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Abstract. The number of wind farms and amount of wind
power production in Europe, both on- and offshore, have
increased rapidly in the past years. To ensure grid stabil-
ity and on-time (re)scheduling of maintenance tasks and to
mitigate fees in energy trading, accurate predictions of wind
speed and wind power are needed. Particularly, accurate pre-
dictions of extreme wind speed events are of high impor-
tance to wind farm operators as timely knowledge of these
can both prevent damages and offer economic preparedness.
This work explores the possibility of adapting a deep con-
volutional recurrent neural network (RNN)-based regression
model to the spatio-temporal prediction of extreme wind
speed events in the short to medium range (12 h lead time
in 1 h intervals) through the manipulation of the loss func-
tion. To this end, a multi-layered convolutional long short-
term memory (ConvLSTM) network is adapted with a variety
of imbalanced regression loss functions that have been pro-
posed in the literature: inversely weighted, linearly weighted
and squared error-relevance area (SERA) loss. Forecast per-
formance is investigated for various intensity thresholds of
extreme events, and a comparison is made with the com-
monly used mean squared error (MSE) and mean absolute
error (MAE) loss. The results indicate the inverse weight-
ing method to most effectively shift the forecast distribution
towards the extreme tail, thereby increasing the number of
forecasted events in the extreme ranges, considerably boost-
ing the hit rate and reducing the root-mean-squared error
(RMSE) in those ranges. The results also show, however, that

such improvements are invariably accompanied by a pay-
off in terms of increased overcasting and false alarm ratio,
which increase both with lead time and intensity threshold.
The inverse weighting method most effectively balances this
trade-off, with the weighted MAE loss scoring slightly bet-
ter than the weighted MSE loss. It is concluded that the in-
versely weighted loss provides an effective way to adapt deep
learning to the task of imbalanced spatio-temporal regression
and its application to the forecasting of extreme wind speed
events in the short to medium range.

1 Introduction

Global warming demands ever more urgently that electricity
generation is shifted away from fossil fuels and towards re-
newable energy sources. Although global demands for fossil
fuels are not yet showing signs of decreasing, renewables are
on the rise. In 2021, more than half of the growth in global
electricity supply was provided by renewables, while the
share of renewables in global electricity generation reached
close to 30 %, having steadily risen over the past decades
(IEA, 2021). Possessing the largest market share among the
renewables, wind energy has managed to establish itself as a
mature, reliable and efficient technology for electricity pro-
duction and is expected to maintain rapid growth in the com-
ing years (Fyrippis et al., 2010; Huang et al., 2015). Thanks
to continued advancements in on- and offshore wind energy
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technology and the associated continued reduction in costs,
wind power capacity could grow from having met 1.8 % of
global electricity demand in 2009 to meeting roughly 20 %
of demand in 2030 (Darwish and Al-Dabbagh, 2020). In-
deed, many countries have already demonstrated that hybrid
electric systems with large contributions of wind energy can
operate reliably. For example, in as early as 2010, Denmark,
Portugal, Spain and Ireland managed to supply between 10 %
and 20 % of annual electricity demand with wind energy
(Wiser et al., 2011), and the numbers have only risen since.

One of the main challenges to the deployment of wind
energy, however, is its inherent variability and lower level
of predictability than are common for other types of power
plants (Lei et al., 2009; Chen and Yu, 2014; Li et al., 2018).
Hybrid electric systems that incorporate a substantial amount
of wind power therefore require some degree of flexibility
from other generators in the system in order to maintain the
right supply–demand balance and thus ensure grid stability
(Wiser et al., 2011). Failing to manage this variability leads
to scheduling errors which impact grid reliability and market-
based ancillary service costs (Kavasseri and Seetharaman,
2009) while potentially causing energy transportation issues
in the distribution network (Salcedo-Sanz et al., 2009) and
increased risks of power cuts (Li et al., 2018). This is where
wind speed forecasting can play a significant role. Incor-
porating high-quality wind speed forecasts, and, in return,
wind power forecasts, into electric system operations gives
the system more time to prepare for large fluctuations and
can thereby help mitigate the aforementioned issues (Wiser
et al., 2011). The variability in the short range, particularly
over the timescale of 1–6 h, is found to pose the most sig-
nificant operational challenges (Wiser et al., 2011; Li et al.,
2018). The development of accurate wind speed forecasts in
the short range has thus become increasingly important.

Short-term wind speed prediction is not just a key element
in the successful management of hybrid electric power sys-
tems; it is also vital in the planning for necessary shutdowns
in the face of extreme weather (Chen and Yu, 2014). Most
existing turbines stop producing energy when either instan-
taneous gust speeds or averaged wind speeds exceed a thresh-
old of around 25 m s−1, after which the rotation of the blades
is brought to a halt, and the turbine is essentially turned off
(Burton et al., 2001). Using simulations of offshore wind
power in Denmark, Cutululis et al. (2012) found that loss
of wind power production during critical weather conditions
can reach up to 70 % of installed capacity within an hour.
Accurate forecasts of extreme wind events can therefore pro-
vide vital foresight to help prepare the electrical grid for such
shutdowns as well as the duration of their downtime (Petro-
vić and Bottasso, 2014).

There has been a particularly strong trend within the
area of weather forecasting research towards data-driven,
deep artificial neural networks (ANNs) (Jung and Broadwa-
ter, 2014). Such statistical forecasting models, however, are
faced with a considerable challenge when tasked with the

prediction of extreme events. Typically referring to the up-
per or lower tails of the data distribution, extreme events are
inherently underrepresented during data-driven model learn-
ing and thus typically suffer from poor predictability and
low forecasting bias in comparison to the bulk of the dis-
tribution. Improving the predictability of extreme events for
data-driven models comprises an active area of research, and
various approaches have been put forward, depending on
the nature of the task. Class imbalances within classifica-
tion tasks, for example, can be mitigated with a wide range
of resampling strategies, either resampling the classes them-
selves (e.g. Batista et al., 2004) or the underlying probability
density function (e.g. Mohamad and Sapsis, 2018; Hassanaly
et al., 2021). The task may, furthermore, be treated as one-
class classification (e.g. Deng et al., 2018; Goyal et al., 2020)
or outlier exposure (e.g. Hendrycks et al., 2019).

While resampling strategies have also been proposed for
imbalanced regression tasks (see, for example, Oliveira et al.,
2021, for an application in the spatio-temporal setting), the
machine learning literature on imbalanced regression tends
to treat the problem as either anomaly detection (see, for ex-
ample, Schmidl et al., 2022) or as a change of the loss func-
tion utilised during model learning. In the latter context, Ding
et al. (2019) propose a novel loss function based on extreme
value theory, called the extreme value loss (EVL), which is
demonstrated to improve predictions of extreme events in
time-series forecasting. The authors furthermore propose a
memory-network-based neural network architecture to mem-
orise past extreme events for better prediction in the future.
Ribeiro and Moniz (2020) addressed the problem of imbal-
anced regression by proposing the squared error-relevance
area (SERA) loss function, based on the notion of “relevance
functions”. Yang et al. (2021), on the other hand, proposed
the idea of distribution smoothing to address underrepre-
sented or even missing labels in the label distribution and
reduce unexpected similarities within the feature distribution
that arise due to the label imbalance. The smoothed label dis-
tribution can then be used easily for re-weighting methods,
where the loss function can be weighted by multiplying it by
the inverse of the smoothed label distribution for each tar-
get. Such re-weighting of the loss function is a cost-sensitive
remedy to data imbalance and has been used in the context
of spatio-temporal weather forecasting by Shi et al. (2017).

Furthermore, a lot of work has been done in recent
years on probabilistic weather forecasting, and many post-
processing methods have been proposed to improve prob-
abilistic forecasts. Post-processing is typically applied to
ensemble weather forecasts or, for example, energy fore-
casts and attempts to correct biases exhibited by the system
and improve overall performance (see, for example, Vannit-
sem et al., 2020, or Phipps et al., 2022) but has been ex-
plored to a lesser degree in the context of extreme event
prediction. One approach to post-process ensemble fore-
casts for extreme events is to utilise extreme value the-
ory, a review of which can be found in Friederichs et al.
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(2018). The authors propose separate post-processing toward
the tail distribution and formulating a post-processing ap-
proach for the spatial prediction of wind gusts. Other au-
thors have explored the potential of machine learning in
this context. Ji et al. (2022), for example, investigate two
deep-learning-based post-processing approaches for ensem-
ble precipitation forecasts and compare these against the cen-
sored and shifted gamma-distribution-based ensemble model
output statistics (CSG EMOS) method. The authors report
significant improvements of the DL-based approaches over
the CSG EMOS and the raw ensemble, particularly for ex-
treme precipitation events. Ashkboos et al. (2022) introduce
a 10-ensemble dataset of several atmospheric variables for
machine-learning-based post-processing purposes and com-
pare a set of baselines in their ability to correct forecasts,
including extreme events. Alessandrini et al. (2019), on the
other hand, demonstrate improved predictions on the right
tail of the forecast distribution of analogue ensemble (AnEn)
wind speed forecasts using a novel bias-correction method
based on linear regression analysis, while Williams et al.
(2014) show that flexible bias-correction schemes can be
incorporated into standard post-processing methods, yield-
ing considerable improvements in skill when forecasting ex-
treme events.

As data-driven forecasting model, this paper investigates
an adaptation of a deep convolutional long short-term mem-
ory (ConvLSTM) regression model, as proposed by Shi et al.
(2015). The capability of deep ANNs to automatically and ef-
fectively learn hierarchical feature representations from raw
input data has made such models particularly attractive to
the area of spatio-temporal sequence forecasting, where com-
plex spatial and temporal correlations are typically present in
the data (Shi and Yeung, 2018; Amato et al., 2020; Wang
et al., 2020). The ConvLSTM is an example of a ConvRNN
model, which forms a synthesis of a convolutional neural net-
work (CNN) and a recurrent neural network (RNN). CNNs
are a class of feed-forward artificial neural networks, used
primarily for data mining tasks involving spatial data, and
have gained a lot of attention in the area of computer vi-
sion and natural language processing (Ghosh et al., 2020),
while RNNs are known for their powerful ability to model
temporal dependencies (Shi et al., 2015). By utilising the
strengths of the CNN to capture spatial correlations and the
RNN to capture temporal correlations in the data, ConvRNN
models have demonstrated very promising forecasting abil-
ity in the spatio-temporal setting (Wang et al., 2020), outper-
forming both non-recurrent convolutional models and non-
convolutional RNN models (Shi et al., 2015, 2017). As a
multi-layered ConvRNN model, the deep ConvLSTM thus
has the potential to effectively model the complex dynamics
of the spatio-temporal wind speed forecasting problem.

In this paper an adaptation of a deep ConvLSTM regres-
sion model is applied to the task of the spatio-temporal pre-
diction of extreme wind speed. The model is adapted with
different types of imbalanced regression loss, and their ef-

ficacy in improving predictions on the right tail of the tar-
get wind speed distribution is compared. As such, this paper
attempts to shed light on how the loss function of a deep
learning model may be best adapted to improve forecasting
performance on the distributional tail. Such improvement has
practical relevance to wind energy applications where obtain-
ing accurate predictions of extreme events are more desirable
than accurate predictions of non-extremes, for example, in
early-warning systems for wind farm operators. It is impor-
tant to note, however, that while distributional tails in this
work do not necessarily denote severe events in the abso-
lute sense, the methodology of this work can be translated
directly to cases where distributional tails denote actual haz-
ardous events. The adapted models are, furthermore, com-
pared against two base-line models, trained with mean abso-
lute error (MAE) and mean squared error (MSE) loss. Fore-
cast quality of all models is determined from a combination
of categorical and continuous scores over a variety of inten-
sity thresholds.

2 Methodology

2.1 Data collection and preprocessing

The wind speed data used in this work were downloaded
from the Copernicus Climate Change Service Climate Data
Store (CDS) of the ECMWF (see Hersbach et al., 2018),
where different vertical levels are available. In this study, the
focus lies on the 1000 hPa pressure level data which typi-
cally vary between 100 and 130 m above ground level, corre-
sponding to the most common hub heights in the eastern part
of Austria (main wind energy region). The U and V com-
ponents of the horizontal wind velocity (in ms−1) were thus
taken at 1000 hPa from the “ERA5 hourly data on pressure
levels from 1979 to present” dataset to calculate the scalar
wind speed (computed as

√
U2+V 2). The data were col-

lected with a temporal resolution of 1 h between 1 January
1979 and 1 January 2021 (42 years) on a spatial grid over
central Europe. Of these data, the last 2 years between 2019–
2021 were held out as a test set. The 8 years between 2011–
2019 were used for training and validation in the first part
of the experiment, where the optimal model architecture for
each of the investigated loss functions was determined using
4-fold cross-validation (with 6 years’ training and 2 years’
validation data). In the second part of the experiment, the
optimal model architectures were then trained and validated
on the entire 40 years of data between 1979–2019, using the
8 years between 2011–2019 as validation.

The spatial grid comprises 64× 64 grid points between
40–56◦ N and 3–19◦ E, the spatial resolution being 0.25◦

(≈ 28 km). This region was selected for its pronounced ge-
ographical variation, spanning land and sea regions, flat and
mountainous areas, and different climatic regions. Interplay
between these features can result in highly complex wind
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Figure 1. A visualisation of the wind speed data (in ms−1). Panel (d) shows a colour map of an example data frame, overlaid on a cartographic
map (central Europe) showing the coastlines of the region. On the left (a–c), the wind speed time series of three arbitrary locations (white
squares) within the frame are plotted for the duration of 1 month, as well as the climatological means at these locations (dotted red lines).

Figure 2. Colour maps of the maximum (a), mean (b) and standard deviation (c) of the wind speeds (in ms−1) over the region. The figures
display a sharp division of the statistics along the coastlines.

dynamics, which is why the application of deep learning
was expected to be particularly promising. Moreover, the
fine spatial resolution of 0.25◦ was expected to be critical to
capturing the complex fine-scale dynamics of a variable like
low-level wind. The resolution also marks an important step
forward for data-driven models to be truly competitive with
state-of-the-art numerical weather prediction models, which
are run at ≈ 0.1◦ resolution (Pathak et al., 2022).

A visualisation of the data is provided in Fig. 1. The fig-
ure shows on the right an example spatial frame and on the
left wind speed time series of three arbitrary locations over
the duration of 1 month, including the climatological means
at these locations. Evidently, the local climatological means
(and by extension, the local wind speed distributions) vary
substantially throughout the region, where striking differ-
ences in magnitude can be observed between the offshore and
onshore regions. To highlight these spatial differences, Fig. 2
shows the maximum, mean and standard deviation of the

wind speed over the region, which indeed unveil a sharp divi-
sion of the statistics with the underlying coastlines of the re-
gion. In fact, extreme winds (e.g. larger than 25 ms−1) seem
to occur almost exclusively offshore: if there were stronger
winds present over this region of mainland Europe between
1979 and 2021, then they have not been captured by the
hourly ERA5 reanalysis.

Thus, rather than defining extreme winds in terms of their
absolute severity, extreme winds are here defined in terms
of their relative rarity at each coordinate. This definition fo-
cuses the forecasting problem on the right tails of the respec-
tive distributions at each coordinate, which ensures that the
forecasting of extremes is conducted over the entire region,
rather than only locally over some particularly dominant area
(Fig. 2). By selecting a distributional percentile such as the
99th percentile, extreme winds are then defined as those wind
speeds surpassing the percentile threshold of the wind speed
sample distribution at the respective coordinate, i.e. wind
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Figure 3. The multi-layered encoding–forecasting ConvLSTM network. The hidden states and cell outputs of the encoding network are
copied to the forecasting network, from which the final prediction is made. © Shi et al. (2015). Used with permission.

speeds that are, indeed, rare at that coordinate (although not
necessarily severe or hazardous in a absolute sense). For the
remainder of this paper, the term “pth percentile threshold”
refers always to the pth percentile of the target wind speed
distribution at each coordinate. The above approach allows
us to investigate forecasting improvements of extreme events
more generally by looking at improvements on the tails of
the respective distributions, regardless of the absolute values
of the tails. Any improvements on the tails that result from
the loss function modifications investigated in this paper can
be swiftly translated to other data where the tails of the dis-
tributions do exclusively denote hazardous events.

The data were preprocessed at each coordinate using a
Yeo–Johnson power transform (Yeo and Johnson, 2000) to
make the local wind speed distributions more Gaussian-like
and were subsequently standardised locally using zero-mean,
unit-variance normalisation. The optimal parameter for sta-
bilising variance and minimising skewness in the power
transform was estimated through maximum likelihood, using
scikit-learn (Pedregosa et al., 2011).

2.2 Model description

The model implemented for the task of spatio-temporal fore-
casting of wind speed is an adaptation of the convolutional
long short-term memory (ConvLSTM) network, as proposed
by Shi et al. (2015) for precipitation nowcasting. However,
while Shi et al. (2015) trained their ConvLSTM model using
cross-entropy loss, the model proposed here adjusts the Con-
vLSTM to the forecasting of extreme events by utilising two
types of loss functions from the literature on imbalanced re-
gression: weighted loss and the squared error-relevance area
(SERA) loss.

As is common for spatio-temporal sequence forecasting,
the deep ConvLSTM model architecture is adopted with an
encoding–forecasting network structure, where both encod-
ing and forecasting networks consist of several stacked Con-
vLSTM layers. As depicted in Fig. 3, the encoding Con-
vLSTM network compresses the input into a hidden state
tensor, and the forecasting ConvLSTM network unfolds this
hidden state into the final prediction (see Shi et al., 2015,

Table 1. The number of parameters of the ConvLSTM model with
different numbers of layers.

ConvLSTM Number of
layers parameters

2 2 385 953
3 10 061 025
4 34 201 185
5 62 060 641

for a mathematical description). The model is implemented
as a multi-frame forecasting model, with 12 h input and
12 h prediction. This means that the model takes in tensors
of size 12× 64× 64 as input, consisting of the previous 12 h
of wind speed over the 64× 64 grid, which are then en-
coded simultaneously through various hidden states of the
encoding network and decoded through the decoding net-
work into a subsequent 12 h prediction tensor of the same
size (12× 64× 64).

The model was implemented and trained using Pytorch
(Paszke et al., 2019). In addition to the different loss func-
tions, different model architectures with different numbers
of ConvLSTM layers are investigated, ranging from two to
five layers (in both the encoder and the forecasting networks).
The numbers of parameters of all model architectures are
shown in Table 1. In line with Shi et al. (2015), all layers
utilise 3× 3 kernels. The convolution over each successive
filter operates such as to successively halve the spatial di-
mensions of the input, while the number of hidden states
(features) is successively doubled (starting from 16 hidden
states).

The ConvLSTM is trained using mini-batch gradient de-
scent with a batch size of 16 and used the adaptive moment
estimation (Adam) as optimiser. Adam optimiser is a pop-
ular and reliable choice for deep learning neural networks
which computes adaptive learning rates for each parameter
of the model, based on their update frequency (see, for exam-
ple, Ruder, 2017). As in Shi et al. (2017), the initial learning
rate of the Adam optimiser is set to 10−4. During training,
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early stopping is performed on the validation set to ensure
that the model with the lowest validation loss is saved as the
best model and thus to avoid overfitting the model. The early-
stopping mechanism is set up to stop training when the vali-
dation loss fails to decrease for 20 consecutive epochs.

These implementation and parameter choices were se-
lected a priori based on the work of Shi et al. (2015) and
Shi et al. (2017). Model performance may certainly be im-
proved by performing a thorough hyper-parameter optimisa-
tion, but that is not the focus of this paper. The focus is set,
instead, on providing a comparison of some of the different
loss functions proposed in the literature for spatio-temporal
imbalanced regression using deep learning in terms of their
ability to improve the prediction of extreme wind speed. As
such, the ConvLSTM model is adapted with two types of loss
functions that have been proposed for imbalanced regression
problems: weighted loss and squared error-relevance area
(SERA) loss.

2.2.1 Weighted loss

Weighted loss consists of assigning a weight w(y) to each
value in the input frame according to its target wind speed y.
For a loss function L of the target y and prediction ŷ (con-
sisting ofN time frames ofM ×M spatial coordinates) and a
weighting function w(y), the weighted loss LW is computed
as in Eq. (1). As weighted loss functions, both the weighted
mean squared error (W-MSE) loss and the weighted mean
absolute error (W-MAE) loss are investigated.

LW(ŷ,y)=
1
N

N∑
n=1

M∑
i,j=1

w(yn,i,j ) ·L(ŷn,i,j ,yn,i,j ) (1)

As weighting function both an inverse weighting function
and a simple linear weighting function are investigated. The
inverse weighting function computes the weights in propor-
tion to the inverse of the data distribution for each target,
as suggested by Yang et al. (2021). For a continuous target
distribution, this typically implies discretising the distribu-
tion into intervals (see, for example, Shi et al., 2017), where
all predictions within an interval are weighted by the same
weight. Due to the definition of extreme events in this paper
in terms of local percentile thresholds, the target distribution
is discretised into intervals spanning the percentage of the
distribution between percentile p and 100. For a set of in-
creasing percentiles P = {pk}, all targets pk ≤ y < pk+1 are
then weighted proportionally to the inverse of the percentage
between pk and 100, i.e. w(y)∝ 1/(100−pk). We utilise a
range of integer percentiles P = {pk|k ∈ [50,99]} and nor-
malise weights such that the interval between percentiles 50
and 51 is given unit weight. As such, weights increase in-
versely from 1 up until a weight of 50 (given to target values
p99 ≤ y ≤ p100). All values smaller than the 50th percentile
(p50) are also given unit weight. This results in the weight-
ing function shown in Eq. (2), which is also presented graph-

Figure 4. Weighting functions used to construct either the in-
versely weighted mean squared error (W-MSEinv) and mean abso-
lute error (W-MAEinv) or the linearly weighted mean squared error
(W-MSElin) and mean absolute error (W-MAElin).

ically in Fig. 4.

winv(y)={
1 if y < p50

50 · 1
100−k if pk ≤ y < pk+1 for k ∈ [50,99]

(2)

The linear weighting function is constructed analogously
as shown in Eq. (3): target values y < p50 are similarly
given unit weight, while weights for target values pk ≤ y ≤
pk+1 are increased linearly from 1 to 50 for percentiles
k ∈ [50,99]. The function is also presented graphically in
Fig. 4.

wlin(y)={
1 if < p50

k− 49 if pk ≤ y < pk+1 for k ∈ [50,99]
(3)

2.2.2 Squared error-relevance area loss

As another approach to combating data imbalance, the
squared error-relevance area (SERA) loss, as proposed by
Ribeiro and Moniz (2020), is investigated. The SERA loss
is based on the concept of a relevance function φ : Y −→
[0,1], which maps the target variable domain Y onto a
[0,1] scale of relevance. The relevance function φ is de-
termined through a cubic Hermite polynomial interpolation
of a set of “control points”. The set of control points S =
{〈yk,φ(yk),φ

′(yk)〉}
s
k=1 are user-defined points where the

relevance may be specified, which are typically local min-
ima or maxima of relevance and thus all have derivative
φ′(yk)= 0 (Ribeiro and Moniz, 2020).

In this implementation, the method is implemented on
a per-coordinate basis, and the local 99th percentile (p99)
at each coordinate is fixed as the point of maximum rele-
vance. The point of minimum relevance is varied between
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Figure 5. The relevance function φ obtained by interpolating
the control point of minimum relevance and the control point of
maximum relevance, chosen as the 90th percentile (p90) and the
99th percentile (p99) in this figure, using the pchip interpolation
algorithm.

the 90th percentile (p90), the 75th percentile (p75) and
the 50th percentile (p50) in order to investigate how this
choice affects forecasting performance. The interpolation in
all cases is carried out according to Ribeiro and Moniz (2020)
using the piecewise cubic Hermite interpolating polynomial
(pchip) algorithm. The relevance function obtained for two
control points (e.g. p90 and p99) is shown in Fig. 5.

Defining Dt as the subset of data pairs for which the rel-
evance of the target value is greater than or equal to a cut-
off t , i.e. Dt = {〈xi,yi〉 ∈D|φ(yi)≥ t}, the squared error-
relevance SERt of the model with respect to the cut-off t is
then computed as follows:

SERt =
∑
i∈Dt

(ŷi − yi)
2, (4)

where ŷi and yi are the ith prediction and target values, re-
spectively. The curve obtained by plotting SERt against t is
decreasing and monotonic (Ribeiro and Moniz, 2020) and
provides an overview of how the magnitudes of the predic-
tion errors change on subsets comprising varying degrees of
relevant samples (t = 0 representing all samples and t = 1
representing only the most relevant samples). Finally, the
squared error-relevance area (SERA) is defined as the area
under the SERt curve:

SERA=

1∫
0

SERt dt. (5)

The smaller the area under the curve is, the better the
model is. It can be noted that assigning uniform relevance
values to all data points recovers the MSE loss. We also note
that, regardless of the choice of relevance function, the SERA
loss utilises the complete set of given samples in its compu-
tation, not solely a subset, as the integral in Eq. (5) starts at

t = 0, and SERt=0 denotes all samples with relevance values
greater than or equal to 0, i.e. all samples.

2.3 Forecast evaluation

In order to evaluate the predictions of the ConvLSTM against
observations, the model’s hit rate (H = a

a+c
), false alarm ra-

tio (FAR = b
a+b

), threat score (TS= a
a+b+c

) and frequency
bias (B = a+b

a+c
) are analysed, where a denotes the number of

hits, b the number of false alarms, c the number of missed
hits and d the number of correct negatives obtained by the
model. The hit rate, false alarm ratio and threat score are
routinely used by the UK Met Office to evaluate warnings
(Hogan and Mason, 2012) and have also been used by Shi
et al. (2015) to evaluate the ConvLSTM model for precipita-
tion nowcasting, while the frequency bias provides valuable
information on whether the model tends to overcasting or un-
dercasting.

These scores are computed for a set of intensity thresh-
olds corresponding to the local 50th, 75th, 90th, 95th, 99th
and 99.9th percentiles of the observed sample distributions
at each coordinate, which are computed using the training
set. In order to obtain an aggregated result over all forecasts
made by a model, the elements in the contingency table (a,
b, c and d) are aggregated over all forecasts, and the scores
are computed subsequently from the aggregated contingency
table.

Since the above categorical scores work on the basis of a
forecast being correct as long as it surpasses the same thresh-
old t as the observed event, they are able to give an indication
of the frequency of errors, while they are unable to give an
indication of the magnitude of the errors between the fore-
cast and observations. In order to include a comparison of er-
ror magnitudes in the analysis, the root-mean-squared error
(RMSE) between (continuous-valued) predictions and obser-
vations is utilised. Unlike the categorical scores, the RMSE
is computed here between two consecutive percentile thresh-
olds: for a particular forecast and observation, and thresh-
olds p1 and p2, the RMSE is computed between all pairs
of forecast and observation values (f,o) where the observa-
tion values lie between p1 and p2, i.e. p1 ≤ o < p2. The total
RMSE for those thresholds is then computed as an aggregate
over all forecasts and observations of the model. This ap-
proach serves to give an indication of the typical magnitude
of errors of the forecasts of a model over a particular per-
centile range of the observations.

In the next section the results obtained from combining
the multi-layered ConvLSTM network with the various loss
functions are presented. The optimal number of layers for
each model is determined from the minimum validation loss
obtained by the networks as averaged over the 4-fold cross-
validation process (conducted over the 8 years of data be-
tween 2011–2019). The optimal models are then re-trained
using the entire 40 years of data between 1979–2019 (using
the 8 years between 2011–2019 as validation), and their re-
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Table 2. Minimum validation loss as obtained by the ConvLSTM network with the number of layers ranging from two to five (denoted
in brackets) and trained with each different loss function. Values are presented as the mean± 1 standard deviation from the 4-fold cross-
validation. The lowest minimum validation loss reached, and thus the optimal network architecture, is emphasised in boldface for each loss
function. Where multiple architectures obtained the same minimum validation loss, the simpler architecture is given precedence.

Loss ConvLSTM (2) ConvLSTM (3) ConvLSTM (4) ConvLSTM (5)

W-MAEinv (65.1± 2.2)× 10−2 (63.6± 2.0)× 10−2 (63.3±2.1)×10−2 (63.3± 2.1)× 10−2

W-MSEinv (52.0± 1.6)× 10−2 (49.9± 1.3)× 10−2 (49.5±1.8)×10−2 (49.6± 1.6)× 10−2

W-MAElin (249.3± 3.9)× 10−2 (243.4± 3.8)× 10−2 (243.3± 3.4)× 10−2 (242.9±4.4)×10−2

W-MSElin (148.3± 3.3)× 10−2 (142.6± 3.6)× 10−2 (142.5±3.0)×10−2 (142.5± 2.3)× 10−2

SERAp90 (116.2± 4.1)× 10−3 (113.2± 5.6)× 10−3 (113.1± 4.5)× 10−3 (111.0±2.9)×10−3

SERAp75 (125.2± 1.6)× 10−3 (121.4± 2.4)× 10−3 (119.6± 2.8)× 10−3 (119.4±3.2)×10−3

SERAp50 (136.6± 1.8)× 10−3 (132.1± 1.1)× 10−3 (130.8± 3.1)× 10−3 (130.6±1.7)×10−3

MAE (264.7± 2.6)× 10−3 (257.4± 2.6)× 10−3 (256.9± 3.0)× 10−3 (256.1±2.9)×10−3

MSE (213.2± 2.6)× 10−3 (204.7± 3.9)× 10−3 (204.4± 3.2)× 10−3 (204.0±2.7)×10−3

sults are compared on the held-out test set comprising the
2 years between 2019–2021.

3 Results

3.1 Validation loss

Table 2 shows the minimum validation loss obtained by the
ConvLSTM network with the number of layers ranging be-
tween two and five, as trained with either inversely weighted
loss (W-MAEinv and W-MSEinv), linearly weighted loss
(W-MAElin and W-MSElin), SERA loss or standard MAE or
MSE loss. The SERA loss is denoted with a subscript denot-
ing the first control point used, with the second control point
fixed at the local 99th percentile (p99) for each coordinate.
Results are shown as the mean± 1 standard deviation from
the 4-fold cross-validation. The minimum validation loss for
each loss function has been emphasised in boldface, indi-
cating the optimal number of network layers for each loss
function. In cases where the mean validation loss is equal for
multiple numbers of layers, the smallest number of layers,
and thus the simplest model, was given precedence.

3.2 Comparison over intensity thresholds

The models were then re-trained using the entire 40 years of
data between 1979–2019 (using the 8 years between 2011–
2019 as validation) with the corresponding optimal number
of network layers (henceforth indicated in brackets after the
name of the respective loss function with which the network
was trained). The following comparison shows the models’
performance on the held-out test set (years 2019–2021). Ta-
ble 3 shows a comparison of the hit score (H ), false alarm
ratio (FAR), threat score (TS) and frequency bias (B) for
wind forecasts f and observations o exceeding local inten-
sity thresholds between the 50th (p50) and the 99.9th (p99.9)
percentiles, aggregated over all lead times. The persistence

forecast, which simply consists of a repetition of the final in-
put frame, is included in the table for reference.

The table shows that the imbalanced regression losses gen-
erally result in significant increases in the hit rate as com-
pared with the standard MAE or MSE loss, indicating that
more of the true occurrences of the events were captured by
the model. Any improvement in the hit rate is, however, ac-
companied by an increase in the false alarm ratio. This sug-
gests that in order to capture more of the events, the models
are invariably producing more false alarms. This behaviour is
particularly pronounced where there is substantial overcast-
ing, i.e. a frequency bias substantially greater than 1. This
can be best noticed for the SERAp90 model at the intensity
threshold p95, where a massive frequency bias of 332.8 %
results in the model successfully capturing a spectacular
94.5 % of true events (the hit rate) at the cost of 71.6 % of
forecasted events being false alarms (the false alarm ratio).

The threat scores can give an overall idea of forecasting
performance and, as such, suggest that the SERA-trained
models investigated here can only be considered superior
to the MSE-trained model for the p99 threshold (except for
SERAp90, which scores worse) and for the p99.9 threshold.
Compared to the MAE loss, the SERA-trained models typi-
cally score worse threat scores for all thresholds, except for
the SERAp75 model which manages to be on par at inten-
sity thresholds p99 and p99.9. As a matter of fact, none of
the models trained with imbalanced regression loss achieve
threat scores superior to the MAE trained model for thresh-
olds p50–p95, although the inversely weighted losses gen-
erally achieve comparable scores, and the linearly weighted
losses achieve comparable scores for p90 and p95. Between
the linearly weighted losses, the W-MAElin achieves better
scores for higher thresholds (p90 onward). The W-MAElin
also achieves slightly better scores than either inversely
weighted losses for thresholds p90 and p95. The inversely
weighted losses dominate, however, for the extremely high
thresholds p99 and p99.9, outperforming all other loss func-
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Table 3. Comparison of hit score (H ), false alarm ratio (FAR), threat score (TS) and frequency bias (B) of the ConvLSTM network trained
with each different loss function. Scores are presented for wind forecasts f and observations o exceeding local intensity thresholds varying
between the 50th (p50) and 99.9th (p99.9) percentiles, aggregated over lead time. The optimal number of network layers used for each loss
function is given in brackets after the name of the loss function. The persistence forecast is included in the table for reference. For each
intensity threshold, the best scores are emphasised in boldface (where applicable).

Loss (layers) H ↑ FAR↓

f,o ≥ p50 f,o ≥ p75 f,o ≥ p90 f,o ≥ p95 f,o ≥ p99 f,o ≥ p99.9 f,o ≥ p50 f,o ≥ p75 f,o ≥ p90 f,o ≥ p95 f,o ≥ p99 f,o ≥ p99.9

W-MAEinv (4) 0.866 0.858 0.809 0.761 0.583 0.262 0.178 0.291 0.381 0.432 0.473 0.427
W-MSEinv (4) 0.861 0.846 0.788 0.735 0.531 0.201 0.179 0.285 0.374 0.42 0.45 0.424
W-MAElin (5) 0.979 0.885 0.712 0.612 0.408 0.18 0.351 0.343 0.286 0.292 0.289 0.306
W-MSElin (4) 0.966 0.884 0.689 0.583 0.389 0.187 0.312 0.335 0.272 0.27 0.289 0.362
SERAp90 (5) 0.814 0.871 0.938 0.945 0.614 0.215 0.175 0.36 0.602 0.716 0.608 0.419
SERAp75 (5) 0.849 0.921 0.924 0.844 0.527 0.225 0.2 0.407 0.571 0.572 0.464 0.421
SERAp50 (5) 0.907 0.932 0.828 0.712 0.467 0.188 0.245 0.424 0.454 0.436 0.394 0.355
MAE (5) 0.836 0.76 0.656 0.58 0.419 0.215 0.138 0.177 0.214 0.242 0.279 0.354
MSE (5) 0.819 0.755 0.652 0.565 0.371 0.142 0.133 0.187 0.234 0.257 0.282 0.321
Persistence 0.774 0.678 0.582 0.523 0.408 0.268 0.238 0.34 0.441 0.503 0.611 0.741

TS ↑ B

f,o ≥ p50 f,o ≥ p75 f,o ≥ p90 f,o ≥ p95 f,o ≥ p99 f,o ≥ p99.9 f,o ≥ p50 f,o ≥ p75 f,o ≥ p90 f,o ≥ p95 f,o ≥ p99 f,o ≥ p99.9

W-MAEinv (4) 0.729 0.635 0.54 0.482 0.383 0.219 1.054 1.209 1.306 1.341 1.108 0.457
W-MSEinv (4) 0.725 0.633 0.536 0.48 0.37 0.175 1.048 1.182 1.258 1.267 0.966 0.348
W-MAElin (5) 0.64 0.606 0.554 0.488 0.35 0.167 1.51 1.346 0.997 0.864 0.574 0.259
W-MSElin (4) 0.671 0.612 0.548 0.479 0.336 0.169 1.404 1.328 0.946 0.799 0.546 0.293
SERAp90 (5) 0.694 0.585 0.388 0.279 0.314 0.186 0.986 1.361 2.355 3.328 1.567 0.371
SERAp75 (5) 0.7 0.565 0.414 0.397 0.362 0.193 1.06 1.552 2.153 1.973 0.983 0.389
SERAp50 (5) 0.7 0.553 0.491 0.459 0.359 0.17 1.201 1.618 1.515 1.263 0.771 0.291
MAE (5) 0.737 0.653 0.557 0.489 0.361 0.192 0.97 0.924 0.835 0.765 0.582 0.332
MSE (5) 0.727 0.644 0.544 0.473 0.324 0.133 0.944 0.929 0.852 0.761 0.517 0.209
Persistence 0.623 0.503 0.399 0.342 0.248 0.152 1.016 1.027 1.041 1.052 1.049 1.035

tions on these thresholds. Performance for all models on
threshold p99.9 must be interpreted with caution, however,
since threat scores on this threshold approach those obtained
from the persistence forecast. Indeed, in terms of hit rate,
none of the models investigated in this paper are able to
successfully predict events of the 99.9th percentile threshold
better than persistence. Similarly, for the 99th percentile, the
standard MAE and MSE and the linearly weighted MAE and
MSE result in hit rates comparable to persistence, highlight-
ing the inability of these standard loss functions to capture
extremely rare events.

As compared with the standard MAE loss, the W-MAEinv
manages to boost the hit rate significantly across all intensity
thresholds, while some degree of overcasting and increased
false alarms will have to be allowed for. For p90, for exam-
ple, the usage of the W-MAEinv achieves an increase in H
from 0.656 (standard MAE) to 0.809, with the FAR rising
from 0.214 to 0.381. Even for p99, a significant increase inH
is achieved, from 0.419 (standard MAE) to 0.583, with the
FAR rising more drastically, however, from 0.279 to 0.473.
Overcasting and FAR values can be reduced substantially,
however, using the linear weighting method. For p90 events,
the W-MAElin increases the FAR more conservatively from
0.214 (standard MAE) to 0.286 while still boosting H from
0.656 to 0.712. The table shows that a small boost in H can
still be expected for p95 events, but beyond that, the linearly
weighted MAE or MSE offers no improvements (with hit
rates dropping to values comparable with persistence). De-
pending then on what magnitude of false alarms that is ac-

ceptable, and for what percentile of extreme events the loss
function is desired to offer improvement, either the linear or
the inverse weighting methods can be utilised. Between all
usages of the MAE and MSE, either weighted or unweighted,
the MAE returns higher hit rates and higher threat scores at
the cost of an increased false alarm ratio and an increased
frequency bias.

Compared to the weighted loss functions, the SERA of-
fers something of an extreme case, allowing hit rates to be
boosted spectacularly but at a considerable loss of forecast-
ing performance (as judged by reduced threat scores, in-
creased overcasting and increased false alarms). The primary
control point of the SERA loss does offer a way to mitigate
this behaviour, however. For example, reducing this control
point from p90 to p75 and then to p50 (while keeping the sec-
ond control point fixed at p99) shows a striking reduction in
frequency bias, false alarms and hit rates for intensity thresh-
olds between p90–p99, while threat scores, and thus overall
forecasting performance, generally improve.

Table 4 shows the root-mean-squared error (RMSE) ob-
tained from the continuous forecasts and observations of the
different models. Unlike Table 3, the RMSE is computed
between all pairs of forecast and observation values (f,o)
where the observation values lie between p1 and p2, i.e.
p1 ≤ o < p2. Again, the persistence forecast is included for
reference. The table shows that the imbalanced regression
losses tend to result in lower RMSE scores, as compared to
the standard MAE and MSE loss, for increasingly rare obser-
vation values. It is interesting to note that while the SERA-
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Table 4. As Table 3 but presented for the root-mean-squared error (RMSE), which is computed between all pairs of forecast and observation
values (f,o) where the observation values lie between p1 and p2, i.e. p1 ≤ o < p2.

RMSE↓

p50 ≤ o < p75 p75 ≤ o < p90 p90 ≤ o < p95 p95 ≤ o < p99 p99 ≤ o < p99.9 p99.9 ≤ o < p100

W-MAEinv (4) 0.508 0.442 0.393 0.369 0.415 0.731
W-MSEinv (4) 0.508 0.446 0.397 0.38 0.445 0.767
W-MAElin (5) 0.4 0.293 0.328 0.392 0.532 0.867
W-MSElin (4) 0.402 0.295 0.338 0.411 0.554 0.892
SERAp90 (5) 0.738 0.662 0.475 0.306 0.29 0.642
SERAp75 (5) 0.668 0.51 0.339 0.276 0.361 0.706
SERAp50 (5) 0.571 0.386 0.3 0.314 0.423 0.74
MAE (5) 0.456 0.463 0.475 0.504 0.615 0.933
MSE (5) 0.472 0.484 0.492 0.522 0.639 1.017
Persistence 0.731 0.758 0.786 0.826 0.93 1.243

trained models generally appear to result in heavy overcast-
ing and highly inflated false alarm rates (Table 3), the RMSE
scores suggest that increasing the first control point of the
SERA loss results in shifting the domain of minimal RMSE
towards the higher percentiles. Between the inverse and lin-
ear weighting methods, the RMSE scores echo the interpre-
tations from Table 3, with the linear method appearing more
adept (lower RMSE) around the central percentiles and the
inverse method more adapt towards the higher percentiles.

3.3 Temporal assessment

The performance of the models is investigated further in
Fig. 6, where the scores obtained by each model are plot-
ted over lead time (in hours) for the 75th (p75), 90th (p90),
95th (p95) and 99th (p99) percentile intensity thresholds in
particular. Once again the persistence forecast is included
for reference. Not only does the figure provide a temporal
picture of forecasting performance, but the different models
can also readily be compared to the “baseline” persistence
forecast (dotted black line). The figure clearly shows that the
imbalanced regression losses result in sustained hit rates H
over lead time, while false alarm rates FAR and frequency
bias B suffer large increases, as compared with the standard
MAE and MSE. Indeed, none of the imbalanced regression
loss functions succeed in increasing either H or TS with-
out inflating FAR or B to some degree; in fact, typically the
stark improvements in H result in degraded TS scores (most
clearly visible for the SERA models on thresholds p75, p90
and p95).

Although the inverse weighting, the linear weighting and
the SERA loss each provide a different way to balance fore-
casting performance towards improved hit rates, they achieve
this aim with varying success. For example, not only are
the heavily inflated B and FAR scores produced by the
SERA models not typically qualities of reliable forecast-
ing systems, the models also do not succeed in keeping
TS scores on par with the standard MAE and MSE loss;

spectacular improvements in H thus seem to be primarily
a result of extreme overcasting bias, not actually improved
predictive power. Compared with the SERA loss, the in-
versely weighted losses, W-MAEinv and W-MSEinv, sustain
H scores over lead time to a lesser degree but nevertheless
show strong improvements over the standard MAE and MSE
while showing no apparent loss in TS over lead time (in
fact, showing substantial improvement for threshold p99) and
inflating FAR and B scores much more conservatively. Al-
though the linear weighted losses display more conservative
FAR and B scores still, it is evident that any improvements
in H cease rather quickly beyond a threshold of p95.

Lastly, the RMSE scores show clearly how forecasts grad-
ually lose precision with increasing lead time. It is interest-
ing to note that the relationship appears to be roughly lin-
ear. The imbalanced regression losses consistently show im-
proved RMSE scores over lead time as compared with the
standard MAE, MSE and persistence, with lowest scores on
the higher percentiles between p95–p99.9 achieved by the
SERA losses, followed by the inversely weighted losses and
lastly the linearly weighted losses.

3.4 Forecast distributions

Figure 7 provides a set of histograms showing the forecast
distributions of the ConvLSTM trained with the various dif-
ferent loss functions. The figure is split up into the inversely
weighted losses (top left), the linearly weighted losses (top
right), the SERA loss with different primary control points
(bottom left) and the standard MAE and MSE losses (bottom
right). Included in the histograms is the underlying distribu-
tion of the observations in the test set, labelled as “Target”
(dotted black line). The distributions were sampled with a
step size of 0.5 (standardised wind speed).

The figure clearly shows how the different types of loss
functions result in the forecast distribution being shifted to-
wards the right tail in rather distinct fashions. Comparison
of the different forecast distributions with the target distri-
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Figure 6. Comparison of the hit score (H ), false alarm ratio (FAR), threat score (TS), frequency bias (B) and root-mean-squared error
(RMSE) of the ConvLSTM network trained with each different loss function, plotted over lead time (in hours) and various percentile intensity
thresholds. The optimal number of network layers used for each loss function is given in brackets after the name of the loss function. The
label “persistence” refers to the persistence forecast.

bution highlights the different undercasting and overcasting
behaviour as observed from the frequency bias (B) in Ta-
ble 3. While all imbalanced regression loss functions appear
to shift more predictions towards the right tail of the target
distribution, they evidently conserve the shape of the tar-
get distribution to varying degrees, with the SERA loss and
the linear weighting resulting in rather large distortions and
heavy overcasting on the right tail. In fact, the SERA loss
shifts predictions towards the right tail of the target distri-

bution with such severity that this results in an additional
peak on the right side of the forecast distribution; the peak
evidently shifted further towards the right tail as the pri-
mary control point varies from p50 to p90. Inverse weight-
ing clearly samples the target distribution with better success
and limits overcasting to a better degree than either linear
weighting or SERA loss.
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Figure 7. Histograms of forecast distributions of the ConvLSTM trained with the various different loss functions investigated in this paper,
compared to the underlying distribution of the observations in the test set, which are labelled as “Target” (dotted black line). (a) The inversely
weighted losses. (b) The linearly weighted losses. (c) The SERA loss with different primary control points (with the secondary control point
fixed at p99). (d) The standard MAE and MSE losses. The distributions were sampled with a step size of 0.5 (standardised wind speed).

3.5 Permutation tests

In this section, some more insight is given into the predic-
tions made by the ConvLSTM network by discussing feature
importance. In order to determine the importance of each
of the 12 input frames that are used by the ConvLSTM to
make its predictions, a permutation test was carried out on
the input data. For each input frame at time T (−11–0), all
input frames from the test set were randomly shuffled (full
fields) at time T , essentially nullifying the information flow
from this input frame. Then the model predictions from these
permuted inputs were obtained, and a skill score S (in %)
was computed between the RMSE of the original prediction
and target (RMSEorg) and the permuted prediction and tar-
get (RMSEperm), i.e. S = (1−RMSEorg/RMSEperm)×100. A
score of 0 % indicates no change in RMSE, a score of 100 %
indicates maximum increase in RMSE and negative scores
indicate decrease in RMSE due to the permuted inputs. Not
only does this offer insight into the importance that each in-
put frame carries in the ultimate prediction, but it also helps
to ensure that the model is, in fact, basing its predictions on
the information flow between consecutive input frames rather
than simply resorting to forecasting climatology.

Figure 8 presents the RMSE skill scores as aggregated
over the test set, obtained by the different models. The figure
shows that scores for all models get particularly large as the
permuted input frame T approaches 0 h. This shows clearly
that the last input frame at time T = 0 hours bears most im-
portance to the predictions, which is to be expected from a
regression model predicting the continuation of a sequence
from time frame T = 0 onward. The standard MAE and MSE
loss show a fairly steady rise in RMSE skill score from time
T =−11 towards T = 0, showing that more “recent” frames
of the input tend to bear more importance in the predictions
(with the exception of a slight drop (for the MAE loss) or
stagnation (for the MSE loss) at T =−2 and T =−1). The
imbalanced regression losses, however, show an additional
jump in RMSE skill scores peaking around ca. T =−8 and
T =−7, after which scores fall considerably before gradu-
ally climbing again to peak at T = 0. Earlier input frames
bearing more importance on the predictions may suggest that
the models trained with the various imbalanced regression
losses utilise more of the long-term information flow in the
inputs to improve the forecasting on the extremes.
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Figure 8. Results from the permutation tests. The figure shows the RMSE skill score (in %) between the targets and the normal predictions
of each of the models and the targets and the predictions resulting from randomly permuting the inputs at time frame T . A score of 0 %
indicates no change in RMSE, a score of 100 % indicates maximum increase in RMSE and negative scores indicate decrease in RMSE due to
the permuted inputs. (b) The linearly weighted losses. (c) The SERA loss with different primary control points (with the secondary control
point fixed at p99). (d) The standard MAE and MSE losses.

3.6 Forecast examples

Finally, Figs. 9, 10 and 11 present visualisations of three
selected example forecasts made by the ConvLSTM model
trained with the different loss functions investigated in this
paper, highlighting their respective strengths and weak-
nesses. In each figure, the first row from the top displays the
12 winput frames, the second row displays the succeeding
12 target frames and the following rows display the 12 pre-
dicted frames of the various models. T refers to the index of
the frame (in hours), with T = 0 denoting the last input frame
and T =+12 denoting the final target and prediction frames.
Rather than showing the raw predictions, the predictions are
categorised into categorical events using the local percentile
intensity thresholds. In this fashion, the figures show pre-
cisely where the different types of events are predicted and
where not.

All three examples show a target observation of an in-
tensification of extreme winds, each resulting in a patch of
99th percentile events between from ca. T =+8 onward. In
each case, the standard MAE and MSE loss either forecast
the intensification to some degree but largely fail to capture

the 99th percentile events (Figs. 9 and 11), or they fail to
forecast the event completely (Fig. 10). In comparison, the
inversely weighted losses (W-MAEinv and W-MSEinv) show
a much improved ability to forecast the right intensification
and the right degree of extreme events, with the W-MAEinv
performing clearly better in Fig. 11 than the W-MSEinv.
From the forecasts of the linear weighted losses, the heavy
frequency bias on lower percentile events (as discussed pre-
viously) can be easily distinguished, although some 95th and
99th percentile events are captured. Between the SERAp90,
SERAp75 and SERAp50 models, the examples clearly re-
flect the heavily inflated frequency bias towards the higher
percentile events, with bias increasing more towards the
99th percentile as the primary control point varies from p50
to p90 (in line with the behaviour discussed in Fig. 7).

4 Discussion

The results presented in this paper indicate that the multi-
layered convolutional long short-term memory (ConvLSTM)
network can be adapted to the task of spatio-temporal fore-
casting of extreme wind events through the manipulation of
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Figure 9. An example forecast from the ConvLSTM network trained with the various different loss functions. The first row from the top
displays the 12 input frames, the second row the succeeding 12 target frames and the following rows the 12 predicted frames of the models.
T refers to the index of the frame (in hours), with T = 0 denoting the last input frame and T =+12 denoting the final target and prediction
frames. Rather than showing the raw predictions, the predictions are categorised into binary events using percentile intensity thresholds.

the loss function. By analysing the forecasts of the Con-
vLSTM trained with the various imbalanced regression loss
functions investigated in this work, utilising various different
scores and intensity thresholds, as well as comparing fore-
cast distributions and visualised forecast examples, it is clear
that inverse weighting, linear weighting and squared error-
relevance area (SERA) loss each provide viable ways of
shifting predictive performance of the ConvLSTM towards
the tail of the target distribution. Furthermore, from the per-
mutation tests, it is clear that all ConvLSTM models utilise
the information flow from the inputs to compute the fore-

casts, and it may be that networks trained with the imbal-
anced regression losses may utilise more information flow
from long-term dynamics than the baseline models trained
with MAE and MSE loss.

The results indicate that hit rates and RMSE scores can be
greatly improved for extreme events up until the 99th per-
centile threshold, after which hit rates drop considerably
and cease to surpass persistence scores. Table 3 and Fig. 6
demonstrate clearly, however, that improvements in hit rate
are accompanied by proportionate increases in frequency
bias and false alarm ratios. When this trade-off is particularly
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Figure 10. As Fig. 9.

extreme, as in the case of the SERA loss with the control
points investigated here, not only do threat scores begin to
suffer considerably, but also the model loses its viability as a
reliable forecasting model, with false alarm ratios massively
inflated. Lowering the primary control point, however, from
the 90th percentile (p90) to the 50th percentile (p50) limits
this behaviour for extreme events between the 90–99th per-
centiles (see Fig. 6).

The linear weighting method, instead, shows minimal im-
provement in hit rate over the standard MAE and MSE on in-
tensity thresholds above p90, as it increases forecasting bias
mostly closer to the median and not the tails (Fig. 7), which
means that it does not appear to put enough relative weight

on the extreme tails. It should be noted, however, that the lin-
ear weighing method tested here was tested only with one
slope, and other slopes may yield better results. Shi et al.
(2017), for example, utilised a linear weighting method for
precipitation nowcasting using a trajectory gated recurrent
unit (TrajGRU) network and reported improved performance
at higher rain-rate thresholds as compared with the standard
MSE and MAE (based on the threat score and the Heidke
skill score).

Between the three types of imbalanced regression loss in-
vestigated in this work, the inverse weighting method ap-
pears to strike the best balance between improved hit rate
versus increased frequency bias and false alarm ratio. Not
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Figure 11. As Fig. 9.

only does the inverse weighting method sample the target
distribution more accurately (Fig. 7), but frequency bias and
false alarm rates are also substantially less inflated than the
SERA loss over all percentile thresholds between p75–p99
(with the slight exception for the SERAp50 model and high
thresholds), while hit rates are substantially better than linear
weighting for thresholds p90–p99.9, and threat scores are im-
proved for thresholds p99 and p99.9. The W-MAEinv appears
to strike this balance slightly better than the W-MSEinv.

This discussion will proceed by mentioning a number of
possible extensions of this work. One disadvantage of utilis-
ing the entirety of available data is that many of the input-
target samples containing extreme winds are samples where

extreme winds are present in both the input as well as the
target. Examples where there are no extremes present in the
input, but the target is showing onsets of extremes, are dis-
proportionately rare in the data, although they clearly repre-
sent a more interesting problem for early-warning systems.
Improvements of a deep-learning-based early-warning sys-
tem for the onsets of extreme winds could thus be obtained
by focusing model learning on precisely such training sam-
ples, rather than employing all available samples.

This work may, furthermore, be extended by taking a mul-
tivariate approach to wind speed forecasting, whereby other
atmospheric variables are included in the input of the model,
which is an approach that is already being pursued in the
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community (see, for example, Racah et al., 2017; Marndi
et al., 2020; Xie et al., 2021). Marndi et al. (2020) sug-
gest the utilisation of temperature, humidity and pressure, as
Cadenas et al. (2016) have found these to be significantly
more important than other atmospheric variables to the task
of wind forecasting. Xie et al. (2021) use these same three
variables, as well as the 1 h minimum and maximum tem-
perature, while Racah et al. (2017) use a much larger set
of 16 atmospheric variables, albeit for the classification of
large-scale extreme weather events and not for the regres-
sion of wind speed. It may also be worthwhile to consider
other atmospheric variables such as the convective available
potential energy (CAPE) and deep-layer wind shear (DLS)
due to their strong correlation with severe convective storm
activity such as the occurrence of thunderstorms and super-
cells (see, for example, Rädler et al., 2015; Tsonevsky et al.,
2018; Chavas and Dawson II, 2021). Another possible ex-
tension would be to implement categorical scores directly in
the loss function (see, for example, Lagerquist and Ebert-
Uphoff, 2022) or even combine the ConvLSTM with a so-
called physics-aware loss function (see, for example, Schw-
eri et al., 2021; Cuomo et al., 2022).

Finally, it should be noted that while the ConvLSTM has
proven itself to be highly effective at modelling complex
spatio-temporal patterns, other models have since been pro-
posed as promising improvements to the ConvLSTM for the
task of spatio-temporal sequence forecasting. Most notably,
the PredRNN and its successor PredRNN++, proposed by
Wang et al. (2017) and Wang et al. (2018), respectively, have
been demonstrated to be superior to the ConvLSTM for the
task of video frame prediction by maintaining a global mem-
ory state rather than constraining memory states to each Con-
vLSTM module individually. Other alternative approaches
include the usage of functional neural networks (FNNs) (see
Rao et al., 2020) or generative adversarial networks (GANs)
(see Gao et al., 2022). Such models may be of interest to
the meteorological community pursuing data-driven, spatio-
temporal forecasting.

5 Conclusions

In this paper, a deep learning approach to the task of spatio-
temporal prediction of wind speed extremes was explored,
and the role of the loss function was investigated. To this end,
a multi-layered convolutional long short-term memory (Con-
vLSTM) network was adapted to the task of spatio-temporal
imbalanced regression by training the model with a number
of different imbalanced regression loss functions proposed
in the literature: inversely weighted loss, linearly weighted
loss and squared error-relevance area (SERA) loss. The mod-
els were trained and tested on reanalysis wind speed data
from the European Centre for Medium-Range Weather Fore-
casts (ECMWF) at 1000 hPa, providing multi-frame fore-
casts of horizontal near-surface wind speed over Europe with

a 12 h lead time and in 1 h intervals, using the preceding 12 h
as input. By standardising the data based on the local wind
speed distributions at each coordinate, the definition of an
extreme event was focused on its relative rarity rather than
its absolute severity, with extreme winds thus considered in
terms of their local distributional percentile.

The model forecasts were analysed and compared with a
variety of scores and over various intensity thresholds. Af-
ter determining the optimal number of network layers for
the ConvLSTM trained with the various different loss func-
tions, an extensive comparison was made between the dif-
ferent loss functions and two baseline models trained with
either mean absolute error (MAE) or mean squared error
(MSE) loss. The results show that the imbalanced regression
loss functions investigated in this paper can be used to sub-
stantially improve hit rates and RMSE scores over the base-
line models, however, at the cost of increased frequency bias
and false alarm ratios. The SERA loss provides an extreme
case of this behaviour, typically at the additional cost of re-
ductions in threat score, although results are heavily depen-
dent on the loss function’s so-called control points. The lin-
ear weighting method shows some ability to boost hit rates
while keeping frequency bias and false alarm ratio compar-
atively low, although the utility of the method is lost for ex-
treme events beyond the 90th percentile intensity threshold,
with predictions heavily biased towards the median of the
distributions rather than the right tail. Inverse weighting is
concluded to strike the best trade-off between improved hit
rates and sustained threat scores versus increased frequency
bias and false alarm ratio, across various thresholds of ex-
treme events up until the 99th percentile intensity threshold,
with the weighted MAE loss scoring slightly better than the
weighted MSE loss. The inverse weighting method, further-
more, results in a better sampling of the target distribution as
compared with the linear weighting or the SERA loss. Out
of the different imbalanced regression loss functions inves-
tigated in this work, the inverse weighting loss is thus con-
cluded to be most effective at adapting the ConvLSTM to the
task of imbalanced spatio-temporal regression and its appli-
cation to the forecasting of extreme wind speed events in the
short to medium range. With these results, this work is hoped
to provide a valuable contribution to the area of deep learning
for spatio-temporal imbalanced regression and its application
to wind energy forecasting research.

Code and data availability. The current version of the model is
available at the project repository on GitHub at https://github.com/
dscheepens/Deep-RNN-for-extreme-wind-speed-prediction (last
access: 2 January 2023) under the MIT license. The exact version of
the model used to produce the results used in this paper is archived
on Zenodo (https://doi.org/10.5281/zenodo.7369015, Scheepens,
2022), as are scripts to run the model and produce the plots for all
the simulations presented in this paper. The data used in this paper
can be downloaded from the Copernicus Climate Change Service
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Climate Data Store (CDS) of the ECMWF (see Hersbach et al.,
2018, https://doi.org/10.24381/cds.bd0915c6), where the reanalysis
data of the U and V components of the horizontal wind velocity
were taken at 1000 hPa from the “ERA5 hourly data on pressure
levels from 1979 to present” dataset between years 1979–2021
(42 years) and between 40–56◦ N and 3–19◦ E. Scalar wind speed
was obtained by computing the square root of the sum of the
squares of the two wind velocity components. Scripts to generate
the data as such are available in the project repository.
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