Articles | Volume 16, issue 6
https://doi.org/10.5194/gmd-16-1683-2023
https://doi.org/10.5194/gmd-16-1683-2023
Model description paper
 | 
27 Mar 2023
Model description paper |  | 27 Mar 2023

CompLaB v1.0: a scalable pore-scale model for flow, biogeochemistry, microbial metabolism, and biofilm dynamics

Heewon Jung, Hyun-Seob Song, and Christof Meile

Model code and software

CompLaB v1.0 Heewon Jung, Hyun-Seob Song, and Christof Meile https://doi.org/10.5281/zenodo.7095756

Download
Short summary
Microbial activity responsible for many chemical transformations depends on environmental conditions. These can vary locally, e.g., between poorly connected pores in porous media. We present a modeling framework that resolves such small spatial scales explicitly, accounts for feedback between transport and biogeochemical conditions, and can integrate state-of-the-art representations of microbes in a computationally efficient way, making it broadly applicable in science and engineering use cases.