Articles | Volume 16, issue 8
https://doi.org/10.5194/gmd-16-2215-2023
https://doi.org/10.5194/gmd-16-2215-2023
Model description paper
 | 
24 Apr 2023
Model description paper |  | 24 Apr 2023

Structural k-means (S k-means) and clustering uncertainty evaluation framework (CUEF) for mining climate data

Quang-Van Doan, Toshiyuki Amagasa, Thanh-Ha Pham, Takuto Sato, Fei Chen, and Hiroyuki Kusaka

Related authors

S-SOM v1.0: a structural self-organizing map algorithm for weather typing
Quang-Van Doan, Hiroyuki Kusaka, Takuto Sato, and Fei Chen
Geosci. Model Dev., 14, 2097–2111, https://doi.org/10.5194/gmd-14-2097-2021,https://doi.org/10.5194/gmd-14-2097-2021, 2021
Short summary

Related subject area

Climate and Earth system modeling
GOSI9: UK Global Ocean and Sea Ice configurations
Catherine Guiavarc'h, David Storkey, Adam T. Blaker, Ed Blockley, Alex Megann, Helene Hewitt, Michael J. Bell, Daley Calvert, Dan Copsey, Bablu Sinha, Sophia Moreton, Pierre Mathiot, and Bo An
Geosci. Model Dev., 18, 377–403, https://doi.org/10.5194/gmd-18-377-2025,https://doi.org/10.5194/gmd-18-377-2025, 2025
Short summary
Decomposition of skill scores for conditional verification: impact of Atlantic Multidecadal Oscillation phases on the predictability of decadal temperature forecasts
Andy Richling, Jens Grieger, and Henning W. Rust
Geosci. Model Dev., 18, 361–375, https://doi.org/10.5194/gmd-18-361-2025,https://doi.org/10.5194/gmd-18-361-2025, 2025
Short summary
Virtual Integration of Satellite and In-situ Observation Networks (VISION) v1.0: In-Situ Observations Simulator (ISO_simulator)
Maria R. Russo, Sadie L. Bartholomew, David Hassell, Alex M. Mason, Erica Neininger, A. James Perman, David A. J. Sproson, Duncan Watson-Parris, and Nathan Luke Abraham
Geosci. Model Dev., 18, 181–191, https://doi.org/10.5194/gmd-18-181-2025,https://doi.org/10.5194/gmd-18-181-2025, 2025
Short summary
Climate model downscaling in central Asia: a dynamical and a neural network approach
Bijan Fallah, Masoud Rostami, Emmanuele Russo, Paula Harder, Christoph Menz, Peter Hoffmann, Iulii Didovets, and Fred F. Hattermann
Geosci. Model Dev., 18, 161–180, https://doi.org/10.5194/gmd-18-161-2025,https://doi.org/10.5194/gmd-18-161-2025, 2025
Short summary
Multi-year simulations at kilometre scale with the Integrated Forecasting System coupled to FESOM2.5 and NEMOv3.4
Thomas Rackow, Xabier Pedruzo-Bagazgoitia, Tobias Becker, Sebastian Milinski, Irina Sandu, Razvan Aguridan, Peter Bechtold, Sebastian Beyer, Jean Bidlot, Souhail Boussetta, Willem Deconinck, Michail Diamantakis, Peter Dueben, Emanuel Dutra, Richard Forbes, Rohit Ghosh, Helge F. Goessling, Ioan Hadade, Jan Hegewald, Thomas Jung, Sarah Keeley, Lukas Kluft, Nikolay Koldunov, Aleksei Koldunov, Tobias Kölling, Josh Kousal, Christian Kühnlein, Pedro Maciel, Kristian Mogensen, Tiago Quintino, Inna Polichtchouk, Balthasar Reuter, Domokos Sármány, Patrick Scholz, Dmitry Sidorenko, Jan Streffing, Birgit Sützl, Daisuke Takasuka, Steffen Tietsche, Mirco Valentini, Benoît Vannière, Nils Wedi, Lorenzo Zampieri, and Florian Ziemen
Geosci. Model Dev., 18, 33–69, https://doi.org/10.5194/gmd-18-33-2025,https://doi.org/10.5194/gmd-18-33-2025, 2025
Short summary

Cited articles

Arthur, D. and Vassilvitskii, S.: k-means++: the advantages of careful seeding, in: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2007, New Orleans, Louisiana, USA, 7–9 January 2007, 1027–1035, https://theory.stanford.edu/~sergei/papers/kMeansPP-soda.pdf (last access: 23 January 2023), 2007. 
Barua, D. K.: Beaufort Wind Scale, in: Encyclopedia of Coastal Science, edited by: Finkl, C. W. and Makowski, C., Springer International Publishing, Cham, 315–317, https://doi.org/10.1007/978-3-319-93806-6_45, 2019. 
Bradley, P. S. and Fayyad, U. M.: Refining Initial Points for K-Means Clustering, in: Proc. 15th International Conf. on Machine Learning, Morgan Kaufmann, San Francisco, CA, 91–99, 1998. 
Camus, P., Menéndez, M., Méndez, F. J., Izaguirre, C., Espejo, A., Cánovas, V., Pérez, J., Rueda, A., Losada, I. J., and Medina, R.: A weather-type statistical downscaling framework for ocean wave climate, J. Geophys. Res.-Oceans, 119, 7389–7405, https://doi.org/10.1002/2014JC010141, 2014. 
Chan, E. Y., Ching, W. K., Ng, M. K., and Huang, J. Z.: An optimization algorithm for clustering using weighted dissimilarity measures, Pattern Recogn., 37, 943–952, https://doi.org/10.1016/j.patcog.2003.11.003, 2004. 
Download
Short summary
This study proposes (i) the structural k-means (S k-means) algorithm for clustering spatiotemporally structured climate data and (ii) the clustering uncertainty evaluation framework (CUEF) based on the mutual-information concept.