation methods. These GCMs often achieve differen-
tiability with manually derived adjoint models and not via
AD. However, considerable efforts have also been spent on
frameworks such as dolfin-adjoint for finite-element mod-
els (Mitusch et al., 2019) as well as the source-to-source
AD tools Transforms of Algorithms in Fortran (TAF) (Gier-
ing and Kaminski, 1998) and Tapenade (Hascoët and Pas-
cual, 2013) that already enabled differentiable ESM compo-
nents. A new generation of AD tools such as JAX (Brad-
bury et al., 2018), Zygote (Innes et al., 2019), and Enzyme
(Moses and Churavy, 2020) promise easier use and less
user intervention, easier interfacing with machine learning
(ML) methods, and potential co-benefits such as GPU ac-
celeration. Based on these tools, partial differential equation
(PDE) solvers for fluid dynamics have recently been devel-
oped (Holl et al., 2020; Kochkov et al., 2021; Bezgin et al.,
2023), and advances regarding AD in other fields, such as
molecular dynamics (Schoenholz and Cubuk, 2020) and cos-
mology (Campagne et al., 2023), have been made as well.
This is why we review differential programming in this ar-
ticle and outline its potential advantages for ESMs, specifi-
cally (but not only) focusing on the integration of ML meth-
ods. Differentiable programming seems particularly promis-
ing for ESM components that so far often lack adjoint models
so that they are not differentiable. For example, only a few
vegetation and carbon cycle models have an adjoint model
(Rayner et al., 2005; Kaminski et al., 2013). In this article, we
therefore review research that falls in one of three categories:
(i) already differentiable GCMs that use AD; (ii) prototypical
systems, e.g., in fluid dynamics; and (iii) differentiable em-
ulators of non-differentiable models, such as artificial neural
networks (ANNs) that emulate components of ESMs. We ar-
gue that a differentiable ESM could harness most advantages
presented in research of all of these categories.

Differentiable programming enables several advantages
for the development of ESMs that we will outline in this arti-

cle. First, differentiable ESMs would allow substantial im-
provements regarding the systematic calibration of ESMs,
i.e., finding optimal values for their O(100) free parame-
ters, which are currently either left unchanged or tuned man-
ually. Second, analyses of the sensitivity of the model and
uncertainties of parameters would benefit greatly from dif-
ferentiable models. Third, additional information from ob-
servations can be integrated into ESMs with ML models. ML
has shown enormous potential, e.g., for subgrid parameteri-
zation, to attenuate structural deficiencies and to speed up in-
dividual, slow components by emulation. These approaches
are greatly facilitated by differentiable models, as we will re-
view in later parts of this article.

Parameter calibration is probably the most obvious benefit
of differentiable programming to ESMs. This is why we first
review the current state of the calibration of ESMs before we
introduce differentiable programming and automatic differ-
entiation. Thereafter, we will argue for the different benefits
that we see for differentiable ESMs and challenges that have
to be addressed when developing differentiable ESMs.

2 Current state of Earth system models

Comprehensive ESMs, such as those used for the projec-
tions of the Coupled Model Intercomparison Project (CMIP)
(Eyring et al., 2016), are highly complex numerical algo-
rithms consisting of hundreds of thousands of lines of For-
tran code, which solve the relevant equations (such as the
equations of motion) on discrete spatial grids. Mainly asso-
ciated with processes that operate below the grid resolution,
these models have a large number of free parameters that are
not calibrated objectively, for example by minimizing a cost
function or by applying uncertainty quantification based on a
Bayesian framework (Kennedy and O’Hagan, 2001). Instead,
values for these parameters are determined via informed
guesses and/or an informed trial-and-error strategy often re-
ferred to as “tuning”. The dynamical core of an ESM relies
on fundamental physical laws (conservation of momentum,
energy, and mass) and can essentially be constructed with-
out using observations of climate variables. However, un-
certain and unresolved processes require parameterizations
that rely on observations of certain features of the Earth sys-
tem, introducing uncertain parameters to the models. This
“parameterization tuning” (Hourdin et al., 2017) can be un-
derstood as the first step of the tuning procedure. Using short
simulations, separate model components such as atmosphere,
ocean, and vegetation are typically tuned, after which the full
model is fine-tuned by altering selected parameters (Maurit-
sen et al., 2012). The choice of parameters for tuning is usu-
ally based on expert judgment and only a few simulations.
The parameters selected for tuning are based on a mechanis-
tic understanding of the model at hand. Suitable parameters
have large uncertainty and at the same time exert a large ef-
fect on the global energy balance and other key characteris-
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tics of the Earth system. Parameters affecting the properties
of clouds are therefore among the most common tuning pa-
rameters (Mauritsen et al., 2012; Hourdin et al., 2017). Such
subjective trial-and-error approaches are common in Earth
system modeling because (i) current ESMs are not designed
for systematic calibration, mainly due to limited differentia-
bility of the models. (ii) A sufficiently dense sampling of
parameter space by so-called perturbed-physics ensembles
with state-of-the-art ESMs is hindered by the unmanageable
computational costs. (iii) Varying many parameters makes a
new model version less comparable to previous simulations,
which is why most parameters are in fact never changed
(Mauritsen et al., 2012). (iv) Overfitting would hide compen-
sating errors instead of exposing them, which is needed to
improve the models. For example, it is debated how far the
modeled 20th century warming is simply the result of tun-
ing, in contrast to being an emergent physical property giv-
ing credibility to the models (Mauritsen et al., 2012; Hour-
din et al., 2017). The target features that ESMs are usually
tuned for are the global mean radiative balance, global mean
temperature, some characteristics of the global circulation
and sea ice distribution, and a few other large-scale features
(Mauritsen et al., 2012; Hourdin et al., 2017). In contrast, re-
gional features of the climate system, and/or features that are
less related to radiative processes, are less constrained by the
tuning process. Moreover, current ESMs are typically tuned
to reproduce the above target features for recent decades or
the instrumental period of the last 150 years at most. These
models therefore have difficulties in capturing paleoclimate
states (e.g., hothouse or ice age states) or abrupt climate
changes evidenced in paleoclimate proxy records (Valdes,
2011). Only for a few examples have modelers recently tuned
models successfully to paleoclimate conditions in order to re-
produce past abrupt climate transitions (Hopcroft and Valdes,
2021; Vettoretti et al., 2022). The technical challenge associ-
ated with tuning complex models not only hinders a more
systematic calibration of models and their subcomponents,
but also makes it difficult to apply them to many scientific
questions (e.g., the sensitivity of the climate to forcing) that
hinge on a differentiation of the model output. Automatic dif-
ferentiation therefore suggests itself as a means to making
ESMs more tractable.

3 Differentiable programming

Differentiable programming is a paradigm that enables build-
ing parameterized models whose parameters can be op-
timized using gradient-based optimization (Chizat et al.,
2019). The gradients of outputs of such models with re-
spect to their parameters are the key mathematical objects
for an efficient parameter optimization. Differentiable pro-
gramming allows those gradients to be computed using auto-
matic differentiation (AD). AD was instrumental in the over-
whelming success of machine learning methods such as arti-

ficial neural networks (ANNs). However, in contrast to pure
ANN models, for the wider class of differentiable models
one needs to be able to differentiate through control flow
and user-defined types. The algorithms used for AD need to
exhibit a certain degree of customizability and composabil-
ity with existing code (Innes et al., 2019). Generally, differ-
entiable programming can incorporate arbitrary algorithmic
structures, such as (parts of) process-based models (Baydin
et al., 2018; Innes et al., 2019). Several promising projects
exist that enable AD of relatively general classes of mod-
els. For example, differentiable PDE solvers have been im-
plemented in Python using the JAX framework (Bradbury
et al., 2018; Kochkov et al., 2021). Julia’s SciML ecosys-
tem offers differentiable differential equation solvers along-
side general-purpose AD systems such as Enzyme.jl or Zy-
gote.jl AD (Rackauckas et al., 2020; Moses and Churavy,
2020; Innes et al., 2019). Specifically for finite-element mod-
els dolfin-adjoint (Mitusch et al., 2019; Farrell et al., 2013)
for the FEniCS (Logg et al., 2012) and Firedrake (Rathgeber
et al., 2016) frameworks is available. In order for a model to
be differentiable it needs to be written either directly within
an appropriate framework (e.g., JAX and dolfin-adjoint) or
in a style that conforms to the constraints of the given AD
system (e.g., Enzyme.jl or Zygote.jl).

It is important to note that AD is neither a numerical nor
a symbolic differentiation: it does not numerically compute
derivatives of functions with a finite difference approxima-
tion and does not construct derivatives from analytic expres-
sions like computer algebra systems. Instead, AD computes
the derivative of an evaluation of some function of a given
model output, based on a non-standard execution of its code
so that the function evaluation can be decomposed into an
evaluation trace or computational graph that tracks every per-
formed elementary operation. Ultimately, there is only a fi-
nite set of elementary operations such as arithmetic opera-
tions or trigonometric functions, and the derivatives of those
elementary operations are known to the AD system. Then, by
applying the chain rule of differentiation, the desired deriva-
tive can be computed. AD systems can operate in two differ-
ent main modes: a forward mode, which traverses the com-
putational graph from the given input of a function to its out-
put, and a reverse mode, which goes from function output
to input. Reverse-mode AD achieves better scalability with
the input size, which is why it is usually preferred for opti-
mization tasks that usually only have a single output – a cost
function – but many inputs (see, e.g., Baydin et al., 2018, for
a more extensive introduction to AD). Most modern AD sys-
tems directly provide the possibility to compute gradients of
user-defined functions with respect to chosen parameters at
some input value. They do not require any further user action.
However, which functions are differentiable by AD depends
on the concrete AD system in use. For example, some AD
systems do not allow mutation of arrays (e.g., JAX; Brad-
bury et al., 2018), while others do (e.g., Enzyme; Moses and
Churavy, 2020). Many AD systems allow for control flow so
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that functions with discontinuities as found in ESMs are dif-
ferentiable by AD, even though they are not differentiable in
a mathematical sense. Similarly, models with stochastic com-
ponents, such as variational autoencoders (VAE), are also ac-
cessible for AD.

The defining feature of differentiable models is the effi-
cient and automatic computation of gradients of functions
of the model output with respect to (i) model parameters,
(ii) initial conditions, or (iii) boundary conditions. Applying
this paradigm to Earth system models (ESMs) would enable
gradient-based optimization of its parameters and the appli-
cation of other methods that require information on gradi-
ents. For example, suppose for simplicity that the dynamics
of an ESM may be represented, after discretization on an ap-
propriate spatial grid, by an ordinary differential equation of
the form

ẋ= f (x, t;p),

where t denotes time, x(t) represents the prognostic model
variables that are stepped forward in time, and p represents
the parameters of the model. Optimization of the parame-
ters p typically requires the minimization of a cost func-
tion J (ŷ,y), where ŷ is some function of a computed tra-
jectory x(t;x0,p), with initial condition x0 ≡ x(0), and y
is a known target value regarded as ground truth. A com-
mon choice of J for regression tasks is the mean-squared
error, J (ŷ,y)= 1

N

∑N
i=1||ŷi − yi ||

2, where N is the number
of training examples. Gradient-based optimization of J with
respect to the parameters p requires computing the deriva-
tive evaluations ∂J

∂p (ŷ,y), which in turn requires comput-

ing ∂ ŷ
∂p (x(t;x0,p)). Once the evaluation of the derivative has

been computed, the model parameters p can be updated it-
eratively in order to drive the predicted value ŷ towards the
target value y, thereby reducing the value of J . An identical
procedure applies in the case of optimization with respect to
initial conditions or boundary conditions of the model.

Crucially, differentiable programming allows these deriva-
tives to be computed for arbitrary choices of ŷ. In the case
of conventional ESM tuning, ŷ could be chosen to tune the
model with respect to the global mean radiative balance, or
global mean temperature, or both. A similar approach can
be used to tune subgrid parameterizations, e.g., of convective
processes in order to produce realistic distributions of cloud
cover and precipitation. More generally, gradient-based op-
timization could be used to train fully ML-based parameter-
izations of subgrid-scale processes, in which case gradients
with respect to the network weights of an ANN are required.

Taken together, such approaches would directly move for-
ward from the mostly applied manual and subjective parame-
ter tuning to transparent, systematic, and objective parameter
optimization. Moreover, automatic differentiability of ESMs
would provide an essential prerequisite for the integration
of data-driven methods, such as ANNs, resulting in hybrid
ESMs (Irrgang et al., 2021).

4 Differentiable models: manual and automatic
adjoints

Aside from AD, another approach to differentiable models is
to manually derive and implement an adjoint model, usually
from a tangent linear model. This is especially common in
GCMs that have been used for numerical weather prediction,
as data assimilation schemes such as 4D-Var (Rabier et al.,
1998) also perform a gradient-based optimization to find ini-
tial states of the model that agree with observations. This
procedure takes a considerable amount of work. While such
models can profit from many of the advantages and possibil-
ities of differentiable programming, this comes at the cost of
missing flexibility and customizability. Upon any change in
the model, the adjoint has to be changed as well. Practition-
ers therefore need a very good understanding of two largely
separate code bases. In contrast, differentiable programming
only needs manually defined adjoints in a very small num-
ber of cases, mostly for more elementary operations such as
Fourier transforms or the integration of pre-existing code that
is not directly accessible to AD. Differentiable models would
also greatly simplify this process, as already demonstrated
with ANN-based emulators of GCMs (Hatfield et al., 2021).
Another advantage of differentiable models is that they can
also automatically and efficiently compute second deriva-
tives that can enable further optimization techniques. In con-
trast, manually defining and maintaining a separate model for
the Hessian are not realistically feasible.

Adjoint models of several ESM components have already
been generated automatically with AD tools such as Trans-
forms of Algorithms in Fortran (TAF) (Giering and Kamin-
ski, 1998) and Tapenade (Hascoët and Pascual, 2013). TAF is
a library that provides AD to generate code of adjoint models
and has been successfully applied to GCMs like the MITgcm
(Marotzke et al., 1999) and PlaSiM (Lyu et al., 2018). In con-
trast to more modern AD systems, which work in the back-
ground without the additionally generated code and struc-
tures for the derivative or adjoint exposed to the user, TAF
directly translates and generates code for an adjoint model
and exposes it to the user. It comes with its own set of lim-
itations that make it harder to incorporate, e.g., GPU use or
techniques and methods from ML, and often needs user mod-
ifications to the generated adjoint code. However, it has al-
ready led to many successful studies that show advances in
parameter tuning (Lyu et al., 2018), state estimation (Stam-
mer et al., 2002), and uncertainty quantification (Loose and
Heimbach, 2021). While these can be seen as pioneering ef-
forts for differentiable Earth system modeling, modern, more
capable AD systems in combination with machinery origi-
nally developed for ML tasks promise substantially greater
benefits. Modern AD systems like the aforementioned JAX,
Zygote, and Enzyme provide gradients in a more automatical
way, i.e., with less user interaction, and with greater general-
ity than AD systems like Tapenade while still also profiting
from compiler optimizations and offering much easier inter-
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facing with ML workflows and potential GPU acceleration
(Innes et al., 2019). Each of these AD systems uses different
approaches to derive optimized gradient code and to assure
manageable memory demand (see Sect. 6).

5 Benefits of differentiable ESMs

Fully automatically differentiable ESMs would enable the
gradient-based optimization of all model parameters. More-
over, in the context of data assimilation, AD would strongly
facilitate the search for optimal initial conditions for a model
in question, given a set of incomplete observations. In the
context of Earth system modeling, AD could lead to sub-
stantial advances mainly in three fields (Fig. 1): (a) param-
eter tuning and parameterization; (b) probabilistic program-
ming and uncertainty quantification; and (c) integration of
information from observational data via ML, leading to hy-
brid ESMs. Aside from these benefits for ESMs, automatic
differentiability would also offer significant benefits for data
assimilation. The tangent linear and adjoint model could be
generated automatically, in contrast to the often manually
derived adjoint models, as outlined in the previous section.
Here, however, we will focus on the three aforementioned
benefits for ESMs.

5.1 Parameter tuning and parameterization

Gradient-based optimization as facilitated by AD would al-
low for transparent, systematic, and objective calibration of
ESMs (see Sect. 2). This means that a scalar cost function
of model trajectories and calibration data is minimized with
respect to the ESM’s parameters. The initial values of the
parameters in this optimization would likely be based on ex-
pert judgment. Which parameters are tuned in such a way
and with respect to which (observational) data are open to
the practitioner but should be clearly and transparently docu-
mented. In principle, all parameters can be tuned, or a selec-
tion of individual parameters could be systematically tuned
separately. Tsai et al. (2021) showed in a study based on an
emulator of a hydrological land surface model that gradient-
based calibration schemes that tune all parameters scale bet-
ter with increasing data availability. They also show that even
diagnostic variables, which are not directly calibrated, show
better agreement with observational data with the gradient-
based tuning. Additionally, extrapolation to areas from which
no calibration data were used also performs better. A fully
differentiable ESM would likely enable these benefits with-
out the need of an emulator, as demonstrated by promising
results for the adjoint model of the relatively simple PlaSim
model (Lyu et al., 2018).

5.2 Probabilistic programming and uncertainty
quantification

Uncertainties in ESMs can stem either from the internal vari-
ability of the system (aleatoric uncertainties) or from our lack
of knowledge of the modeled processes or data to calibrate
them (epistemic uncertainty). In climate science, the latter is
also referred to as model uncertainty, consisting of structural
uncertainty and parameter uncertainty. Assessing these two
classes of epistemic uncertainty is crucial in understanding
the model itself and its limitations but also increases repro-
ducibility of studies conducted with these models (Volodina
and Challenor, 2021). AD will mainly help to quantify and
potentially reduce parameter uncertainty, whereas combin-
ing process-based ESMs with ML components and training
the resulting hybrid ESM on observational data may help to
address structural uncertainty as well.

Regarding parameter uncertainty, of particular interest are
probability distributions of parameters of an ESM, given
calibration data and hyperparameters; see, e.g., Williamson
et al. (2017) for a study computing parameter uncertainties
of the NEMO ocean GCM. While there are computationally
costly gradient-free methods to compute these uncertainties,
promising methods such as Hamiltonian Markov chains (Du-
ane et al., 1987) need to compute gradients of probabilities,
which is significantly easier with AD (Ge et al., 2018). Aside
from that, when fitting a model to data via minimizing a
cost function, the inverse Hessian, which can be computed
for differentiable models, can be used to quantify to which
accuracy states or parameters of the model are determined
(Thacker, 1989). This approach is used to quantify uncertain-
ties via Hessian uncertainty quantification (HUQ) (Kalmikov
and Heimbach, 2014). Loose and Heimbach (2021) used
HUQ with the adjoint model of the MITgcm and demon-
strated how it can be used to determine uncertainties of pa-
rameters and initial conditions to uncover dominant sensi-
tivity patterns and improve ocean observation systems. Petra
et al. (2014) and Villa et al. (2021) developed a framework
for Bayesian inverse problems using gradient and Hessian in-
formation that was already successfully applied to model the
flow of ice sheets.

5.3 Hybrid ESMs

Gradient-based optimization is not limited to the intrinsic
parameters of an ESM; it also allows for the integration of
data-driven models. ANNs and other ML methods can be
used to either accelerate ESMs by replacing computationally
costly process-based model components by ML-based emu-
lators or learn previously unresolved influences from data. It
is also possible to combine ANNs with process-based phys-
ical equations of motion, e.g., via the universal differential
equation framework (Rackauckas et al., 2020), which allows
for the integration and, more importantly, training of data-
driven function approximators such as ANNs inside of differ-
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Figure 1. Differentiable programming enables gradient- and Hessian-based optimization of ESMs. Usually, gradients of a cost function
J that measures the distance between a desired function evaluation of a trajectory ŷ and ground truth data y, e.g., from observations, are
computed. The main benefits of this approach that we outline in this article are parameter calibration, uncertainty quantification, and the
integration of ML methods into hybrid ESMs.

ential equations. Usually trained via adjoint sensitivity anal-
ysis, this method also requires the model to be differentiable.

5.3.1 Emulators

Many physical processes occur on scales too small to be ex-
plicitly resolved in ESMs, for example the formation of in-
dividual clouds. To nevertheless obtain a closed description
of the dynamics, parameterizations of the processes operat-
ing below the grid scale are necessary. While the training
process of ANNs is computationally expensive, once trained,
their execution is usually computationally much cheaper than
integrating the physical model component that they emulate.
Rasp et al. (2018) successfully demonstrated how an ANN-
based emulator of a cloud-resolving model can replace a
traditional subgrid parameterization in a coarser-resolution
model. Similarly, Bolton and Zanna (2019) and Guillaumin
and Zanna (2021) demonstrated an ANN-based subgrid pa-
rameterization of eddy momentum forcings in ocean models,
and Jouvet et al. (2022) introduced a hybrid ice sheet model
in which the ice flow is a CNN-based emulator that acceler-
ates the model by several orders of magnitude. While emula-
tors would usually be trained offline first (i.e., outside of the
ESM), a differentiable ESM would enable fine-tuning of the
ANN inside the complete ESM.

5.3.2 Modeling unresolved influences

A growing number of processes in ESMs are not based on
fundamentally known primitive equations of motion, such
as the Navier–Stokes equation of fluid dynamics for the at-
mosphere and oceans. For example, vegetation models are
typically not primarily based on primitive physical equations
of the underlying processes but rather on effective empiri-
cal relationships and ecological paradigms. For suitable ap-
plications, many ESM components, such as those describ-
ing land surface and vegetation processes, ice sheets, the
carbon cycle, or subgrid-scale process in the ocean and at-
mosphere, could be replaced or augmented with data-driven

ANN models. Even components that are based on known
primitive equations of motion have to be discretized to fi-
nite spatial grids in practice so that they can be integrated
numerically. The resulting parameterizations will necessar-
ily introduce errors that can be attenuated by suitable data-
driven and especially ML methods. For example, Um et al.
(2020) demonstrated that a hybrid approach can reduce the
numerical errors of a coarsely resolved fluid dynamics model
by showing that a fully differentiable hybrid model on a
coarse grid performs best in learning the dynamics of a high-
resolution model. With a similar approach, Kochkov et al.
(2021) showed that a hybrid model of fluid dynamics can re-
sult in a 40- to 80-fold computational speedup while remain-
ing stable and generalizing well. Zanna and Bolton (2021)
also propose physics-aware deep learning to model unre-
solved turbulent processes in ocean models. Universal differ-
ential equations (UDEs) can be such a physics-aware form
of ML, as they can combine primitive physical equations
directly with ANNs to minimize model errors effectively.
de Bézenac et al. (2019) developed a hybrid model to forecast
high-resolution sea surface temperatures by using the output
of an ANN as input for a differentiable advection–diffusion
model, outperforming both coarse process-based models and
purely data-driven approaches.

Ideally, a hybrid ESM could combine both of these ap-
proaches (emulation and modeling of unresolved processes)
and perform its final parameter optimization for both the
physically motivated parameters and the ANN parameters at
once, in the full hybrid model. Differentiable programming
would enable such a procedure. Differentiable ESMs are thus
prime candidates for strongly coupled neural ESMs in the
terminology of Irrgang et al. (2021).

Essentially, ESMs are algorithms that integrate discretized
versions of differential equations describing the dynamics of
processes in the Earth system. As such, a comprehensive, hy-
brid, differentiable ESM could constitute a UDE (Chen et al.,
2018; Rackauckas et al., 2020). The gradients for such mod-
els are usually computed with adjoint sensitivity analysis that
in turn also relies on AD systems (see Sect. 6 for challenges
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of computing these gradients). However, individual subcom-
ponents such as emulators might also be pre-trained offline,
outside of the differential equation and therefore without
adjoint-based methods, similar, e.g., to the subgrid param-
eterization models reported in Rasp et al. (2018).

5.4 Online vs. offline training of hybrid ESMs

Existing applications of ML methods to subgrid parameter-
izations in ESMs generally follow a three-step procedure
(Rasp, 2020):

1. Training data are generated from a reference model, for
example a model of some subgrid-scale process that
would be too costly to incorporate explicitly in the full
ESM.

2. An ML model is trained to emulate the reference model
or some part of it.

3. The trained ML component is integrated into the full
ESM, resulting in a hybrid ESM.

Steps 1 and 2 constitute a standard supervised ML task. Fol-
lowing the terminology of Rasp (2020), we say that the ML
model is trained in offline mode, that is, independently of any
simulation of the full ESM. ML models which perform well
offline can nonetheless lead to instabilities and biases when
coupled to the ESM in online mode, that is, during ESM sim-
ulations. One possible explanation for the instability of mod-
els which are trained in offline mode is the effect of accumu-
lating errors in the learned model when it is coupled in online
mode, which can lead to an input distribution that deviates
from the distribution experienced by the ML model during
training (Um et al., 2020). When an ML model is supposed
to be not only run in online mode, but also trained online, the
complete ESM needs to be differentiable because the cost
function used in training depends not only on the ML model,
but also on all parts of the ESM.

Recent work demonstrates the advantages of training the
ML component in online mode using differentiable program-
ming techniques. Um et al. (2020) show that adding a solver-
in-the-loop, that is, training the ML component in online
mode by taking gradients through the operations of the nu-
merical solver, leads to stable and accurate solutions of PDEs
augmented with ANNs. Similarly, Frezat et al. (2022) learn a
stable and accurate subgrid closure for 2D quasi-geostrophic
turbulence by training an ANN component in online mode,
or as they call it, training the model end-to-end. Frezat et al.
(2022) distinguish between a priori learning, in which the
ML component is optimized on instantaneous model outputs
(offline mode), and a posteriori learning, in which the ML
component is optimized on entire solution trajectories (on-
line mode, see Fig. 2). Both Um et al. (2020) and Frezat
et al. (2022) find that models trained in offline mode lead
to unstable simulations, underscoring the necessity of dif-
ferentiable programming for hybrid Earth system modeling.

Kochkov et al. (2021) also report stable solutions of their
online-trained hybrid fluid dynamics model, which general-
izes well to unseen forcing and Reynolds numbers.

An additional benefit of training a hybrid ESM in online
mode is the ability to optimize not only with respect to spe-
cific processes, but also with respect to the overall model cli-
mate. An ML parameterization trained in offline mode will
typically be trained to emulate the outputs of an existing
process-based parameterization for a plausible range of in-
puts. However, even for models which perform very well of-
fline, it is not known if they will produce a realistic climate
until they are coupled to the ESM after training. In contrast,
an equivalent ML parameterization trained in online mode
can be optimized with respect to not only the outputs of the
parameterization itself, but also the reproduction of a realistic
overall climate.

In a typical scenario for hybrid ESMs, e.g., an ANN-based
subgrid parameterization, online learning can also lead to
more stable and accurate solutions, as showcased by stud-
ies in fluid dynamics (Frezat et al., 2022; Um et al., 2020;
Kochkov et al., 2021). However, training a subcomponent of
an ESM online is computationally more expensive than train-
ing it offline. Therefore, it seems reasonable to combine both
approaches and start pre-training offline before switching to
a potentially necessary online training scheme.

6 Challenges of differentiable ESMs

While the benefits of differentiable ESMs are extremely
promising, they come at a cost. Every AD system has cer-
tain limitations, and there might not even exist a capable AD
system in the programming language in which an existing
ESM is written. Many state-of-the-art AD systems have been
designed with ML workflows in mind, which usually consist
of pure functions with only limited support for array muta-
tion and in-place updates (Innes et al., 2019; Bradbury et al.,
2018). Projects like Enzyme (Moses and Churavy, 2020)
promise to change that. However, even with more capable
AD systems, converting existing ESMs to be differentiable
is a challenging task: it potentially requires the translation of
the model code to another programming language and at least
a major revision of the code to work with one of the suitable
frameworks or AD tools. Rewriting an ESM in a differen-
tiable manner has the potential co-benefit that such a rewrite
can also incorporate other modern programming techniques
such as GPU usage and the use of low-precision computing,
both resulting in potentially huge performance gains (Häfner
et al., 2021; Wang et al., 2021; Klöwer et al., 2022). In partic-
ular GPU acceleration has the potential to make ESMs faster
and more efficient as, e.g., demonstrated by the JAX-based
Veros ocean GCM (Häfner et al., 2021). Given that ESMs are
very complex models, tracking every single elementary oper-
ation in a tape by the AD might induce unfeasible overheads
as, e.g., remarked by (Farrell et al., 2013). Dolfin-adjoint for
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Figure 2. When replacing or augmenting parts of an ESM with ML methods such as ANNs, one has to train the ANN by minimizing a
cost function J that measures the distance between the output of the ML method and the ground truth data. There are two fundamentally
different ways to set up this training: (i) offline training, in which the component is trained outside of the ESM, e.g., to emulate another
component (here called “D”), and (ii) online training, in which gradients are taken through the operations of the complete model. Online
training requires a differentiable ESM and leads potentially to more stable solutions of the resulting hybrid ESM. Both approaches can be
combined by pre-training an ML method offline before switching to an online training scheme as indicated by the grey arrow; the latter
approach would be computationally less expensive.

FEM models solves that by differentiating on a higher ab-
straction level (Farrell et al., 2013; Mitusch et al., 2019). JAX
models perform most operations as vector and tensor opera-
tions. Häfner et al. (2018) deliver a good account of this vec-
torization process during the translation of their Veros model.
Again, this process also has the potential co-benefit of GPU
acceleration. Enzyme.jl works on the level of the LLVM IR,
which enables highly optimized gradient code. It will attempt
to recompute most values in the reverse pass per default and
cache (tape) only what is necessary (Moses and Churavy,
2020). Zygote.jl uses a static single-assignment form that
is more efficient and also recomputes values in the reverse
mode instead of storing everything (Innes et al., 2019).

Memory demand is a fundamental challenge when com-
puting gradients of functions of trajectories of ESMs over
many time steps; saving all intermediate steps needed to
compute the gradient requires a prohibitively large amount
of RAM. Therefore, checkpointing schemes have to bal-
ance memory usage with recomputing intermediate steps.
There are different schemes available to do so, such as peri-
odic checkpointing or Revolve, that try to optimize this bal-
ance (Dauvergne and Hascoët, 2006; Griewank and Walther,
2000). For example, for their differentiable finite-volume
PDE solver, Kochkov et al. (2021) remark that every time
step is checkpointed.

ESMs utilize different discretization techniques and
solvers: (pseudo-)spectral, finite-volume, finite-element, and
other approaches can be used in the different components of
ESMs. Differentiable modeling is possible for all of these
approaches in principle. While this is relatively straight-
forward for spectral models, it has also been demonstrated
for finite-volume and finite-element solvers (Souhar et al.,
2007; Kochkov et al., 2021; Farrell et al., 2013). In par-
ticular, dolfin-adjoint (Mitusch et al., 2019) for the popu-
lar FEniCS and Firedrake FEM libraries (Logg et al., 2012;
Rathgeber et al., 2016) is available and easily applicable for
existing FEM models. Kochkov et al. (2021) demonstrate
in their work and related software differentiable CFD PDE
solvers that can use both finite-volume and pseudo-spectral
approaches using JAX and with GPU or TPU acceleration.

Solvers can also make use of AD during their forward
computation, e.g., when solving the involved nonlinear equa-
tion systems. Some solvers also have to make use of slope or
flux limiters to eliminate spurious oscillations close to dis-
continuities of the solution (see, e.g., Berger et al., 2005, for
an overview). Ideally those slope limiters should also be dif-
ferentiable (Michalak and Ollivier-Gooch, 2006); however
as AD can differentiate through control flow, limiters with
continuous but not differentiable limiter functions might also
work.
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Aside from technical challenges, a more fundamental
problem to address is the chaotic nature of the processes rep-
resented in ESMs. Nearby trajectories quickly diverge from
each other, which makes optimization based on gradients of
functions of trajectories error prone if the practitioner is not
aware of this. Often, gradients computed both from AD or
iterative methods and adjoint sensitivity analysis are orders
of magnitude too large because of ill-conditioned Jacobians
and the resulting exponential error accumulation; see Metz
et al. (2021) and Wang et al. (2014) for details. This is espe-
cially problematic when the recurrent Jacobian of the system
exhibits large eigenvalues (Metz et al., 2021). Luckily, there
are some approaches to reduce this problem. For example,
least-squares shadowing methods can compute long-term av-
erages of gradients of ergodic dynamical systems (Wang
et al., 2014; Ni and Wang, 2017). Such shadowing methods
have already been explored for fluid simulations (Blonigan
et al., 2017). Alternatively, the sensitivity and response can
be computed using a Markov chain representation of the dy-
namical system (Gutiérrez and Lucarini, 2020). The problem
can also be addressed using the regular gradients, but with
an iterative training scheme, starting from short trajectories
(Gelbrecht et al., 2021). In addition to the chaotic nature of
ESMs, they also usually constitute so-called stiff differential
equation problems, caused by the difference in timescales of
the different modeled processes. Stiff differential equations
can lead to additional errors when using reverse-mode AD or
adjoint sensitivity analysis. These errors can be mitigated by
rescaling the optimization function and choosing appropri-
ate algorithms for the sensitivity analysis as outlined by Kim
et al. (2021).

An additional challenge for differentiable ESMs is the in-
clusion of physical priors and conservation laws. While the
parameters of a differentiable ESM may generally be varied
freely during gradient-based optimization, it is nonetheless
desirable that they should be constrained to values which
lead to physically consistent model trajectories. This chal-
lenge is particularly acute for hybrid ESMs, in which some
physical processes may be represented by ML model compo-
nents with many optimizable parameters. Enforcing physical
constraints is an essential step towards ensuring that hybrid
ESMs, which are tuned to present-day climate and the histor-
ical record, will nonetheless generalize well to unseen future
climates.

A number of approaches have been proposed to com-
bine physical laws with ML. Physics-informed neural net-
works (Raissi et al., 2019) penalize physically inconsistent
solutions during training, the penalty acting as a regularizer
which favors, but does not guarantee, physically consistent
choices of the model weights. Beucler et al. (2019, 2021)
enforce conservation of energy in an ML-based convective
parameterization by directly constraining the neural network
architecture, thereby guaranteeing that the constraints are
satisfied even for inputs not seen during training. Another
architecture-constrained approach involves enforcing trans-

formation invariance and symmetries in the ANN based on
known physical laws (Frezat et al., 2022). In some cases it
is possible to ensure that physical constraints are satisfied by
carefully formulating the interaction between the ML- and
process-based parts of the hybrid ESM. For example, Yu-
val et al. (2021) ensure conservation of energy and water in
an ANN-based subgrid parameterization by predicting fluxes
rather than tendencies of the prognostic model variables.

7 Conclusions

The ever-increasing availability of data, recent advances in
AD systems, optimization methods, and data-driven model-
ing from ML create the opportunity to develop a new gen-
eration of ESMs that are automatically differentiable. With
such models, long-standing challenges like systematic cali-
bration, comprehensive sensitivity analyses, and uncertainty
quantification can be tackled, and new ground can be broken
with the incorporation of ML methods into the process-based
core of ESMs.

Ideally, every single ESM component, including couplers,
would need to be differentiable, which of course takes a con-
siderable amount of work to realize. Differentiable program-
ming requires different programming languages and styles
than have been common practice in ESMs. Automated code
translation might assist this process in the future, as ML-
based tools like ChatGPT (OpenAI, 2022) showed great
promise even in complex programming tasks, can under-
stand Fortran code, and can be instructed to use libraries
like JAX in their translation. Despite this, we are fully aware
that translating model code is a very tedious business. Never-
theless, future model development should take differentiable
programming into account to get the tremendous benefits that
we outlined in this article.

If almost all components of an ESM are differentiable, but
one component is not, one might still be able to achieve a
fully differentiable model through implicit differentiation, as
recent advances also work towards automating implicit dif-
ferentiation (Blondel et al., 2021). While most of the research
discussed so far focuses on ocean and atmosphere GCMs,
differentiable programming techniques certainly have huge
potential for other ESM components like biogeochemistry,
terrestrial vegetation, or ice sheet models that already incor-
porate more empirical relationships. Differentiable models
can leverage the available data better in these cases, both im-
proving calibration and the incorporation of ML subcompo-
nents to model previously unresolved influences.

For the calibration of ESMs, differentiable programming
enables not only a gradient-based optimization of all pa-
rameters together, but also more carefully chosen procedures
where expert knowledge is combined with the optimization
of individual parameters. Similarly, the cost function that is
used in the tuning process can be easily varied and experi-
mented with. The ability to objectively optimize all parame-
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ters for a differentiable ESM does of course not imply that all
parameters should be optimized. Rather, differentiable ESMs
allow documenting which parameters are calibrated to best
reproduce a given feature of the Earth system in a transpar-
ent manner.

Where previous studies had to use emulators of ESMs to
showcase the potential of differentiable models, fully differ-
entiable ESMs can harness this potential while maintaining
the process-based core of these models. Differentiable ESMs
also enable this process-based core to be supplemented with
ML methods more easily. Deep learning has shown enor-
mous potential, e.g., for subgrid parameterization, to atten-
uate structural deficiencies and to speed up individual, slow
components by replacing them with ML-based emulators.
Differentiable ESMs make this process easier. The possibil-
ity of online training of ML models within ESMs promises
to lead to more accurate and stable solutions of the combined
hybrid ESM.

Aside from this, differentiable ESMs also enable further
studies on the sensitivity and stability of the Earth’s climate,
which previously had to rely on gradient-free methods. For
example, algorithms to construct response operators to fur-
ther study how fluctuations, natural variability, and response
to perturbations relate to each other (Ruelle, 1998) can be im-
plemented with a differentiable model. Advances in this di-
rection would greatly improve our understanding of climate
sensitivity and climate change (Lucarini et al., 2017).

Differentiable ESMs are a crucial next step toward im-
proved understanding of the Earth’s climate system, as they
would be able to fully leverage increasing availability of
high-quality observational data and to naturally incorporate
techniques from ML to combine process understanding with
data-driven learning.
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