Articles | Volume 16, issue 6
https://doi.org/10.5194/gmd-16-1683-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-16-1683-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
CompLaB v1.0: a scalable pore-scale model for flow, biogeochemistry, microbial metabolism, and biofilm dynamics
Heewon Jung
Department of Marine Sciences, University of Georgia, Athens, GA 30602, USA
Department of Geological Sciences, Chungnam National University, Daejeon 34134, South Korea
Hyun-Seob Song
Department of Biological Systems Engineering, Department of Food Science and Technology, Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
Department of Marine Sciences, University of Georgia, Athens, GA 30602, USA
Related authors
Jurjen Rooze, Heewon Jung, and Hagen Radtke
Geosci. Model Dev., 16, 7107–7121, https://doi.org/10.5194/gmd-16-7107-2023, https://doi.org/10.5194/gmd-16-7107-2023, 2023
Short summary
Short summary
Chemical particles in nature have properties such as age or reactivity. Distributions can describe the properties of chemical concentrations. In nature, they are affected by mixing processes, such as chemical diffusion, burrowing animals, and bottom trawling. We derive equations for simulating the effect of mixing on central moments that describe the distributions. We then demonstrate applications in which these equations are used to model continua in disturbed natural environments.
Kadir Biçe, Tristen Myers Stewart, George G. Waldbusser, and Christof Meile
Biogeosciences, 22, 641–657, https://doi.org/10.5194/bg-22-641-2025, https://doi.org/10.5194/bg-22-641-2025, 2025
Short summary
Short summary
We studied the effect of addition of carbonate minerals on coastal sediments. We carried out laboratory experiments to quantify the dissolution kinetics and integrated these observations into a numerical model that describes biogeochemical cycling in surficial sediments. Using the model, we demonstrate the buffering effect of the mineral additions and their duration. We quantify the effect under different environmental conditions and assess the potential for increased atmospheric CO2 uptake.
Robert E. Danczak, Amy E. Goldman, Mikayla A. Borton, Rosalie K. Chu, Jason G. Toyoda, Vanessa A. Garayburu-Caruso, Emily B. Graham, Joseph W. Morad, Lupita Renteria, Jacqueline R. Hager, Shai Arnon, Scott Brooks, Edo Bar-Zeev, Michael Jones, Nikki Jones, Jorg Lewandowski, Christof Meile, Birgit M. Muller, John Schalles, Hanna Schulz, Adam Ward, and James C. Stegen
EGUsphere, https://doi.org/10.1101/2024.01.10.575030, https://doi.org/10.1101/2024.01.10.575030, 2025
Preprint archived
Short summary
Short summary
As dissolved organic matter (DOM) is transported from land to the ocean through rivers, it interacts with the environment and some is converted to CO2. We used high-resolution carbon analysis to show that DOM from seven rivers exhibited ecological patterns particular to the corresponding river. These results indicate that local processes play an outsized role in shaping DOM. By understanding these interactions across environments, we can predict DOM across spatial scales or under perturbations.
Katherine A. Muller, Peishi Jiang, Glenn Hammond, Tasneem Ahmadullah, Hyun-Seob Song, Ravi Kukkadapu, Nicholas Ward, Madison Bowe, Rosalie K. Chu, Qian Zhao, Vanessa A. Garayburu-Caruso, Alan Roebuck, and Xingyuan Chen
Geosci. Model Dev., 17, 8955–8968, https://doi.org/10.5194/gmd-17-8955-2024, https://doi.org/10.5194/gmd-17-8955-2024, 2024
Short summary
Short summary
The new Lambda-PFLOTRAN workflow incorporates organic matter chemistry into reaction networks to simulate aerobic respiration and biogeochemistry. Lambda-PFLOTRAN is a Python-based workflow in a Jupyter notebook interface that digests raw organic matter chemistry data via Fourier transform ion cyclotron resonance mass spectrometry, develops a representative reaction network, and completes a biogeochemical simulation with the open-source, parallel-reactive-flow, and transport code PFLOTRAN.
Nathaniel B. Weston, Cynthia Troy, Patrick J. Kearns, Jennifer L. Bowen, William Porubsky, Christelle Hyacinthe, Christof Meile, Philippe Van Cappellen, and Samantha B. Joye
Biogeosciences, 21, 4837–4851, https://doi.org/10.5194/bg-21-4837-2024, https://doi.org/10.5194/bg-21-4837-2024, 2024
Short summary
Short summary
Nitrous oxide (N2O) is a potent greenhouse and ozone-depleting gas produced largely from microbial nitrogen cycling processes, and human activities have resulted in increases in atmospheric N2O. We investigate the role of physical and chemical disturbances to soils and sediments in N2O production. We demonstrate that physicochemical perturbation increases N2O production, microbial community adapts over time, and initial perturbation appears to confer resilience to subsequent disturbance.
Jurjen Rooze, Heewon Jung, and Hagen Radtke
Geosci. Model Dev., 16, 7107–7121, https://doi.org/10.5194/gmd-16-7107-2023, https://doi.org/10.5194/gmd-16-7107-2023, 2023
Short summary
Short summary
Chemical particles in nature have properties such as age or reactivity. Distributions can describe the properties of chemical concentrations. In nature, they are affected by mixing processes, such as chemical diffusion, burrowing animals, and bottom trawling. We derive equations for simulating the effect of mixing on central moments that describe the distributions. We then demonstrate applications in which these equations are used to model continua in disturbed natural environments.
Emily B. Graham, Hyun-Seob Song, Samantha Grieger, Vanessa A. Garayburu-Caruso, James C. Stegen, Kevin D. Bladon, and Allison N. Myers-Pigg
Biogeosciences, 20, 3449–3457, https://doi.org/10.5194/bg-20-3449-2023, https://doi.org/10.5194/bg-20-3449-2023, 2023
Short summary
Short summary
Intensifying wildfires are increasing pyrogenic organic matter (PyOM) production and its impact on water quality. Recent work indicates that PyOM may have a greater impact on aquatic biogeochemistry than previously assumed, driven by higher bioavailability. We provide a full assessment of the potential bioavailability of PyOM across its chemical spectrum. We indicate that PyOM can be actively transformed within the river corridor and, therefore, may be a growing source of riverine C emissions.
Aditi Sengupta, Sarah J. Fansler, Rosalie K. Chu, Robert E. Danczak, Vanessa A. Garayburu-Caruso, Lupita Renteria, Hyun-Seob Song, Jason Toyoda, Jacqueline Hager, and James C. Stegen
Biogeosciences, 18, 4773–4789, https://doi.org/10.5194/bg-18-4773-2021, https://doi.org/10.5194/bg-18-4773-2021, 2021
Short summary
Short summary
Conceptual models link microbes with the environment but are untested. We test a recent model using riverbed sediments. We exposed sediments to disturbances, going dry and becoming wet again. As the length of dry conditions got longer, there was a sudden shift in the ecology of microbes, chemistry of organic matter, and rates of microbial metabolism. We propose a new model based on feedbacks initiated by disturbance that cascade across biological, chemical, and functional aspects of the system.
Cited articles
Alemani, D., Chopard, B., Galceran, J., and Buffle, J.:
LBGK method coupled to time splitting technique for solving reaction-diffusion processes in complex systems, Phys. Chem. Chem. Phys., 7, 3331–3341, https://doi.org/10.1039/b505890b, 2005.
Arkin, A. P., Cottingham, R. W., Henry, C. S., Harris, N. L., Stevens, R. L., Maslov, S., Dehal, P., Ware, D., Perez, F., Canon, S., Sneddon, M. W., Henderson, M. L., Riehl, W. J., Murphy-Olson, D., Chan, S. Y., Kamimura, R. T., Kumari, S., Drake, M. M., Brettin, T. S., Glass, E. M., Chivian, D., Gunter, D., Weston, D. J., Allen, B. H., Baumohl, J., Best, A. A., Bowen, B., Brenner, S. E., Bun, C. C., Chandonia, J. M., Chia, J. M., Colasanti, R., Conrad, N., Davis, J. J., Davison, B. H., Dejongh, M., Devoid, S., Dietrich, E., Dubchak, I., Edirisinghe, J. N., Fang, G., Faria, J. P., Frybarger, P. M., Gerlach, W., Gerstein, M., Greiner, A., Gurtowski, J., Haun, H. L., He, F., Jain, R., Joachimiak, M. P., Keegan, K. P., Kondo, S., Kumar, V., Land, M. L., Meyer, F., Mills, M., Novichkov, P. S., Oh, T., Olsen, G. J., Olson, R., Parrello, B., Pasternak, S., Pearson, E., Poon, S. S., Price, G. A., Ramakrishnan, S., Ranjan, P., Ronald, P. C., Schatz, M. C., Seaver, S. M. D., Shukla, M., Sutormin, R. A., Syed, M. H., Thomason, J., Tintle, N. L., Wang, D., Xia, F., Yoo, H., Yoo, S., and Yu, D.:
KBase: The United States Department of Energy Systems Biology Knowledgebase, Nat. Biotechnol., 36, 566–569, https://doi.org/10.1038/nbt.4163, 2018.
Ataman, M. and Hatzimanikatis, V.:
lumpGEM: Systematic generation of subnetworks and elementally balanced lumped reactions for the biosynthesis of target metabolites, PLOS Comput. Biol., 13, 1–21, https://doi.org/10.1371/journal.pcbi.1005513, 2017.
Ataman, M., Hernandez Gardiol, D. F., Fengos, G., and Hatzimanikatis, V.:
redGEM: Systematic reduction and analysis of genome-scale metabolic reconstructions for development of consistent core metabolic models, PLOS Comput. Biol., 13, 1–22, https://doi.org/10.1371/journal.pcbi.1005444, 2017.
Bauer, E., Zimmermann, J., Baldini, F., Thiele, I., and Kaleta, C.:
BacArena: Individual-based metabolic modeling of heterogeneous microbes in complex communities, PLOS Comput. Biol., 13, 1–22, https://doi.org/10.1371/journal.pcbi.1005544, 2017.
Bhatnagar, P. L., Gross, E. P., and Krook, M.:
A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems, Phys. Rev., 94, 511–525, https://doi.org/10.1103/PhysRev.94.511, 1954.
Borer, B., Ataman, M., Hatzimanikatis, V., and Or, D.:
Modeling metabolic networks of individual bacterial agents in heterogeneous and dynamic soil habitats (IndiMeSH), Plos Comput. Biol., 15, 1–21, https://doi.org/10.1371/journal.pcbi.1007127, 2019.
De Lucia, M. and Kühn, M.:
DecTree v1.0 – chemistry speedup in reactive transport simulations: purely data-driven and physics-based surrogates, Geosci. Model Dev., 14, 4713–4730, https://doi.org/10.5194/gmd-14-4713-2021, 2021.
Dukovski, I., Bajić, D., Chacón, J. M., Quintin, M., Vila, J. C. C., Sulheim, S., Pacheco, A. R., Bernstein, D. B., Riehl, W. J., Korolev, K. S., Sanchez, A., Harcombe, W. R., and Segrè, D.:
A metabolic modeling platform for the computation of microbial ecosystems in time and space (COMETS), Nat. Protoc., 16, 5030–5082, https://doi.org/10.1038/s41596-021-00593-3, 2021.
Ebrahim, A., Lerman, J. A., Palsson, B. O., and Hyduke, D. R.:
COBRApy: COnstraints-Based Reconstruction and Analysis for Python, BMC Syst. Biol., 7, 74, https://doi.org/10.1186/1752-0509-7-74, 2013.
Fang, Y., Scheibe, T. D., Mahadevan, R., Garg, S., Long, P. E., and Lovley, D. R.:
Direct coupling of a genome-scale microbial in silico model and a groundwater reactive transport model, J. Contam. Hydrol., 122, 96–103, https://doi.org/10.1016/j.jconhyd.2010.11.007, 2011.
Fang, Y., Wilkins, M. J., Yabusaki, S. B., Lipton, M. S., and Long, P. E.: Evaluation of a genome-scale in silico metabolic model for Geobacter metallireducens by using proteomic data from a field biostimulation experiment, Appl. Environ. Microbiol., 78, 8735–8742, https://doi.org/10.1128/AEM.01795-12, 2012.
GLPK (GNU Linear Programming Kit): GLPK – GNU Project – Free Software Foundation (FSF), https://www.gnu.org/software/glpk/glpk.html, last access: July 2022.
Golparvar, A., Kästner, M., and Thullner, M.:
Pore-scale modeling of microbial activity: What we have and what we need, Vadose Zone J., 20, 1–17, https://doi.org/10.1002/vzj2.20087, 2021.
Grinberg, M., Orevi, T., and Kashtan, N.:
Bacterial surface colonization, preferential attachment and fitness under periodic stress, PLOS Comput Biol, 15, e1006815, https://doi.org/10.1371/journal.pcbi.1006815, 2019.
Harcombe, W.:
Novel cooperation experimentally evolved between species, Evolution (N.Y)., 64, 2166–2172, https://doi.org/10.1111/j.1558-5646.2010.00959.x, 2010.
Harcombe, W. R., Riehl, W. J., Dukovski, I., Granger, B. R., Betts, A., Lang, A. H., Bonilla, G., Kar, A., Leiby, N., Mehta, P., Marx, C. J., and Segrè, D.:
Metabolic resource allocation in individual microbes determines ecosystem interactions and spatial dynamics, Cell Rep., 7, 1104–1115, https://doi.org/10.1016/j.celrep.2014.03.070, 2014.
Heirendt, L., Arreckx, S., Pfau, T., Mendoza, S. N., Richelle, A., Heinken, A., Haraldsdóttir, H. S., Wachowiak, J., Keating, S. M., Vlasov, V., Magnusdóttir, S., Ng, C. Y., Preciat, G., Žagare, A., Chan, S. H. J., Aurich, M. K., Clancy, C. M., Modamio, J., Sauls, J. T., Noronha, A., Bordbar, A., Cousins, B., El Assal, D. C., Valcarcel, L. V., Apaolaza, I., Ghaderi, S., Ahookhosh, M., Ben Guebila, M., Kostromins, A., Sompairac, N., Le, H. M., Ma, D., Sun, Y., Wang, L., Yurkovich, J. T., Oliveira, M. A. P., Vuong, P. T., El Assal, L. P., Kuperstein, I., Zinovyev, A., Hinton, H. S., Bryant, W. A., Aragón Artacho, F. J., Planes, F. J., Stalidzans, E., Maass, A., Vempala, S., Hucka, M., Saunders, M. A., Maranas, C. D., Lewis, N. E., Sauter, T., Palsson, B. Ø., Thiele, I., and Fleming, R. M. T.:
Creation and analysis of biochemical constraint-based models using the COBRA Toolbox v.3.0, Nat. Protoc., 14, 639–702, https://doi.org/10.1038/s41596-018-0098-2, 2019.
Huber, C., Shafei, B., and Parmigiani, A.:
A new pore-scale model for linear and non-linear heterogeneous dissolution and precipitation, Geochim. Cosmochim. Ac., 124, 109–130, https://doi.org/10.1016/j.gca.2013.09.003, 2014.
Jung, H. and Meile, C.:
Upscaling of microbially driven first-order reactions in heterogeneous porous media, J. Contam. Hydrol., 224, 103483, https://doi.org/10.1016/j.jconhyd.2019.04.006, 2019.
Jung, H. and Meile, C.:
Pore-Scale Numerical Investigation of Evolving Porosity and Permeability Driven by Biofilm Growth, Transport Porous Med., 139, 203–221, https://doi.org/10.1007/s11242-021-01654-7, 2021.
Jung, H. and Meile, C.: Complab bitbucket repository [code], https://bitbucket.org/MeileLab/complab/, last access: September 2022.
Jung, H., Song, H.-S., and Meile, C.: CompLaB: a scalable pore-scale model for flow, biogeochemistry, microbial metabolism, and biofilm dynamics, Zenodo [code], https://doi.org/10.5281/zenodo.7095756, 2022.
Kang, Q., Lichtner, P. C., and Zhang, D.:
An improved lattice Boltzmann model for multicomponent reactive transport in porous media at the pore scale, Water Resour. Res., 43, 1–12, https://doi.org/10.1029/2006WR005551, 2007.
King, E. L., Tuncay, K., Ortoleva, P., and Meile, C.:
Modeling biogeochemical dynamics in porous media: Practical considerations of pore scale variability, reaction networks, and microbial population dynamics in a sandy aquifer, J. Contam. Hydrol., 112, 130–140, https://doi.org/10.1016/j.jconhyd.2009.12.002, 2010.
King, Z. A., Lu, J. S., Dräger, A., Miller, P. C., Federowicz, S., Lerman, J. A., Ebrahim, A., Palsson, B. O., and Lewis, N. E.: BiGG Models: A platform for integrating, standardizing, and sharing genome-scale models, Nucleic Acids Res., 44, D515–D522, doi:10.1093/nar/gkv1049, 2016.
König, S., Vogel, H. J., Harms, H., and Worrich, A.:
Physical, Chemical and Biological Effects on Soil Bacterial Dynamics in Microscale Models, Front. Ecol. Evol., 8, 1–10, https://doi.org/10.3389/fevo.2020.00053, 2020.
Kotsalos, C., Latt, J., and Chopard, B.:
Bridging the computational gap between mesoscopic and continuum modeling of red blood cells for fully resolved blood flow, J. Comput. Phys., 398, 108905, https://doi.org/10.1016/j.jcp.2019.108905, 2019.
Krüger, T., Kusumaatmaja, H., Kuzmin, A., Shardt, O., Silva, G., and Viggen, E. M.:
The Lattice Boltzmann Method, Springer International Publishing, Cham, https://doi.org/10.1007/978-3-319-44649-3, 2017.
Latt, J., Malaspinas, O., Kontaxakis, D., Parmigiani, A., Lagrava, D., Brogi, F., Belgacem, M. Ben, Thorimbert, Y., Leclaire, S., Li, S., Marson, F., Lemus, J., Kotsalos, C., Conradin, R., Coreixas, C., Petkantchin, R., Raynaud, F., Beny, J., and Chopard, B.:
Palabos: Parallel Lattice Boltzmann Solver, Comput. Math. Appl., 81, 334–350, https://doi.org/10.1016/j.camwa.2020.03.022, 2021.
Lovley, D. R., Giovannoni, S. J., White, D. C., Champine, J. E., Phillips, E. J., Gorby, Y. A., and Goodwin, S.: Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals, Arch Microbiol., 159, 336–344, https://doi.org/10.1007/BF00290916, 1993.
Marozava, S., Röling, W. F. M., Seifert, J., Küffner, R., Von Bergen, M., and Meckenstock, R. U.:
Physiology of Geobacter metallireducens under excess and limitation of electron donors. Part I. Batch cultivation with excess of carbon sources, Syst. Appl. Microbiol., 37, 277–286, https://doi.org/10.1016/j.syapm.2014.02.004, 2014.
Meile, C. and Scheibe, T. D.:
Reactive Transport Modeling of Microbial Dynamics, Elements, 15, 111–116, https://doi.org/10.2138/gselements.15.2.111, 2019.
Molins, S.:
Reactive Interfaces in Direct Numerical Simulation of Pore-Scale Processes, Rev. Mineral. Geochem., 80, 461–481, https://doi.org/10.2138/rmg.2015.80.14, 2015.
Nikdel, A., Braatz, R. D., and Budman, H. M.:
A systematic approach for finding the objective function and active constraints for dynamic flux balance analysis, Biopro. Biosyst. Eng., 41, 641–655, https://doi.org/10.1007/s00449-018-1899-y, 2018.
Oostrom, M., Mehmani, Y., Romero-Gomez, P., Tang, Y., Liu, H., Yoon, H., Kang, Q., Joekar-Niasar, V., Balhoff, M. T., Dewers, T., Tartakovsky, G. D., Leist, E. A., Hess, N. J., Perkins, W. A., Rakowski, C. L., Richmond, M. C., Serkowski, J. A., Werth, C. J., Valocchi, A. J., Wietsma, T. W., and Zhang, C.:
Pore-scale and continuum simulations of solute transport micromodel benchmark experiments, Comput. Geosci., 20, 857–879, https://doi.org/10.1007/s10596-014-9424-0, 2016.
Orth, J. D., Thiele, I., and Palsson, B. O.:
What is flux balance analysis?, Nat. Biotechnol., 28, 245–248, https://doi.org/10.1038/nbt.1614, 2010.
Pintelon, T. R. R., Picioreanu, C., van Loosdrecht, M. C. M., and Johns, M. L.:
The effect of biofilm permeability on bio-clogging of porous media, Biotechnol. Bioeng., 109, 1031–1042, https://doi.org/10.1002/bit.24381, 2012.
Prasianakis, N. I., Haller, R., Mahrous, M., Poonoosamy, J., Pfingsten, W., and Churakov, S. V.:
Neural network based process coupling and parameter upscaling in reactive transport simulations, Geochim. Cosmochim. Ac., 291, 126–143, https://doi.org/10.1016/j.gca.2020.07.019, 2020.
Scheibe, T. D., Mahadevan, R., Fang, Y., Garg, S., Long, P. E., and Lovley, D. R.:
Coupling a genome-scale metabolic model with a reactive transport model to describe in situ uranium bioremediation, Microb. Biotechnol., 2, 274–286, https://doi.org/10.1111/j.1751-7915.2009.00087.x, 2009.
Song, H.-S., Ahamed, F., Lee, J.-Y., Henry, C. C., Edirisinghe, J. N., Nelson, W. C., Chen, X., Moulton, J. D., and Scheibe, T. D.:
Coupling flux balance analysis with reactive transport modelling through machine learning for rapid and stable simulation of microbial metabolic switching, bioRxiv, 2023.02.06.527371, https://doi.org/10.1101/2023.02.06.527371, 2023.
Souzy, M., Lhuissier, H., Méheust, Y., Le Borgne, T., and Metzger, B.:
Velocity distributions, dispersion and stretching in three-dimensional porous media, J. Fluid Mech., 891, A16, https://doi.org/10.1017/jfm.2020.113, 2020.
Steefel, C. I., Appelo, C. A. J., Arora, B., Jacques, D., Kalbacher, T., Kolditz, O., Lagneau, V., Lichtner, P. C., Mayer, K. U., Meeussen, J. C. L., Molins, S., Moulton, D., Shao, H., Šimůnek, J., Spycher, N., Yabusaki, S. B., and Yeh, G. T.:
Reactive transport codes for subsurface environmental simulation, Comput. Geosci., 19, 445–478, https://doi.org/10.1007/s10596-014-9443-x, 2015.
Sudhakar, P., Machiels, K., Verstockt, B., Korcsmaros, T., and Vermeire, S.:
Computational Biology and Machine Learning Approaches to Understand Mechanistic Microbiome-Host Interactions, Front. Microbiol., 12, 1–19, https://doi.org/10.3389/fmicb.2021.618856, 2021.
Tang, Y. and Valocchi, A. J.:
An improved cellular automaton method to model multispecies biofilms, Water Res., 47, 5729–5742, https://doi.org/10.1016/j.watres.2013.06.055, 2013.
Tang, Y., Valocchi, A. J., Werth, C. J., and Liu, H.:
An improved pore-scale biofilm model and comparison with a microfluidic flow cell experiment, Water Resour. Res., 49, 8370–8382, https://doi.org/10.1002/2013WR013843, 2013.
Thullner, M. and Baveye, P.:
Computational pore network modeling of the influence of biofilm permeability on bioclogging in porous media, Biotechnol. Bioeng., 99, 1337–1351, https://doi.org/10.1002/bit.21708, 2008.
Trinsoutrot, I., Recous, S., Bentz, B., Linères, M., Chèneby, D., and Nicolardot, B.:
Biochemical Quality of Crop Residues and Carbon and Nitrogen Mineralization Kinetics under Nonlimiting Nitrogen Conditions, Soil Sci. Soc. Am. J., 64, 918–926, https://doi.org/10.2136/sssaj2000.643918x, 2000.
Ziegler, D. P.:
Boundary conditions for lattice Boltzmann simulations, J. Stat. Phys., 71, 1171–1177, https://doi.org/10.1007/BF01049965, 1993.
Short summary
Microbial activity responsible for many chemical transformations depends on environmental conditions. These can vary locally, e.g., between poorly connected pores in porous media. We present a modeling framework that resolves such small spatial scales explicitly, accounts for feedback between transport and biogeochemical conditions, and can integrate state-of-the-art representations of microbes in a computationally efficient way, making it broadly applicable in science and engineering use cases.
Microbial activity responsible for many chemical transformations depends on environmental...