
Geosci. Model Dev., 16, 2215–2233, 2023
https://doi.org/10.5194/gmd-16-2215-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

M
odeldescription

paperStructural k-means (S k-means) and clustering uncertainty
evaluation framework (CUEF) for mining climate data
Quang-Van Doan1, Toshiyuki Amagasa1, Thanh-Ha Pham2, Takuto Sato1, Fei Chen3, and Hiroyuki Kusaka1

1Center for Computational Sciences, University of Tsukuba, Tsukuba, Japan
2University of Science, Vietnam National University, Hanoi, Vietnam
3Research Applications Laboratory, National Center for Atmospheric Research, Boulder, USA

Correspondence: Quang-Van Doan (doan.van.gb@u.tsukuba.ac.jp)

Received: 1 July 2022 – Discussion started: 7 September 2022
Revised: 6 December 2022 – Accepted: 15 February 2023 – Published: 24 April 2023

Abstract. Dramatic increases in climate data underlie a grad-
ual paradigm shift in knowledge acquisition methods from
physically based models to data-based mining approaches.
One of the most popular data clustering/mining techniques
is k-means, and it has been used to detect hidden patterns
in climate systems; k-means is established based on dis-
tance metrics for pattern recognition, which is relatively in-
effective when dealing with “structured” data, that is, data
in time and space domains, which are dominant in climate
science. Here, we propose (i) a novel structural-similarity-
recognition-based k-means algorithm called structural k-
means or S k-means for climate data mining and (ii) a
new clustering uncertainty representation/evaluation frame-
work based on the information entropy concept. We demon-
strate that the novel S k-means could provide higher-quality
clustering outcomes in terms of general silhouette analysis,
although it requires higher computational resources com-
pared with conventional algorithms. The results are con-
sistent with different demonstration problem settings us-
ing different types of input data, including two-dimensional
weather patterns, historical climate change in terms of time
series, and tropical cyclone paths. Additionally, by quanti-
fying the uncertainty underlying the clustering outcomes we,
for the first time, evaluated the “meaningfulness” of applying
a given clustering algorithm for a given dataset. We expect
that this study will constitute a new standard of k-means clus-
tering with “structural” input data, as well as a new frame-
work for uncertainty representation/evaluation of clustering
algorithms for (but not limited to) climate science.

1 Introduction

In recent decades, the volume and complexity of climate
data have increased dramatically owing to advancements in
data acquisition methods (Overpeck et al., 2011). This in-
crease underlies a gradual shift in climate-knowledge acqui-
sition paradigm from using classical “first-principle” models
(i.e., based on physical laws) to models and analyses directly
based on data (i.e., data mining) (Kantardzic, 2011). Hence,
numerous data mining techniques have been developed to
shed light on the underlying nature and structure of data.
Clustering, as one of the principal data mining methods, is a
technique for organizing a set of data into clusters that max-
imize the homogeneity of the elements in a cluster and the
heterogeneity among different clusters (Pérez-Ortega et al.,
2019). Clustering algorithms are useful to handle large, mul-
tivariate, and multi-dimensional data which are difficult for
human perception. Among numerous clustering algorithms,
k-means is one of the most well known and widely used in
most research domains (Wu et al., 2008).

The history of k-means can be traced back to the 1950s–
1960s, when it was developed through independent efforts
(e.g., Lloyd, 1957; Forgy, 1965; Jancey, 1966; MacQueen,
1967). The name k-means was coined in a paper by Mac-
Queen (1967). Thanks to its ease of implementation and in-
terpretation, k-means has been extensively used in climate
science. It is used to explore unknown atmospheric mech-
anisms and/or improve predictions. The most common ap-
plication is the use of k-means within a “detection-and-
attribution” framework. In the framework, specific atmo-
spheric conditions or events, e.g., abnormally hot weather or
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heavy precipitation, are detected first. Then, the causes of
these atmospheric conditions are attributed to atmospheric
regimes/patterns, determined by k-means (Esteban et al.,
2005; Houssos et al., 2008; Spekat et al., 2010; Zeng et
al., 2019; Smith et al., 2020). Another application is the
use of k-means for weather or climate predictions. In such
a case, rather than being used as an independent prediction
method, it is used to complement existing numerical pre-
diction systems by suggesting the occurrence probability of
certain weather conditions with reference to patterns analo-
gous to those derived by k-means from historical data (Kan-
nan and Ghosh, 2011; Gutiérrez et al., 2013; Le Roux et
al., 2018; Pomee and Hertig, 2022). Furthermore, k-means
is also used for future climate prediction (also known as a
statistical downscaling) or for reconstructing historical data
(Camus et al., 2014) using the same analog approach.

The k-means algorithm is an interactive clustering method.
To briefly describe, it involves four processing steps: (i) ini-
tiation – predefinition of k cluster centers (or centroids),
(ii) classification – clustering of an object with similar ob-
jects, (iii) centroid update – recalculation of centroids based
on the updated classification, (iv) convergence (equilibrium)
judgment – halting of the algorithm if object migrations are
not observed from one cluster to another (return to step (ii) if
such migrations are observed; Pérez-Ortega et al., 2019). The
dominance of k-means over most research fields is partly due
to its simplicity and ease of use. Also, simplicity inherits the
drawbacks of the algorithm, which have inspired researchers
for decades to identify improvements. Consequently, these
efforts have delivered a great number of k-means variants
alongside those from the earliest time.

Improving centroid initialization represents an important
issue to be resolved. The outcomes of k-means cluster-
ing are known to be sensitive to the initialization of cen-
troids (Sydow, 1977; Katsavounidis et al., 1994; Bradley
and Fayyad, 1998; Pelleg and Moore, 2000; Khan and Ah-
mad, 2004; Arthur and Vassilvitskii, 2007; Su and Dy, 2007;
Eltibi and Ashour, 2011). Subsequent efforts have been made
to improve the calculation procedure in the classification
scheme primarily because it is the most computationally
time-consuming. These efforts resulted in numerous k-means
variants (Fahim et al., 2006; Lai and Huang, 2010; Perez et
al., 2012). More recent studies have focused on the funda-
mental basis of the classification, that is, how to define the
similarity for which an object should be classified as one
cluster but not another.

The conventional k-means classification scheme is estab-
lished based on the distance paradigm, in which the simi-
larity is determined by distance metrics including the Eu-
clidean distance; Manhattan distance; or their general form,
the Minkowski distance (Cordeiro de Amorim and Mirkin,
2012). The advantage of distance metrics lies in their ease
of implementation and popularity, thus making the judgment
for using them less controversial. Nonetheless, recent stud-
ies have pointed out that distance metrics defend less against

noisy and irrelevant features (or dimensions, in other words)
of input objects (vectors) (de Amorim, 2016). Few studies
have proposed the use of feature weights to overcome this
weakness (Chan et al., 2004; Huang et al., 2005; Cordeiro de
Amorim and Mirkin, 2012). However, such improvements do
not intentionally consider the structural relationship between
vector dimensions, especially when data are time series or
spatially distributed.

Atmospheric data are characterized by their temporal and
spatial “structuredness”. In other words, the information
value of data lies in their interrelationship or trends in time
and space. For example, when looking at weather maps, one
might realize that locations of high or low pressures would
be the first concern. Likewise, the similarity in trend or the
phase correlation between two time series might be more im-
portant than the difference in their absolute values. Thus,
the distance measures, which treat the features of the in-
put objects equally, might underestimate the inherent struc-
turedness in the objects when determining the similarity be-
tween them, consequently deteriorating the clustering out-
comes. However, replacing distance metrics by something
different remains highly challenging because distance met-
rics have deep historical roots, and they undoubtedly laid the
foundation for modern data mining, including clustering al-
gorithms. As mentioned by Wang et al., “it [the distance met-
ric] is easy to use and not so bad” and “everyone else uses it”
(Wang and Bovik, 2009).

Contemplating the nature of atmospheric data, a specific
question raised here is whether another k-means approach
is available that can consider the “structural” similarity in
time and space between input objects. Answering this ques-
tion has great practical value, particularly for the climate in-
formatics field, owing to the unprecedented recent increase
in archived data. The demand is growing for innovative and
effective tools of data mining that can handle the inherent
nature of climate data.

Here we propose a novel k-means algorithm based on the
structural-similarity recognition, called structural k-means or
S k-means. S k-means follows the same procedure as the
generic k-means algorithm. It differs from the generic algo-
rithm by incorporating a recent innovation in signal process-
ing science, namely, the structural-similarity (S-SIM) recog-
nition concept (Wang et al., 2004), into the classification
scheme. The novel S k-means inherits the simplicity of the
generic algorithm and meanwhile can handle temporally and
spatially ordered data.

We evaluate the performance of S k-means clustering
across three representative demonstration tests. The tests
cover multiple types of input data, that is, spatial distributions
(weather patterns), time series (historical change in temper-
ature), and hybrid types (tropical cyclone tracking). Using
multiple data types is a unique point of this study that can
make the conclusions robust through cross comparisons. The
performance of S k-means is evaluated against three other k-
means algorithms using different similarity/distance metrics
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for the classification scheme, that is, the Pearson correlation
coefficient and Euclidean and Manhattan distances, hereafter
called C, E, and M k-means, respectively. We implement var-
ious k (number of centroids) configurations and multiple ini-
tializations (randomized). Eventually, 1320 model runs are
conducted. Such settings ensure the robustness of the re-
sults and conclusions. The “general” silhouette analysis/s-
core, which is a scoring method based on general similari-
ty/distance metrics, is used to quantify the algorithm perfor-
mance.

We propose a novel framework for clustering uncertainty
evaluation/representation based on the information entropy
concept. This framework is primarily used to quantify the
variability/consensus among the clustering outcomes across
the different k-means algorithms. At the core of the frame-
work is the newly proposed concept clustering uncertainty
degree, which builds on mutual-information theory. Also,
relevant visualization tools including the connectivity matrix,
heatmap, and chord diagram are proposed to represent the
clustering uncertainty.

To the best of our knowledge, this study is the first to ad-
dress the uncertainty issue in climate science. Our study is
the first to propose a clustering uncertainty evaluation frame-
work, borrowing the most recent techniques and concepts
in information theory. This framework is not only used to
quantify the clustering uncertainty but also to serve a more
fundamental purpose, i.e., to measure the “meaningfulness”
of the application of clustering for a given problem dataset.
We expect that this framework together with the S k-means
algorithm will establish a new standard in data mining and
clustering studies, primarily for (but not limited to) climate
science.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the S k-means algorithm. Section 3 presents
the test simulation configurations. Section 4 describes the
evaluation metrics and a novel framework for clustering un-
certainty. Section 5 presents and discusses the results. Sec-
tion 6 provides the concluding remarks.

2 Description of the algorithms

2.1 S k-means algorithm

S k-means follows the conventional procedure of generic k-
means clustering. To express this mathematically, let X =
{x1, xi, . . ., xn} be a set of n objects (input vectors), where
xi ∈ R

d (i = 1, . . .n), and d ≥ 1 is the number of dimensions.
Let K = {1, . . .,k} with k ≥ 2 denote the number of groups.

For a k partition, P = {G(1), . . .,G(k)} of X, and let cj
denote the centroid of cluster G(j), for j ∈ K , with C =
{c1, . . .,ck} and a set of weight vectors W = {w11, . . .,wij }.
Hence, the clustering problem can be formulated as an op-
timization problem (Selim and Ismail, 1984), which is de-

scribed by the following equation:

P : minimize z(W,M)=
n∑
i=1

k∑
j=1

wijd
(
xi, cj

)
,

subject to
k∑
j=1

wij = 1, for i = 1,2, . . ., n,

wij = 0 or 1, for i = 1,2, . . .,n, and j = 1,2, . . .,k, (1)

wherewij = 1 implies that object xi belongs to clusterG(j),
and d(xi, µj ) denotes the distance between xi and µj for
i = 1,2, . . ., n and j = 1,2, . . .,k.

The S k-means algorithm consists of four steps (Fig. 1a),
which are similar to those of generic algorithms except for
step (ii). The steps are described as follows.

i. Initialization. Initialize k centroid vectors. Although k-
means has several options for initialization, we apply a
randomized scheme to initialize the centroids.

ii. Classification. Assign an object to its most similar cen-
troid. The S k-means algorithm uses the structural-
similarity (S-SIM) (Wang et al., 2004) recognition tech-
nique to determine the most similar centroids instead of
using distance measures, such as those in generic algo-
rithms.

iii. Centroid calculation. Update centroid vectors by taking
the mean value of the objects belonging to these clus-
ters.

iv. Convergence determination. The algorithm stops when
equilibrium is reached, that is, when there are no ob-
ject migrations from one cluster to another. Technically,
the algorithm converges if the sum of the mean square
errors in centroids versus those in the previous step be-
comes zero in the experiments of this study. The con-
vergence criterion is the same for all k-means variants
used. A limitation of the iteration is set up to 100 to
avoid the infinite loop of iterations. If equilibrium is not
reached, then the process is repeated from step (ii).

S k-means is compared with E, M, and C k-means (k-means
using the Euclidean distance, the Manhattan distance, and
the Pearson correlation coefficient). E, M, and C k-means
also follow the same procedure as indicated above except
for classification scheme (ii), where the respective similar-
ity/distance measures are used to determine the most similar
centroids.

2.2 Structural similarity

The metric for the structural-similarity (S-SIM) recognition
process was first introduced by Wang et al. (2004). It was de-
veloped to better predict the perceived quality of digital tele-
vision and cinematic pictures. S-SIM is intended to improve
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Figure 1. Illustration of the k-means clustering algorithm (a) and three demonstration experiments (b). Demonstration experiments include
clustering weather patterns (WPs) in terms of daily ERA-Interim sea level pressure (SLP) during winter months (December, January, and
February) for 10 years (2005–2014) over the Japanese region, clustering climate change (CC) in terms of historical (1951–2020) annual-
mean temperature collected from in situ weather stations in Japan, and clustering best tracks of tropical cyclones that passed the northwestern
Pacific region from 1951–2020. Data were obtained from the Japan Meteorological Agency (JMA).

the traditional peak signal-to-noise ratio or mean squared er-
ror in detecting similarities between structural signals, such
as images. Intuitively, S-SIM is determined by consider-
ing the differences between two input signals (vectors x,y)
across multiple aspects including “luminance”, “contrast”,
and “structure”, which represent the characteristics of hu-
man visual perception. Luminance masking is a phenomenon
whereby image distortions tend to be less visible in bright
regions, while contrast masking is a phenomenon whereby
distortions become less visible where there is significant ac-
tivity or “texture” in the image. Mathematically, S-SIM is
determined as follows:

S-SIM(x,y)= l(x,y)α × c(x,y)β × s(x,y)γ , (2)

where l (x,y) , c (x,y), and s (x,y) measure similarities in
luminance (brightness values), contrast, and structure be-
tween sample vectors xy with weight values α, β, and γ .
Let µx and µy be the mean values, σx and σy the standard
deviations, and σxy the covariance of the two sample vec-
tors x and y. Luminance, contrast, and structure similarities
are then defined as l (x,y)= 2µxµy+c1

µ2
x+µ2

y+c1
, c (x,y)= 2σxσy+c2

σ 2
x+σ

2
y+c2

,

and s (x,y)= σxy+c3
σxσy+c3

. Note that c1, c2 , and c3 are parame-
ters to stabilize the division with a weak denominator. Even
if c1 = c2 = c3 = 0, S-SIM still works quite well (Wang and
Bovik, 2009); l (x,y) measures the similarity in brightness,
i.e., the difference regarding mean values; c (x,y) quantifies
the similarity in illumination variability, which regards stan-
dard deviations; and s (x,y) measures the correlation in spa-
tial inter-dependencies between images and is close to the

Pearson correlation coefficient. For simplification, here we
set c1 = c2 = c3 = 0 and weights α = β = γ = 1 and reduce
the original formula to the following:

S-SIM(x,y)=
2µxµyσxy

(µ2
x +µ

2
y)(σ

2
x + σ

2
y )
. (3)

S-SIM is a symmetric index, i.e., S-SIM(x,y)= S-
SIM(y,x). It does not satisfy the triangle inequality or non-
negativity and thus is not a distance function. S-SIM ranges
from −1 to 1, where −1 indicates totally dissimilar and 1
indicates totally similar. Wang and Bovik (2009) showed
that S-SIM represents a powerful, easy-to-use, and easy-to-
understand alternative to traditional distance metrics, such as
Euclidean distance, for dealing with spatially and temporally
structured data, i.e., data with strong spatial and temporal
inter-dependencies. These inter-dependencies carry impor-
tant information about the objects in the visual scene. S-SIM
emerged as a “new-generation” similarity metric with an in-
creasing number of applications outside the signal processing
field, including hydrology and meteorology (e.g., Mo et al.,
2014; Han and Szunyogh, 2018; Doan et al., 2021).

3 Demonstration tests

S k-means is applied to three representative clustering prob-
lems. These problems cover various types of input datasets
that represent diverse issues, i.e., weather pattern (in terms
of two-dimensional pressure data), historical climate change
(in terms of time series), and tropical cyclone tracking data
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(the hybrid type of data containing both spatial and tempo-
ral information) (Fig. 1b). The details of these three tests are
described below.

– Weather pattern (WP) clustering. Group winter weather
patterns in Japan. The mean sea level pressure (SLP)
was obtained using ERA-Interim reanalysis data (Dee
et al., 2011). The data have a horizontal resolution of
0.75◦ on a regular grid but are re-gridded to an equal-
area scalable earth-type grid at a spatial resolution of
200× 200 km using the nearest-neighbor interpolation
method. This interpolation/regridding method is com-
monly applied to high-latitude domains (Gibson et al.,
2017). Data collected in winter months, that is, Decem-
ber, January, and February (DJF), for 10 years (2005–
2014) over the region from 20–50◦ N and 115–165◦ E
were used. The total number of samples used is 902.
Each sample has a grid size of 35 pixels ×35 pixels.

– Climate change (CC) clustering. Group temperature-
increase time series data collected over 70 years (1951–
2020) from in situ weather stations run by the Japan
Meteorological Agency. A simple data-quality check is
implemented. Weather stations that missed (daily basis)
observations for more than 10 % of the total period of
interest are excluded. Therefore, 134 valid weather sites
remain (see CC in Fig. 1b for the location of weather
sites). The annual mean of each time series is calcu-
lated, and the climate change component is determined
by subtracting the average of the first 30 years (1951–
1980) from each value series.

– Tropical cyclone (TC) tracking clustering. Group the
best TC tracks from 1951 to 2020, which are retrieved
from the Japan Regional Specialized Meteorological
Center (RSMC) (https://www.jma.go.jp/jma/jma-eng/
jma-center/rsmc-hp-pub-eg/besttrack.html, last access:
23 January 2021). Note that the RMSC provides only
the best TC tracks, which have a maximum wind speed
of more than 17.2 m s−1, i.e., wind force 8 on the Beau-
fort scale (Barua, 2019). These data contain the TC
classification, maximum sustained wind speed, central
pressure, and latitude and longitude of the TC centers
with 6 h intervals. In this study, only TCs that passed
the Japanese region, defined as the region between 25–
45◦ N and 126–150◦ E, are used for the analysis. Hence,
the total number of TCs feeding the k-means is 863. Be-
cause k-means clustering requires identical lengths of
input vectors, the TC tracks are reconstructed so that
they had an equal length of 20 segments by the method
proposed by Kim et al. (2011), which has been ap-
plied in several studies (Choi et al., 2012; Kim and Seo,
2016).

As mentioned in the introduction, in addition to S k-means,
the C, E, and M k-means methods that use Pearson corre-
lation coefficients and Euclidean and Manhattan distances

for the classification scheme are used for the tests. For
this, we perform a total of 3 × 4 = 12 simulations. For
each simulation, 11 k settings are implemented, that is, k =
2, 4, 6, . . ., 20, and for each k, 10 runs (randomized initial-
izations) are realized. In summary, a total of 12× 11× 10 =
1320 runs (model realizations) are performed for the analy-
sis.

4 Evaluation measures

4.1 Similarity distributions

The similarity-distribution technique developed by Doan
et al. (2021) to evaluate a “global” pairwise relationship
of input vectors is adopted for performance evaluation. In
this study it is named the similarity distribution (S distri-
bution, or S-D). The S distribution is a probability den-
sity function of pairwise similarities of a vector set. Let
X = {x1, . . .,xn} be the set of n objects; sij the pairwise
similarity between two objects, which is defined as sij =
F
(
xi→ xj

)
; and F the similarity function, i = 1, 2, . . ., n

and j = 1,2, . . ., n. The normalized sij is defined as sij ′ =
(sij −min{s})/(max{s}−min{s}). By definition, sij ′ ranges
from 0 to 1, with the maximum value of 1 indicating per-
fect similarity (self-similarity) and the minimum value of
0 indicating a lack of similarity (distance to the furthest
object); thus sij ′ is data-dependent. As F is a symmetric
function, that is, F

(
xi→ xj

)
= F

(
xj → xi

)
for all similar-

ity/distance indices of interest, i.e., S-SIM, COR, ED, and
MD, duplicated values are removed. Also, self-similarity val-
ues, that is, sij ′ with i = j , are removed. Thus, n(n− 1)/2
values remained in the final set S of sij ′. The S distribution,
or S-D, is defined as the probability density function of the
values of S. The S-Ds were then plotted together for com-
parison. In addition, statistical parameters, such as the mean,
standard deviation, skewness, kurtosis, and Shannon entropy,
were calculated to further diagnose the characteristics of the
datasets of interest.

4.2 “General” silhouette analysis

As k-means clustering is an unsupervised machine learning
method, it does not require “ground truth” or predefined clus-
ter labels of an input dataset for classification. The absence
of ground truth means that the algorithm can be validated
only with internal validation criteria. Internal validation is to
define the goodness of the clustering outcome based on the
result itself to define how clustering methods optimize the
homogeneity within a cluster and maximize the difference
among clusters (Hassani and Seidl, 2017). There are numer-
ous indices for clustering internal validation, though most of
them are built on Cartesian geometric algebra, which is not
the case with non-distance metrics like S-SIM.

Thus, this study uses the general silhouette analysis
method to validate the algorithms. The general silhouette
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analysis is the generalized form of the silhouette analy-
sis (Rousseeuw, 1987) that can be applicable also for non-
distance metrics. This concept was first used for the evalua-
tion of self-organizing maps by Doan et al. (2021). Silhouette
analysis is a comprehensive analysis of the interpretation and
validation of cluster methods. This technique offers a concise
graphical representation of how well each object has been
classified (Rousseeuw, 1987). The silhouette value is a mea-
sure of how coherent an object is with its cluster versus how
it is separated from other clusters. Mathematically, the gen-
eral silhouette coefficient (GSC) for a given object is defined
as follows:

GSC=
b− a

max{a,b}
, (4)

where a and b are the mean intracluster distance and mean
distance to the nearest cluster, respectively. Note that the
distance here is the “general” distance and not the Eu-
clidean distance, which is originally defined in the study by
Rousseeuw (1987). The general distance is the reversed nor-
malized similarity (i.e., −s′ij ) defined in Sect. 4.1, which is
why here we call it the general silhouette coefficient.

The GSC values ranged from −1 to +1. A higher value
indicates the goodness of the cluster assignments; that is, the
object is coherent with its cluster and well separated from
neighboring clusters. The clustering configuration is appro-
priate if most objects have high scores. In contrast, if many
objects have low or negative values, then the clustering con-
figuration performs poorly. A GSC of zero indicates that the
object is on or very close to the border of two neighboring
clusters, and a negative GSC indicates that the object may
have been assigned the wrong cluster label.

4.3 Clustering uncertainty evaluation

Evaluating the variability or uncertainty inherent in a clus-
tering algorithm is challenging owing to the unique nature
of the clustering outcome. It is difficult to define the statisti-
cal mean, standard deviation, or range between quantiles of
a given ensemble of clustering realizations.

Herein, we propose a framework for the representation/e-
valuation of the uncertainty in the clustering problem, which
is based on a pairwise comparison of clustering realizations
using a quantified index called the clustering uncertainty de-
gree (CUD). The CUD is based on the mutual-information
concept, specifically the adjusted mutual-information index.
In information theory, mutual information from two random
variables is used to quantify the “amount of information” ob-
tained for one random variable by observing another random
variable. The concept of mutual information is intimately
linked to the entropy concept of a random variable, which
is a fundamental notion in information theory that quantifies
the expected “amount of information” held in this variable.
In this study, mutual information is applied to evaluate the
agreement between two clustering realizations (label assign-

ments of N objects). To do so, the mathematical formula for
mutual information I (UV ) between two clustering realiza-
tions U and V is defined as follows:

I (U,V )=H (U)+H (V )−H(UV ) , (5)

whereH (U) andH(V ) are the entropies of each realization,
andH(UV ) is the joint entropy of the two. Entropies of clus-
tering realizations are defined as the amount of uncertainty
for partition sets of each realization.

H (U)= −

|U |∑
i=1

P (i) log(P (i)) (6)

H (V )= −

|V |∑
j=1

P ′ (j) log(P ′ (j)) , (7)

where P(i) = ai/N , and ai = |Ui | is the probability that an
object pickup fromU falls into classUi at random. Similarly,
for V , P ′(j) = bj/N , where bj = |Vi | is the probability of
an object from V falling into class Vj .

H (U,V )= −

|U |∑
i=1

|V |∑
j=1

P (i, j) log(P (i, j)) , (8)

where P(ij) =
∣∣Ui ∩Vj ∣∣/N is the probability that an object

pickup falls into both classes Ui and Vj at random.
By definition, mutual information ranges from 0 to 1. A

value of 1 indicates perfect agreement (equality) between the
two clustering realizations, while values close to zero indi-
cate that the two label assignments are largely independent.
However, mutual information is weak against chance. Vinh
and Epps (2009) derived the expected mutual information
and proposed the concept of adjusted mutual information that
can defend against chance (Vinh and Epps, 2009; Vinh et
al., 2010; Romano et al., 2016). Thus, random (uniform) la-
bel assignments have an adjusted mutual-information score
close to 0.0 for any number of clusters and objects (which
is not the case for raw mutual information). Note that the
adjusted mutual information is primarily developed to mea-
sure the “goodness” of clustering outcomes versus previously
known ground truth. In this study, we diversify this primary
purpose by applying the metrics to evaluate the uncertainty/-
consistence/convergence of clustering outcomes. Also, using
the adjusted mutual information must be understood as show-
cased for the evaluation framework. We could also use alter-
native techniques, e.g., rand index, for the same purpose.
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E [I (U,V )]=
|U |∑
i=1

|V |∑
j=1

min(ai ,bj )∑
nij=(ai+bj−N)

+

nij

N

log
(
Nnij

aibj

)
ai !bj !(N − ai)!(N − bj )!

N !nij !(ai − nij )!(bj − nij )!(N − ai − bj + nij )!
(9)

I ′(UV )=
I (U,V )−E[I (U,V )]

mean {U (U),H(V )}−E[I (U,V )]
(10)

The core concept underlying the CUD, i.e., clustering un-
certainty degree, is defined as follows:

CUD(UV )= 1− I ′(UV ) . (11)

By definition, CUD is a representation of pairwise dis-
sensus of clustering realizations. The CUD ranges from 0
to 1. A value of 1 indicates the greatest dissensus or high-
est uncertainty between U and V , while a value of 0 indi-
cates perfect consensus or no uncertainty. The connectivity
matrix of pairwise CUDs is defined as anM ×M matrix and
CUD values for a pair of clustering realizations, where M is
the number of clustering realizations. The connectivity ma-
trix naturally serves as a visualization tool to assess the gen-
eral uncertainty in the clustering system. Other visualization
tools are also used to visualize the CUD, including a heatmap
and a chord diagram (Holten, 2006). Heatmaps work like a
connectivity matrix but in a more visualized form. A chord
diagram is a useful graphical method for demonstrating the
interrelationships between the data in a matrix. The data are
plotted radially around a circle. The relationships between
data points are usually drawn as arcs that connect the data.

5 Results and discussion

5.1 S distributions

Before analyzing the k-means clustering results, we diagnose
the nature of the input data using S distributions (or S-Ds). S-
Ds provide “global” insights into how data vectors are related
to each other in four S-SIM, COR, ED, and MD topological
spaces. The results, which are shown in Fig. 2, demonstrate
an apparent difference in the shape of the S-Ds. Notably, the
S-Ds for ED and MD appear more symmetrical than those for
S-SIM and COR across the three types of input data, that is,
WP, CC, and TC. For S-SIM and COR, S-Ds tend to be more
tailed (both sides), with skewness over the left tail. Quanti-
tatively, the standard deviation of S-Ds for S-SIM and COR
exhibits higher values (approximately 0.13–0.20) than those
for ED and MD (approximately 0.11–0.13) (Table 1), despite
an exception for ED in the TC simulation. The skewness
(measures the symmetry of S-Ds) exhibits negative values,
meaning the distributions are left-skewed. This fact is clearly

confirmed in visualized results (Fig. 2). S-SIM and COR es-
pecially exhibit higher skewness than ED and MD, particu-
larly in the CC and TC experiments. The skew-over-left of
S-SIM and COR indicates that those tend to project “hierar-
chical affinity” of input vectors, meaning that a given vector
tends to be closer to a certain group of peers and relatively
far from another group located at the opposite end of the sim-
ilarity spectrum. In this sense, these results demonstrate that
the discrimination ability of S-SIM and COR is higher than
that of traditional distance metrics, such as ED or MD. In
addition, kurtosis and Shannon entropy measure the flatness
and “information value” (or “information gain” in the case
of comparison) of distributions, respectively. Overall, kurto-
sis values are consistent with the visualized results in Fig. 2;
i.e., S-Ds of S-SIM and COR tend to spread more over two
tails than those of ED and MD. Entropy, on the other hand,
is likely more data-dependent. It does not show obviously
higher or lower trends of S-SIM and COR than those of ED
and MD.

5.2 Clustering results

As explained in Sect. 3, three demonstration problems, WP,
CC, and TC, are conducted with different k configurations
and centroid initializations, with a total of 1320 runs. Note
that this study addresses the algorithm aspects (attempting to
seek general insight into the system’s performance regard-
less of problems). We do not intend to physically interpret
the specific clustering outcomes, although some phenomenal
explanations are provided in the article.

The clustering results are partly visualized and shown to-
gether with quantified silhouette scores in Figs. 3, 4, and 5
for WP, CC, and TC, respectively, for the configuration
k = 4 and the first initialization, R0 (see the Supplement for
more information). Here, we explain the k-means-detected
weather patterns over the Japanese region during Decem-
ber, January, and February (DJF) (Fig. 3). During DJF, the
weather in Japan is dominated by a winter-type pattern. The
winter type is characterized by the Siberian High (devel-
ops over the Eurasian continent) and the Aleutian Low (de-
velops over the northern North Pacific), resulting in pre-
vailing northwesterly winds. The wind blows cold air from
Siberia to Japan and causes heavy snowfall on the western
coast and sunny weather on the Pacific side of the coun-
try. This winter-type pattern is clearly captured by all k-
means variants, that is, C2 for S, C4 for C, C3 for E,
and C4 for M k-means (Fig. 3). The silhouette analysis
reveals an interesting result. S-k-means-generated cluster
C2 is dominant over other clusters regarding its frequency
(the thickness of each cluster label in the silhouette dia-
gram indicates the number of members in the cluster). This
result is consistent with prior knowledge of the weather
patterns over the region (https://www.data.jma.go.jp/gmd/
cpd/longfcst/en/tourist_japan.html, last access: 20 February
2021). Moreover, S k-means consistently shows the high-
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Table 1. Statistical metrics of S distributions for three demonstration input datasets, i.e., weather pattern (WP), climate change (CC), and
tropical cyclone (TC). The different distance/similarity measures are structural similarity (S-SIM), the Pearson correlation coefficient (COR),
Euclidean distance (ED), and Manhattan distance (MD). Statistical measures include the mean (Mean), standard deviation (SD), skewness
(SKEW), kurtosis (KUR), and Shannon entropy (ENTROPY).

WP CC TC

S-SIM COR ED MD S-SIM COR ED MD S-SIM COR ED MD

Mean 0.68 0.71 0.67 0.68 0.71 0.81 0.66 0.65 0.81 0.87 0.65 0.69
SD 0.18 0.19 0.11 0.11 0.20 0.13 0.12 0.13 0.14 0.11 0.15 0.13
SKEW −0.66 −0.81 −0.73 −0.74 −1.08 −1.25 −0.65 −0.67 −1.10 −1.67 −0.46 −0.59
KUR −0.18 0.00 0.58 0.64 0.97 1.79 0.59 0.58 1.15 3.31 −0.32 0.03
ENTROPY 2.83 2.79 2.19 2.16 2.83 2.29 2.32 2.36 2.30 1.80 2.57 2.45

Figure 2. Comparison of the S distributions of normalized pairwise similarity using the structural similarity (S-SIM), the Pearson correlation
coefficient (COR), the Euclidean distance (ED), and the Manhattan distance (MD) for three demonstration experiments: WP, CC, and TC.
With a population size ofN , N(N−1)

2 values of pairwise similarity are observed because S-SIM, COR, ED, and MD are symmetric measures,
and self-similarity is excluded. Values are normalized from 0 to 1. The maximum similarity is 1, which corresponds to completely similar,
and the minimum similarity is 0, which corresponds to the lowest pairwise similarity.

est silhouette scores compared to the other algorithms for all
k = 2, 4, . . ., 20 settings (Fig. 6a), followed by C k-means.
E and M k-means have lower scores than S and C k-means.

Regarding the CC experiment, the time series results are
visualized with reference to the geographical locations of the
weather stations to support interpretation (Fig. 4). Overall,
the result shows that, although it is seen over all stations, the
warming trend is not geographically uniform. These regional
differences are well captured by the clustering. For example,
the northern part (Hokkaido) is consistently separated from
other regions in terms of warming rate, which is faster than
the other regions. Such a result highlights the usefulness of
k-means to detect regional differences, which is useful for
building detailed appropriate climate change actions (though
it is not the main concern of this study). Regarding cluster-
ing quality, the superiority of S and C k-means is confirmed.
Like WP, S and C k-means exhibit relatively higher silhou-
ette scores for the CC data compared with E and M k-means
(Fig. 6b).

In addition, the TC experiment aims to determine how k-
means works with hybrid spatiotemporal data. Like the above
experiments, S and C k-means are likely to outperform E and

M k-means, which is clearly reflected by their higher silhou-
ette scores (Figs. 5 and 6c). Figure 5 shows the four main
patterns of the TC track determined using the four cluster-
ing methods. Although there are some differences in the re-
sults among the k-means variants, such as the genesis and
depression points, all determined patterns are characterized
mainly by curved trajectories. These averaged patterns could
be divided into two groups: (i) not crossing and (ii) crossing
mainland Japan. Overall, the number of TCs in group (i) was
higher than that in group (ii), with these tracks characterized
by TCs containing both straight and re-curving TC trajecto-
ries forming to the east of 140◦ E (e.g., clusters 2 and 4 of
S k-means in Fig. 5a). For group (ii), the averaged patterns
show the TC track passing through the central area of Japan
(e.g., clusters 1 and 3 of S k-means in Fig. 5a)

Consistently, the higher performance of S k-means is ob-
served throughout the ensemble of tests, k settings, and ini-
tializations. The performance of S k-means sometimes com-
petes with that of C k-means. The two, S and C k-means,
outperform the distance-metric-based E and M k-means. It
is worth noting that these results are obtained from the sil-
houette analysis. Additional evaluation approaches might be
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Figure 3. Result for the WP experiment. The winter SLP pattern revealed by S, C, E, and M k-means with k = 4. “H” indicates the location
of the high, and “L” indicates the location of the low. General silhouette analysis results are shown below the maps, where the x axis
indicates the score, and the y axis presents the labels of clusters numbered 1–4. Input data are ERA-Interim SLP data, which were re-gridded
to Cartesian coordinates with a resolution of 200×200 km and grid size of 35×35. Daily data for December, January, and February collected
over 10 years (2005–2014) were used.

needed to generalize the conclusions, although this could
be challenging because most objective clustering evaluations
have been developed on the Cartesian geometric algebra as-
sumption (which could work for distance metrics but might
not work for non-distance measures). Therefore, it is neces-

sary to develop new evaluation approaches beyond the dis-
tance paradigm. Another difficulty lies in the fact that, like
other clustering techniques, k-means is an unsupervised ma-
chine learning technique. It works in the absence of a sin-
gle ground truth to guide the classification. The absence of
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Figure 4. Result for the CC experiment for clustering of climate change (temperature increase) time series over 134 weather stations over the
entirety of Japan. Patterns were revealed by S, C, E, and M k-means, with k = 4. Input data correspond to annual-mean data collected over
70 years from 1951–2020 (subtracted by the mean of the first 30 years) and observed temperature achieved at in situ weather stations (dots
on map) operated by the JMA. Time series of centroids and input vectors are shown in the bottom panels together with general silhouette
analysis results, where the x axis indicates the score (S score), and the y axis presents the labels of clusters numbered 1–4.

ground truth indicates the difficulty to define the goodness or
meaningfulness of k-means clustering outcomes. Pragmati-
cally speaking, clustering outcomes become meaningful if
they are assigned a physical meaning or successfully used
for practical purposes like a prediction. Doing so does not
fall into the scope of this study (it is a huge work and must
be addressed in an independent study); here we adopt another
approach to gain insight into the behavior of the k-means
variants.

By taking a careful glance at the silhouette plots shown
in Fig. 3, it is possible to notice a discrepancy in S k-means
compared to the rest. S k-means is likely to generate, say,
“high-ordered” clustering, i.e., one dominant weather pattern
(larger group size) beside several non-dominant weather pat-
terns (smaller group size). The same trend is seen with dif-
ferent k settings (not shown). This agrees well with the prior
knowledge recognized by the meteorological research com-
munity and local people about the winter weather patterns in
Japan (explained above). This insight leads to some possible
hypotheses. (i) Does S k-means perform better, i.e., closer
to human perception, than other variants? (ii) Is achieving
“highly ordered” clustering the intrinsic property of S k-
means?

To examine the hypotheses, we attempt to quantify the
“orderliness” of clustering outcomes using the Shannon en-
tropy. The results, illustrated in Fig. 7, show a good agree-
ment between the calculated entropy values versus intuition.
S k-means appears to have consistently lower entropy (highly
ordered clustering) than the other algorithms for the WP ex-
periment (Fig. 7a), but not for the CC and TC experiments
(Fig. 7b, c). We can dismiss the second hypothesis (ii), which
posits that achieving highly ordered clustering is an intrin-
sic property of S k-means because it is not universally true
across all experiments. Now hypothesis (i) remains. It is pos-
sible that S k-means can achieve clustering which fits closer
to human perception. However, because we do not have prior
knowledge regarding the CC and TC experiments, it is too
early to conclude that with complete certainty. Diversifying
the clustering problems with different types of input data or
for different geographical areas is necessary to obtain com-
prehensive insight into S k-means.

To further the discussion from a different aspect, we ex-
amine how the similarity between objects is recognized in
k-means variants. For intuitive comprehension, we gener-
ate “imagination” weather patterns and assess the discrimi-
nation ability of similarity/distance metrics. Figure 8 illus-
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Figure 5. Results of the TC experiment for clustering tropical cyclone paths. The pattern was revealed by S, C, E, and M k-means, with
k = 4. Input data are the best TC tracks obtained by the JMA from 1951–2020. Only TCs that passed the dashed box in the map are used
to feed the k-means. Thus, a total of 863 TC tracking data points are used. The left side of each panel shows the general silhouette analysis
results, where the x axis indicates the score (S score), and the y axis presents the labels of clusters numbered 1–4. The centroid TC path is
illustrated by the bold line, and the color is consistent with that in the silhouette diagram.

Figure 6. Comparison of the average silhouette score (S score) of S, C, E, and M k-means for k = 2, 4, . . . , 20 for three demonstration
experiments: WP (a), CC (b), and TC (c). The uncertainty range in each line indicates the standard deviations of the scores among 10 runs
with randomized initializations.
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Figure 7. Shannon entropy of clustering results. Comparison of the average silhouette score (S score) of S, C, E, and M k-means for k = 2, 4,
. . . , 20 for three demonstration experiments: WP (a), CC (b), and TC (c). The uncertainty range in each line indicates the standard deviations
of the scores among 10 runs with randomized initializations.

Figure 8. Imagination air pressure patterns. Subpanels are the reference (a), Gaussian noise contamination (b), blurring (to mean value) (c),
luminance shift (d), contrast stretch (e), and spatial shift (f). The ED (Euclidean distance) and S-SIM (structural similarity) values shown
above each panel are those calculated with respect to the reference one (a). The rightmost subpanel shows the cross section (between two
points P1 and P2 in a), with L and H indicating the location of imagination low and high air pressure extrema.

trates the weather patterns including the reference, charac-
terized by two extrema (low and high) symmetrically dis-
tributed over both sides (a); the Gaussian noise contami-
nation (b); the blurring (to the mean value) (c); luminance
shift (d); contrast stretch (e); and the spatial shift (f). Though
the Euclidean distances from these patterns (b–e) to the ref-
erence are intentionally set to be identical (= 2.9), by using

S-SIM, one can rank the similarities in descending order: S-
SIM(d–a) = .99> S-SIM(e–a) = .8> S-SIM(b–a) = .67>
S-SIM(f–a)= .5� S-SIM(b-a)= 0. This simple demonstra-
tion confirms the superiority of S-SIM in recognizing the
difference between two-dimensional patterns, agreeing well
with human intuition compared to ED. This implies that S-
SIM could reduce the situation of random classification (i.e.,
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an object is assigned to a centroid by chance), adding confi-
dence to results derived from S k-means. Though this result
is shown for the two-dimensional data, it is believed to be
true for one-dimensional structured data like time series.

Computational cost is another important factor, especially
in a practical sense. We measure the computational cost of
each experiment and show the results in Fig. 9. Overall, S
and C k-means require more time to complete the same task
than E and M k-means. Roughly, S k-means required 5–6
times more computational time than E k-means. C k-means
was comparable to S k-means. M k-means required less com-
putational time than E k-means. Such a tradeoff between
higher performance and computational cost should be con-
sidered when selecting an algorithm. Nevertheless, the com-
putational cost is not a big issue, at least limited to the set-
tings of this study; for example, the time to finish a run is
less than 1 min, which is very small compared to the numeri-
cal weather prediction or climate simulation. In addition, the
computational issue can be solved with the advancement of
computational ability or by using a parallel computational
approach.

5.3 Uncertainty evaluation

The results for the clustering uncertainty evaluation frame-
work (CUEF) are discussed here. The clustering uncertainty
degree (CUD) is shown in Fig. 10 (for k = 4 and run R0;
the collective results are shown in Fig. 12). As explained in
Sect. 4, two visualization tools, i.e., heat maps and chord di-
agrams, are used to visualize the clustering uncertainty. For
example, Fig. 10a (WP) shows that the CUD values for S
relative to C, E, and M k-means are 0.67, 0.75, and 0.77, re-
spectively, with the heatmap. Note that the maximum CUD
(=1) indicates the absolute disagreement between two clus-
tering assignments, and the minimum CUD (= 0) indicates
the absolute consensus between the two. The chord diagram
demonstrates the pairwise relationship in a more qualified
manner. One can easily determine which algorithms (S, C,
M, or E) have less consensus with another (wide arc length
on the circle means less consensus), and vice versa. For ex-
ample, E and M k-means show high consensus with each
other. S k-means shows less uncertainty/high consensus rela-
tive to E and M compared with C k-means, particularly in the
CC and TC experiments. Note that we run the four k-means
variants with the randomized centroids each time. Additional
runs using the same starting centroids for the four k-means
variants show that the uncertainty related to the clustering al-
gorithm selection remains regardless of whether the same or
randomized staring centroids are used.

In addition to the algorithm-wise uncertainty, we evaluate
the initialization-wise uncertainty. The pairwise CUDs be-
tween runs (i.e., R0–R9 for each simulation) are shown in
Fig. 11 for the WP, CC, and TC experiments with each k-
means variant. The results demonstrate smaller uncertainty
regarding initialization than that owing to the selection of k-

means algorithms. Particularly, the initialization-wise CUDs
are much lower than the algorithm-wise CUD for WP and
TC. Meanwhile, in CC, the initialization-wise and algorithm-
wise CUDs do not exhibit apparent differences except for
k < 6 (Fig. 12).

The above results demonstrate the effectiveness of CUEF
(with CUD as the core concept used within the visualization
framework including heatmaps or chord diagrams) in quan-
titatively representing/evaluating the uncertainty inherent in
clustering outcomes. Heatmaps and chord diagrams are use-
ful in offering intuitive and general comprehension of un-
certainty and consensus among the outcomes. CUEF is used
to evaluate algorithm-wise k-means variants in this study,
but it can be used to compare clustering algorithms, e.g.,
affinity propagation, DBSCAN, and self-organizing maps,
and initialization-wise uncertainties. Note that there are sev-
eral techniques for improving the cluster initialization such
as k-means++ (Arthur and Vassilvitskii, 2007). The result
from additional simulations using k-means++ shows that
the technique could help to reduce, though not wholly re-
move, the uncertainty regarding initialization.

In addition, clustering uncertainty must be understood in
a broader context. It can also be induced by input data.
Figures 10 and 11 show the consistently higher CUDs for
WP than those for CC and TC. This means that WP yields
more random clustering outcomes regardless of the algo-
rithm used. In other words, input data themselves can pos-
sess uncertain sources for clustering. This makes sense be-
cause different data have different topologies, which can
make them unsuitable or even invalid for a clustering solu-
tion. The question of whether it is valid or meaningful to ap-
ply a clustering solution to a dataset is more important than
how to find the best method of clustering.

In this sense, CUEF can be used to measure the meaning-
fulness of clustering application to a given problem. As the
big data era is coming, clustering analysis could play a vi-
tal role in discovering unseen structures of atmospheric data
that are massive and inaccessible to human perception. The
last decades have witnessed a wide range of clustering ap-
plications, from detecting atmospheric regimes/patterns from
data (Esteban et al., 2005; Houssos et al., 2008; Spekat et al.,
2010; Zeng et al., 2019; Smith et al., 2020) to using these
extracted patterns for weather forecasts and climate predic-
tions (Kannan and Ghosh, 2011; Gutiérrez et al., 2013; Le
Roux et al., 2018; Pomee and Hertig, 2022) or even recon-
structing historical data (Camus et al., 2014). So far, tremen-
dous efforts have been invested in either proposing/improv-
ing clustering algorithms or inventing criteria for evaluating
the goodness of the results.

A fundamental question is posed as to what the right thing
to do is rather than how to do it right. In other words, it is
about how to justify the choice of clustering solution rather
than about looking for the way to do it right. In this sense,
CUEF could help users justify the choice based directly on
their data rather than rely on the experiences or literature re-
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Figure 9. Comparison of the run time (in seconds) of S, C, E, and M k-means for k = 2, 4, . . . , 20 for three demonstration experiments:
WP (a), CC (b), and TC (c). The uncertainty range in each line indicates the standard deviation of the scores among 10 runs with randomized
initializations. Note that the y axis is logarithmically rescaled.

Figure 10. Clustering uncertainty degree (CUD) based on adjusted mutual information (AMI) between clustering results from different
k-means algorithms, i.e., S, C, E, and M k-means, for different demo experiments: WP, CC, and TC. (a, b, c) CUD in heatmaps, (d, e,
f) visualization of the interconnection using the chord diagrams. Note that the results are from the configuration with k = 4 and the first
initialization run.

views (selecting it because others are using it). This value of
CUEF is significant in a time of unprecedented expansion of
climate data and clustering algorithms, diversifying the needs
in data mining. We recommend CUEF as a necessary proce-
dure (or standard) for clustering techniques. Even though the

final decision on whether to apply a clustering solution might
depend on multiple factors, e.g., the purpose of further anal-
ysis, CUEF eventually can support the result explanation and
help to make the discussion robust.
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Figure 11. Clustering uncertainty degree (CUD) based on adjusted mutual information (AMI) between the clustering results from different
runs (10 runs indicated by R0, R1, . . . , R9) of different k-means algorithms, i.e., S, C, E, and M k-means (rows), for different demo
experiments: WP, CC, and TC (columns). Note that the results are from the configuration with k = 4 and the first initialization run.

6 Summary and remarks

This study proposes (i) a novel k-means algorithm primar-
ily for mining climate data and (ii) a clustering uncertainty
evaluation framework. The novel k-means algorithm, called
S k-means, is characterized by its ability to deal with inher-
ent spatiotemporal structuredness in climate data. In detail, S
k-means incorporates the recent innovation in signal recog-
nition regarding structural similarity into the classification
scheme, which has been primarily established based on the
distance metric paradigm.

The performance of S k-means is evaluated against the
other k-means variants, C, E, and M k-means, i.e., k-means
using the Pearson correlation coefficient and Euclidean and

Manhattan distances (C, E, and M k-means, respectively).
Three demonstration tests, i.e., clustering weather patterns
(spatially related data), historical climate change (time se-
ries) for long-term-recorded weather station data, and best
tracks of tropical cyclones (spatiotemporal hybrid), as well
as 11 k settings (k = 2, 4, . . ., 20) for each test and for each
k an ensemble of 10 randomized initializations are imple-
mented, all resulting in a total of 1320 runs in order to obtain
robust results.

The quantitative approaches, i.e., similarity distribution
(S-D) and general silhouette analysis, are used to evaluate
the performance of the algorithms. S-D diagrams were used
to diagnose the topological relationship of input datasets in
different distance/similarity spaces. The results show that
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Figure 12. Clustering uncertainty degree (CUD) based on adjusted mutual information (AMI) between the clustering results from different
runs (10 runs indicated by R0, R1, . . . , R9) of different k-means algorithms, i.e., S, C, E, and M k-means (rows), for different demo
experiments: WP, CC, and TC (columns). Note that the results are from the configuration k = 2, 4, . . ., 20.

structural-similarity groups are likely to have a higher ability
to discriminate the data (characteristics that might be useful
for clustering) than conventional distance metrics. Regarding
the clustering results, the general silhouette analysis shows
consistently higher scores for S and C k-means compared
with E and M k-means. The superiority of S k-means clus-
tering is followed by C k-means clustering. Both S and C k-
means consistently outperform E and M k-means. The trade-
off between the clustering performance and computational
resource requirement is revealed, as S k-means requires 5 to
6 times more computational time than E k-means.

S k-means could be promising as a new standard for cli-
mate data clustering/mining, which is a rising research field
within the big data context. Nevertheless, certain issues must
be noted when interpreting the results of this study. First, as
k-means clustering is an unsupervised data mining method,
it works under an assumption of no ground truth labeling in-
formation. Therefore, there is no absolute reference to define
the goodness of the clustering result. In this study, the good-
ness of the algorithm is evaluated based on an objective cal-
culus approach using the general silhouette analysis/score.
However, this score is free from the Cartesian geometry as-
sumption, thus allowing the algorithms to be compared with
non-distance metrics; it is suggested that more evaluation and
diversified clustering problems are needed to gain deeper in-
sight into the algorithm.

Finally, another important contribution of this study is that
we built a framework for clustering uncertainty evaluation

for the first time, and it is primarily applicable to climate
research. The evaluation framework is built on the mutual-
information concept. This is the first time this concept has
been adapted for clustering uncertainty evaluations in the
form of the “clustering uncertainty degree” (CUD). CUD
measures pairwise discrepancies among clusters, and the col-
lective CUDs provide an overall picture of the consisten-
cy/uncertainty in the cluster algorithms. Naturally, CUD can
be used to evaluate whether a given problem (input data) is
preferable for clustering. In other words, if the cluster algo-
rithm provides higher uncertainty in its outcomes, then it is
not appropriate for use, and vice versa. For example, for what
is shown in this study, the WP problem caused more uncer-
tainty in clustering than the CC and TC problems. Thus, the
“meaningfulness” of the clustering application for WP com-
pared with CC and TC is questioned. We expect this clus-
tering uncertainty evaluation framework to change the con-
ventional agenda of data clustering by adding a procedure
to evaluate its application’s meaningfulness/effectiveness for
given data.
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