Articles | Volume 16, issue 1
https://doi.org/10.5194/gmd-16-251-2023
https://doi.org/10.5194/gmd-16-251-2023
Development and technical paper
 | 
10 Jan 2023
Development and technical paper |  | 10 Jan 2023

Adapting a deep convolutional RNN model with imbalanced regression loss for improved spatio-temporal forecasting of extreme wind speed events in the short to medium range

Daan R. Scheepens, Irene Schicker, Kateřina Hlaváčková-Schindler, and Claudia Plant

Related authors

The Spatio-Temporal Visualization Tool HMMLVis in Renewable Energy Applications
Rainer Wöß, Katerina Hlavácková-Schindler, Irene Schicker, Petrina Papazek, and Claudia Plant
EGUsphere, https://doi.org/10.5194/egusphere-2024-3126,https://doi.org/10.5194/egusphere-2024-3126, 2024
Short summary

Related subject area

Atmospheric sciences
Selecting CMIP6 global climate models (GCMs) for Coordinated Regional Climate Downscaling Experiment (CORDEX) dynamical downscaling over Southeast Asia using a standardised benchmarking framework
Phuong Loan Nguyen, Lisa V. Alexander, Marcus J. Thatcher, Son C. H. Truong, Rachael N. Isphording, and John L. McGregor
Geosci. Model Dev., 17, 7285–7315, https://doi.org/10.5194/gmd-17-7285-2024,https://doi.org/10.5194/gmd-17-7285-2024, 2024
Short summary
Improved definition of prior uncertainties in CO2 and CO fossil fuel fluxes and its impact on multi-species inversion with GEOS-Chem (v12.5)
Ingrid Super, Tia Scarpelli, Arjan Droste, and Paul I. Palmer
Geosci. Model Dev., 17, 7263–7284, https://doi.org/10.5194/gmd-17-7263-2024,https://doi.org/10.5194/gmd-17-7263-2024, 2024
Short summary
RASCAL v1.0: an open-source tool for climatological time series reconstruction and extension
Álvaro González-Cervera and Luis Durán
Geosci. Model Dev., 17, 7245–7261, https://doi.org/10.5194/gmd-17-7245-2024,https://doi.org/10.5194/gmd-17-7245-2024, 2024
Short summary
Introducing graupel density prediction in Weather Research and Forecasting (WRF) double-moment 6-class (WDM6) microphysics and evaluation of the modified scheme during the ICE-POP field campaign
Sun-Young Park, Kyo-Sun Sunny Lim, Kwonil Kim, Gyuwon Lee, and Jason A. Milbrandt
Geosci. Model Dev., 17, 7199–7218, https://doi.org/10.5194/gmd-17-7199-2024,https://doi.org/10.5194/gmd-17-7199-2024, 2024
Short summary
Enabling high-performance cloud computing for the Community Multiscale Air Quality Model (CMAQ) version 5.3.3: performance evaluation and benefits for the user community
Christos I. Efstathiou, Elizabeth Adams, Carlie J. Coats, Robert Zelt, Mark Reed, John McGee, Kristen M. Foley, Fahim I. Sidi, David C. Wong, Steven Fine, and Saravanan Arunachalam
Geosci. Model Dev., 17, 7001–7027, https://doi.org/10.5194/gmd-17-7001-2024,https://doi.org/10.5194/gmd-17-7001-2024, 2024
Short summary

Cited articles

Alessandrini, S., Sperati, S., and Monache, L. D.: Improving the Analog Ensemble Wind Speed Forecasts for Rare Events, Mon. Weather Rev., 147, 2677–2692, https://doi.org/10.1175/MWR-D-19-0006.1, 2019. a
Amato, F., Guignard, F., Robert, S., and Kanevski, M.: A novel framework for spatio-temporal prediction of environmental data using deep learning, Sci. Rep.-UK, 10, 22243, https://doi.org/10.1038/s41598-020-79148-7, 2020. a
Ashkboos, S., Huang, L., Dryden, N., Ben-Nun, T., Dueben, P., Gianinazzi, L., Kummer, L., and Hoefler, T.: ENS-10: A Dataset For Post-Processing Ensemble Weather Forecast, arXiv [cs.LG], https://doi.org/10.48550/ARXIV.2206.14786, 2022. a
Batista, G., Prati, R., and Monard, M.-C.: A Study of the Behavior of Several Methods for Balancing machine Learning Training Data, SIGKDD Explorations, 6, 20–29, https://doi.org/10.1145/1007730.1007735, 2004. a
Burton, T., Sharpe, D., Jenkins, N., and Bossanyi, E.: Reviewed Work: “Wind Energy Handbook”, Wind Engineering, 25, 197–199, http://www.jstor.org/stable/43749820 (last access: 2 January 2023), 2001. a
Download
Short summary
The production of wind energy is increasing rapidly and relies heavily on atmospheric conditions. To ensure power grid stability, accurate predictions of wind speed are needed, especially in the short range and for extreme wind speed ranges. In this work, we demonstrate the forecasting skills of a data-driven deep learning model with model adaptations to suit higher wind speed ranges. The resulting model can be applied to other data and parameters, too, to improve nowcasting predictions.