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Abstract. Microbial activity and chemical reactions in
porous media depend on the local conditions at the pore
scale and can involve complex feedback with fluid flow
and mass transport. We present a modeling framework
that quantitatively accounts for the interactions between the
bio(geo)chemical and physical processes and that can in-
tegrate genome-scale microbial metabolic information into
a dynamically changing, spatially explicit representation
of environmental conditions. The model couples a lattice
Boltzmann implementation of Navier—Stokes (flow) and
advection—diffusion-reaction (mass conservation) equations.
Reaction formulations can include both kinetic rate expres-
sions and flux balance analysis, thereby integrating reactive
transport modeling and systems biology. We also show that
the use of surrogate models such as neural network repre-
sentations of in silico cell models can speed up computa-
tions significantly, facilitating applications to complex envi-
ronmental systems. Parallelization enables simulations that
resolve heterogeneity at multiple scales, and a cellular au-
tomaton module provides additional capabilities to simulate
biofilm dynamics. The code thus constitutes a platform suit-
able for a range of environmental, engineering and — poten-
tially — medical applications, in particular ones that involve
the simulation of microbial dynamics.

1 Introduction

Biogeochemical turnover in Earth’s near-surface environ-
ments is governed by the activity of microbes adapted to
their surroundings to catalyze reactions and gain energy. In
turn, these activities shape the environmental composition,
which feeds back on metabolic activities and creates eco-
logical niches. Such feedbacks can be captured by reactive
transport models that compute the evolution of geochemical
conditions as a function of time and space and simulate mi-
crobial activities in porous media (Meile and Scheibe, 2019).
Commonly used macroscopic reactive transport models sim-
plify small-scale features of natural porous media. For ex-
ample, heterogeneous pore geometry and transport phenom-
ena are represented by only a few macroscopic parameters
such as porosity, permeability, and dispersivity (Steefel et al.,
2015). However, such simplifications can lead to a disparity
between model estimations and actual observations because
these models do not resolve the physical and geochemical
conditions at the scale that is relevant for microbial activ-
ity (e.g., Molins, 2015; Oostrom et al., 2016). Furthermore,
microbial reaction rates are often formulated using Monod
expressions, which describe a dependency of metabolic rates
on nutrient availability but substantially simplify the com-
plex metabolic adaptation of microbes in changing environ-
ments. This recognition has prompted the development of
constraint-based models including, for example, COMETS
(Harcombe et al., 2014), BacArena (Bauer et al., 2017),
and IndiMeSH (Borer et al., 2019), which have enabled de-
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tailed descriptions of complex microbial metabolisms and
metabolic interactions (Dukovski et al., 2021). However,
most constraint-based models are not designed to capture
combined diffusive and advective transport of metabolites
in heterogeneous subsurface environments and are not op-
timized to handle such settings in a computationally efficient
way. Notably, computational efficiency and the integration of
adequate formulations of microbial function have been iden-
tified as critical aspects in pore-scale models of microbial
activity (Golparvar et al., 2021).

To account for the feedback between environmental condi-
tions, chemical processes, microbial metabolism, and struc-
tural changes in the porous medium caused by these activi-
ties, we introduce a novel pore-scale reactive transport mod-
eling framework with spatially explicit descriptions of hy-
drological and biogeochemical processes. Our work com-
plements existing efforts, encompassing both individual-
and population-based spatially explicit microbial models re-
viewed by Konig et al. (2020), some of which take into con-
sideration the structure of the porous medium. Our modu-
lar framework is developed to account for various chemical
reactions and/or genome-scale metabolic models with advec-
tive and diffusive transports in porous media at the pore scale.
The lattice Boltzmann (LB) method is used to compute fluid
flow and solute transport in complex porous media, capable
of simulating both advection- and diffusion-dominated set-
tings. Microbial metabolism and chemical reactions are in-
corporated as source or sink terms in the LB method solving
mass conservation equations. These sources or sinks can be
described classically using approximations such as Monod
kinetics (Tang et al., 2013) or can be derived from cell-scale
growth and metabolic fluxes simulated with flux balance
analysis (Orth et al., 2010). Biomass dynamics can be de-
scribed by keeping track of cell densities (similar to chemical
concentration fields) of different organisms or populations,
with cell movement either based on an advection—diffusion
formulation or using a cellular automaton approach. In addi-
tion, we incorporate a surrogate modeling approach to make
larger-scale simulations possible. Thus, the framework pro-
vides options either to maximize computational efficiency
via the use of surrogate models or to directly utilize well-
established metabolic modeling environments without losing
the inherent parallel scalability of the LB method. The model
is validated by comparing model simulations to published
simulation results. We demonstrate the flexibility of the new
microbial reactive transport framework, its scalability, and
the benefits of using surrogate models to circumvent com-
putational bottlenecks posed by flux balance analysis. Our
work therefore facilitates cross-disciplinary efforts that inte-
grate bioinformatic approaches underlying cell models with
descriptions suitable to resolving the dynamic nature of nat-
ural environments. This allows for the representation of mi-
crobial interactions, which is a major challenge to our current
quantitative understanding of microbially mediated elemen-
tal cycling (Sudhakar et al., 2021).
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2 Use of open-source codes

To establish a modeling framework that builds on the exist-
ing and future knowledge and know-how from multiple dis-
ciplines, our approach uses the open-source software Palabos
(Parallel Lattice Boltzmann Solver) and integrates it with the
open-source linear programming solver GLPK (GNU Linear
Programming Kit) and the COBRApy (CPY) Python pack-
age for genome-scale metabolic modeling. Palabos is a mod-
eling platform that has established itself as a powerful ap-
proach in the field of computational fluid dynamics based on
the lattice Boltzmann (LB) method. The Palabos software is
designed to be highly extensible to couple complex physics
and other advanced algorithms without losing its inherent ca-
pability of massive parallelization (Latt et al., 2021). Palabos
has been parallelized using the Message Passing Interface,
where computational domains are subdivided while minimiz-
ing the inter-process communication. It has been used for
building modeling platforms to simulate deformable cell sus-
pensions in relation to blood flows (Kotsalos et al., 2019) and
complex subsurface biogeochemical processes at the pore
scale (Jung and Meile, 2019, 2021). It is highly scalable and
hence was chosen as a high-performance modeling frame-
work to be integrated with our representations of chemical
and microbial dynamics. GLPK is an open-source library de-
signed for solving linear programming (LP), mixed integer
programming and other related problems (GLPK, 2022). It
contains the simplex method, a well-known efficient numer-
ical approach to solve LP problems, and the interior-point
method, which solves large-scale LP problems faster than
the simplex method. GLPK provides an application program-
ming interface (API) written in C language to interact with a
client program. COBRApy is an object-oriented Python im-
plementation of constraints-based reconstruction and analy-
sis (COBRA) methods (Ebrahim et al., 2013), which is suit-
able to be integrated with other libraries without requiring
commercial software. Through a simple Python API, the fast
evolving and expanding biological modeling capacity of CO-
BRApy, which includes features such as flux balance analy-
sis (FBA), flux variability analysis (FVA), metabolic mod-
els (M models), and metabolism and expression models (ME
models), can be employed.

3 Model description

CompLaB simulates a fully saturated 2D fluid flow and so-
lute transport at the pore scale based on the LB method im-
plemented in Jung and Meile (2019, 2021). These earlier
efforts established some of the underlying model develop-
ments, such as the simulation of the flow field, mass trans-
port, and biochemical processes including kinetic rate ex-
pressions and cellular automaton implementation of biofilm
growth. This study expands on the previously established
models to offer a much broader applicability by building the
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Figure 1. Flowchart of CompLaB for reactive transport simulations. Changes in pore geometry are assessed due to biomass changes. The state
variables involved in the reactions can represent dissolved chemicals and planktonic microbes and solid phases or sessile microorganisms.

modular structure that makes the use of flux balance and sur-
rogate models possible. The LB method is particularly use-
ful for simulating subsurface processes because boundaries
between solid and fluid can be handled by a simple bounce-
back algorithm (Ziegler, 1993) in addition to its massive par-
allelization efficiency (Latt et al., 2021). For these reasons,
the LB method has been applied to simulate a broad range
of pore-scale reactive transport processes (e.g., Huber et al.,
2014; Kang et al., 2007; Tang et al., 2013). The simulations
are guided by an input file, CompLaB.xml, that sets the scope
of the simulation and capabilities utilized through command
blocks that define the model domain, chemical state vari-
ables, microorganisms, and model input and output (Fig. 1).
Below, the features of the model are presented, and we re-
fer to the manual in the code repository for examples of the
implementation.
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3.1 The lattice Boltzmann flow and mass transport
solvers

The LB method retrieves the numerical solutions of the
Navier—Stokes (NS) for fluid flow and advection—diffusion-
reaction equations (ADREs) for solute transport by solving
the mesoscopic Boltzmann equation across a defined set of
particles (Kriiger et al., 2017). CompLaB obtains a steady-
state flow field by running a flow solver with a D2Q9 lat-
tice BGK (Bhatnagar—Gross—Krook; Bhatnagar et al., 1954)
model defined as

At eq
ﬁ<r+c,m,t+m)=ﬁ<r,z>—r—f[fz-—fi 1. (1)

where f;(r,t) is the ith discrete set of particles streamed
from a position r to a new position r+¢; after a
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time step with lattice velocities ¢;(co=1[0,0], ¢; =[1,0],
c2=[0,1], 3= [-1,0], c4 =[0,—1], e5 =[1,1], ¢6 = [ 1,1],
c7=[—1,—1], cg =[1,—1]). ¢ is the relaxation time related
to the fluid viscosity v¢ (vf= cf(rf — %); cg 18 a lattice-
dependent constant; here, cf =1/3). The equilibrium distri-
bution function for fluid flow ( fl.eq) is given by

u-c; (u-c,-)2 u~u)’ @)

&
[ =wip+oipo ( a2 + 2 23
where w; is the lattice weights (wp=4/9, wi_4=1/9,
ws5_g = 1/36), p is the macroscopic density (p = X f;), po is
the rest state constant, and u is the macroscopic velocity cal-
culated from the momentum (pu = Xc¢; f;). The steady-state
flow field is then imposed on a transport solver defined as

. . At . .
gij(r +ciAt,t+ At) = gi](r,t) — r_j [gl] —gi]’eq]
g

+ QRN 1), 3

where g;(r,t) represents the discrete particle set i of a
transported entity j at position r and time ¢. rg is the re-
laxation time for solute transport related to the diffusivity
(D) =c2(r{ — 5')). The equilibrium distribution function
for transport (g;/ ) using a D2Q5 lattice for numerical ef-
ficiency, which, satisfying the isotropy requirement for a
LB transport solver, is given by

¢/ = w;C (1 +2 'zci>, )

s

with the lattice weights wp =1/3 and wj_4 =1/6, lattice ve-
locities co—4, and the solute concentration C/ (C/ =" g/).
In solving an advection—diffusion problem, CompLaB ad-
justs the value of ré » which controls the length of a time step,
to obtain a user-provided Péclet number (Pe/ = U L/D/) for
a given average flow velocity U and a user-provided charac-
teristic length L. With a steady-state flow field obtained from
the solution of Eq. (1) and a reaction step QFXN = Atw; R,
the LB transport solver recovers an ADRE with the following
form:

aj :

a—;:V-(D/Vj)—ij—}—R. 5)
Here, the transported entity j includes solute concentra-

tions (C) and planktonic biomass densities, and R is a reac-

tion term computed by the reaction solver of CompLaB as

described below.
3.2 Reactions

The reaction step (Q?XN ) computation is separated from a
transport computation via the sequential non-iterative ap-
proach (Alemani et al., 2005). A unique feature of CompLaB
is that its reaction solver can compute biochemical reaction
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rates R through (1) kinetic rate expressions, (2) flux balance
analysis, and (3) a surrogate model such as a pre-trained ar-
tificial neural network or combinations thereof, by summing
their contributions to the net reaction rates of individual state
variables.

3.2.1 Kinetic rate expressions

CompLaB provides a C++ template that users can adapt to
formulate kinetic rate expressions using metabolite concen-
trations and biomass densities (defineReactions.hh). This is
designed to accommodate user-specific needs and to enable
simulating various microbial dynamics including Monod ki-
netics, microbial attachment and detachment, and arbitrary
rate expressions defined by the user. Reactions can be re-
stricted to particular locations using material numbers (mask)
differentiating fluid, biomass, and grain surfaces.

Local biomass densities and concentrations calculated af-
ter the collision step of transport solvers are transferred to the
function as vectors B and C, where the vector elements fol-
low the order defined in the user interface (CompLaB.xml).
The biomass density and metabolite concentrations are up-
dated according to

B ar = B+ yiBiAt, (6)
Ciinr =Ci+ RiAtL, (N

where y; values are the cell-specific biomass growth rates,
R, values are the microbially mediated reaction rates, ex-
pressed as the product of metabolite uptake/release rates per
cell (Fy) and the cell density B (i.e., R = FiBy), calculated
every time step for every pore and biomass grid cell.

3.2.2 Flux balance analysis

For genome-enabled metabolic modeling, CompLaB loads
metabolic networks and calculates microbial growth rates
as well as metabolite uptake/release rates through an FBA
method (Orth et al., 2010). FBA investigates the metabolic
capabilities by imposing several constraints on the metabolic
flux distributions. Assuming that metabolic systems are at
steady state, the system dynamics for a metabolic network
are described by the mass balance equation Sv = 0. Here, S is
am X n matrix with m compounds and n reactions, where the
entries in each column are the stoichiometric coefficients of
the metabolites composing a reaction and v is a n x 1 flux
vector representing metabolic reactions and uptake/release
of chemicals by the cell. Most metabolic models have more
reactions than compounds (n > m), meaning that there are
more unknowns than equations. To solve such underdeter-
mined systems, FBA confines the solutions to a feasible
set by imposing constraints on metabolic fluxes 1b (lower
bounds) < v <ub (upper bounds) and applies an objective
function f(v) = cTv, where c is the vector of weights for the
objective function to identify an optimal solution. Commonly
used objective functions include maximization of biomass
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yield, maximization of ATP production, and minimization of
nutrient uptake (Nikdel et al., 2018). CompLaB utilizes the
stoichiometric matrix S from standard metabolic databases
such as BiGG and KEGG, which are widely used in FBA
simulation environments (e.g., COBRA toolbox, Heirendt
et al., 2019; COBRApy, Ebrahim et al., 2013; KBase, Arkin
et al., 2018). Therefore, CompLaB can integrate many exist-
ing in silico cell models.

CompLaB computes the solution of the metabolic mod-
els at each point in space and time for each organism or
microbial community (if the model represents multiple mi-
croorganisms) and updates biomass density and metabolite
concentrations according to Egs. (6) and (7). The metabolic
uptake fluxes are set through imposing constraints by defin-
ing the lower bound (Ib) of a chemical (uptake fluxes
are negative) through one of the following approaches.
The first is the parameter-based method employed by Har-
combe et al. (2014), setting the metabolic fluxes in anal-
ogy with Michaelis—Menten kinetics using a maximum up-
take rate (Vmax; €.g., mmol gB\l)v h~!, where gpw is gram dry
weight):

C
Ib=-V, — ), 8
max(c+Ks> ()

where C is a local metabolite concentration (e.g., mM) and
K is a half-saturation constant (e.g., mM). The second is the
semi-linear approach employed by Borer et al. (2019). This
method replaces Vipax with C (BAt)_l, where B is a local
biomass density (e.g., gpw L™!) and At is the length of a
time step (e.g., h):

C C
b= —— [ ———). )
BAt \ C + K,

If K is set to 0, then the uptake flux estimation becomes
a linear function to local concentrations. Note that the units
in the fluid flow and mass conservations model simulation
must match those of the FBA bounds, which in our case
were mmol gg\]N h~!. With lower bounds defined, the solu-
tion of an FBA problem outputs biomass growth rate (y;
e.g., h™) and uptake/release rates of metabolites (F; e.g.,
mmolgB\l,\, h™h.

3.2.3 Surrogate model

CompLaB also provides a C++4 template (surrogate-
Model.hh) where users can incorporate a pre-trained sur-
rogate model for calculating biogeochemical reactions, in-
cluding artificial neural networks (ANNs). This function-
ality can be used to replace FBA, which requires solving
many computationally expensive linear optimization prob-
lems (Sect. 3.2.2). In the example shown in Sect. 5, Com-
pLaB provides local metabolite concentrations and biomass
densities as inputs and the surrogate model outputs micro-
bial growth rate (y) and uptake/production rates of metabo-
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lites (F'). While our demonstration is based on ANN mod-
els, any pre-trained statistical surrogate model (e.g., De Lu-
cia and Kiihn, 2021) that describes the sources and sinks —
or their parameterization — can be used to enhance com-
putational efficiency and accommodate various user-specific
needs.

3.3 Biomass redistribution

To explicitly model the spatial biomass expansion, Com-
pLaB utilizes a cellular automaton (CA) with a predefined
maximum biomass density (Bmax) based on the CA algo-
rithm developed by Jung and Meile (2021). After updating
local biomass densities, the CA algorithm checks at every
time step if there is any grid cell exceeding Bpax and re-
distributes the excess biomass (B — Bpnax) to a randomly se-
lected neighboring grid cell. If the selected grid cell cannot
hold the excess biomass, the first chosen grid cell is filled
up to the maximum holding capacity (Bpax, a value defined
by the user), and then the remaining excess biomass is al-
located to a randomly chosen second neighbor cell. If all the
neighboring grid cells are saturated with biomass (B > Bmax)
and hence the excess biomass cannot be placed, the Manhat-
tan distances of biomass grid cells to the closest pore cells
are evaluated. The remaining excess biomass is then placed
in a neighboring grid cell that is closer to pores. and this
biomass allocation process is repeated until all the excess
biomass is redistributed. Figure 2 shows an example of the
cellular automaton process for biomass redistribution. Note
that this biomass redistribution method is a simple approxi-
mation for biomass density conservation with room for im-
provement (e.g., Tang and Valocchi, 2013).

When the sessile biomass reaches a threshold density (B >
¥ Bmax, Where v is a user-defined threshold biomass frac-
tion; 0 < ¢ < 1), the pore grid cell is designated as biomass;
if the biomass density falls below the threshold due to mi-
crobial decay or detachment (B < ¥ Bmax), then a biomass
grid cell is converted back to a pore. Pore grid cells allow
for both advective and diffusive transport, but in the biofilm,
sessile biomass hinders (i.e., permeable biofilm) or prevents
(i.e., impermeable biofilm) flow, and the feedback between
biomass growth/decay and advective flow conditions is ac-
counted for by rerunning the flow solver to steady state after
updating biomass distribution and corresponding pore geom-
etry (Jung and Meile, 2021). The reduced advective trans-
port efficiency in permeable biomass grid cells is imple-
mented by modifying local fluid viscosity in the biofilm (vpf)
with vpe = ve/ X, where X is a user-defined viscosity ratio
(0 < X < 1), while for impermeable biomass, a bounce-back
condition is imposed (Pintelon et al., 2012). After imposing
the new steady-state flow field, a streaming step of the trans-
port solver is executed (Fig. 1).
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Figure 2. Schematic representation of the cellular automaton method for biomass spreading (a) before and (b) after biomass redistribution.
The solid, pore, and biomass are color-coded gray, white, and blue, respectively. Brown solid arrows indicate the randomly chosen path
which excess biomass travels. The numbers in the biofilm grid cells are the Manhattan distances to the nearest pore grid cell. Because all
the neighbors of the dark-blue grid cell are saturated with biomass, the excess biomass is first moved to a neighboring cell randomly chosen
amongst those with the shorter Manhattan distance. This allocation process is repeated until the excess biomass is moved to the grid cell
with the Manhattan distance of 1 (color-coded white) where the excess biomass first encounters unsaturated neighbor cells. The biomass
holding capacity (Bmax — B) of the randomly selected neighboring grid cell (outlined green) is first evaluated. If the excess biomass exceeds
the holding capacity, the excess biomass is redistributed to the first chosen neighbor up to the maximum holding capacity and the remaining
excess biomass is placed to the next available neighbor grid cell (outlined yellow), finalizing the cellular automaton algorithm. The dashed

B Biofilm with excess biomass

black horizontal lines indicate the minimum biomass level required for a grid cell to be designated as biofilm.

4 Model verification

To verify the CompLaB implementation, the engineered
metabolic interaction between two co-dependent mutant
strains (Escherichia coli K12 and Salmonella enterica LT2)
originally established by Harcombe (2010) and implemented
in COMETS (Harcombe et al., 2014) and IndiMeSH (Borer
etal., 2019) was chosen as a test case. E. coli K12 is deficient
in producing methionine and relies on the release of methio-
nine by the mutant S. enterica LT2. In turn, S. enterica LT2
requires acetate released by E. coli K12 because of its in-
ability to metabolize lactose. As a result, these genetically
engineered strains are obliged to engage in mutual interac-
tion where neither species can grow in isolation. The ratio
of the two strains converges to a stable relative composition
after 48 h in all the in vitro and in silico experiments at both
initial ratios of 1:99 and 99 : 1.

Both COMETS (Harcombe et al., 2014) and IndiMeSH
(Borer et al., 2019) integrate flux balance cell models of these
two microorganisms into a two-dimensional environment
in which metabolites are exchanged via diffusion. The ini-
tial and boundary conditions of these simulations were mir-
rored in CompLaB, with 100 grid cells containing 3 x 10~7 g
biomass each (total =3 x 1073 g biomass) distributed ran-
domly across a two-dimensional domain of 25 x 25 grid
squares. The grid length was set to 500 pum, and the ini-
tial distributions of the two species were allowed to over-
lap. Three replicate simulations were carried out for each
initial microbial ratio of E. coli and S. enterica (1 :99 and
99 : 1). For the exchange metabolites acetate and methionine,
fixed boundary concentrations of 0 mM were imposed on the
left and right side of the domain, respectively, with no flux
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conditions at the top and bottom boundaries. The concentra-
tions of lactose (2.92mM) and oxygen (0.25 mM) were im-
posed at all domain boundaries. Solute and biomass diffusion
coefficients were fixed at 5 x 10710 and 3 x 10~13 m2s~1,
respectively. Consistent with the IndiMeSH model imple-
mentation, the simulation was carried out using Eq. (9), a
finite-difference method for biomass diffusion, and reduced
metabolic models of E. coli K12 and S. enterica LT2 in
which the number of metabolites and reactions of the orig-
inal metabolic models was systematically reduced by 1 order
of magnitude (Borer et al., 2019).

Figure 3 illustrates the average ratio of E. coli and S. en-
terica of all six simulations (triplicates for each initial com-
position ratios of 1:99 and 99:1) after 48h of simula-
tion time. CompLaB simulation results agree with both the
observations and the model results of COMETS and In-
diMeSH, demonstrating the metabolic inter-dependence of
two strains, and the convergence to a stable composition ra-
tio (Appendix A, Fig. Al).

5 Surrogate model integration

A major issue in fully coupling genome-scale metabolic net-
works to reactive transport models is the large computational
demand due to the repeated calculation of the LP problems
at every biomass grid cell and every time step. Previous stud-
ies have alleviated this issue by interpolating the solutions
of LP problems from a lookup table generated in advance
to a reactive transport simulation (Scheibe et al., 2009), dy-
namically creating a solution pool of the LP problems dur-
ing the reactive transport process (Fang et al., 2011), or

https://doi.org/10.5194/gmd-16-1683-2023
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Figure 3. The relative composition of six in vitro experiments and
COMETS, IndiMeSH, and CompLaB simulation results after 48 h.
Error bars represent 1 standard deviation.

systematically reducing the size of the matrix encoding the
metabolic network (Ataman et al., 2017; Ataman and Hatz-
imanikatis, 2017). Here, we introduce a statistical surrogate
modeling approach using a pre-trained artificial neural net-
work (ANN) following the approach presented in Song et al.
(2023). A trained ANN model directly relates input parame-
ters (i.e., uptake rates of substrates) to outputs (i.e., biomass
and metabolite production rates) through a set of nonlinear
algebraic equations. As computing such input—output rela-
tionships from a pre-trained ANN model is several orders
of magnitude faster than running FBA using a fully fledged
metabolic model, the use of such surrogate models to achieve
a significant speed-up has attracted much attention recently
(e.g., De Lucia and Kiihn, 2021; Prasianakis et al., 2020).
Here, we use the metabolic network of Geobacter met-
allireducens GS-15 (1AF987; Lovley et al., 1993; http://
bigg.ucsd.edu/models/iAF987, last access: September 2022),
a strict anaerobe capable of coupling the oxidation of or-
ganic compounds to the reduction of metals such as iron
and manganese, using ammonium as its nitrogen source to
train an ANN model. The dataset used for training a sur-
rogate ANN model was obtained by collecting FBA so-
lutions of the base model obtained using the IBM ILOG
cplex optimizer with the objective function chosen to max-
imize biomass production. The solution set was prepared
by randomly sampling 5000 combinations of two growth-
limiting metabolites — acetate (Cac) and ammonium (Cnn,)
— within the concentration ranges of 0 < Cac <0.5mM and
0 <Cnn, <0.05mM via Monte Carlo simulations. Sub-
strate concentrations were converted to uptake fluxes via
the parameter-based approach (Eq. 7) using the parameters
from Fang et al. (2011) (Vpax = 10 mmol acetate gg\],, h~!

and 0.5 mmol ammonium gg\l)v h !l K < =0.01 mM acetate
and 0.1 mM ammonium). These fluxes were used as lower
bounds, and Fe3*+ was allowed to be consumed without limi-
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tation. The collected FBA solution dataset was split and used
to train (70 %), validate (15 %), and test (15 %), and we de-
veloped an ANN model using MATLAB’s neural network
toolbox. As key hyperparameters, the number of layers and
the number of nodes in the ANN model were, respectively,
determined to be 4 and 10 through grid search. Ensuring the
accuracy of a surrogate model is of critical importance in re-
active transport models because even small errors accumu-
lating over successive time steps can lead to a substantial er-
ror. In this simple example, the trained ANN estimates the
biomass growth rate of the full FBA model almost perfectly
(R >0.999) against training, validation, and test datasets.
This shows that the fully fledged metabolic model can be re-
placed by the surrogate ANN model without substantial loss
of accuracy, boosting the simulation speed as shown next.

6 Model performance

CompLaB inherits the massive scalability of Palabos which
decomposes a simulation domain into multiple subdomains
and assigns them to individual computational nodes. In the
following, the scalability of various components of Com-
pLaB is assessed for a simplified microbial dynamics prob-
lem.

6.1 Test case

The simulation domain (Fig. 4) was prepared by taking a
subsection of 500 x 300 square elements from the porous
medium of Souzy et al. (2020). The length of each ele-
ment was 16.81 um, and material numbers were assigned to
solid (0), pore (1), and solid—pore interfaces (solid side of in-
terface: 2; pore side of interface: 3). In total, 10 % of the in-
terface grid cells (pore side) were randomly assigned as ses-
sile biomass grid cells (4) initially. Flow was induced from
left to right by imposing a fixed pressure gradient between
left- and right-side boundaries, and no flow conditions were
set at the top and bottom boundaries as well as on the grain
surfaces. The steady-state flow field was then provided to the
CompLaB transport solver for mass transport and reaction
simulations (Péclet number is 1 for a characteristic length
scale of 2mm). Two growth-limiting metabolites — acetate
(CH3COO™) and ammonium (NHI) — were considered for
the mass transport simulations. Acetate was injected at the
inlet (left) boundary with the fixed concentration of 0.45 mM
to the simulation domain initially filled with the same con-
centration. Ammonium concentration in the inflowing fluid
and initially in the domain was O mM, but it was produced
at solid surfaces assuming a zeroth-order mineralization rate
(Table 1). For both metabolites, no gradient conditions were
imposed at the outlet, top, bottom, and grain boundaries. No
external source and initial planktonic biomass were assumed,
so that all planktonic biomass is detached sessile biomass.
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Figure 4. (a) Simulation domain of the model performance simulation, with the steady-state flow velocity distribution and (b) an enlarged
subsection showing the distribution of material numbers around a solid.

Table 1. Parameters used for all the model performance simulations.

Symbol  Description Value Unit Source

katt Biomass attachment rate constant 2.1 x 103 s! King et al. (2010)

kdet Biomass detachment rate constant 1.2 x 107> g1 King et al. (2010)

UB Biomass decay rate constant 174 x 10760 g1 Fang et al. (2012)

kNH, N mineralization rate constant 6.2 x 107 mMs~!  Trinsoutrot et al. (2000)

The biogeochemical problem is described by the following
set of ADRE:s:

dCAc
o = V- (DAcVCac) —u - VCac — FacBs, (10)
JICNH
74 = V. (DnuyVCNH,) — u - VCONH, + kN, OS
— Fnny Bs, (11)
JBp
vl V- (Dg,VBp) —u-VBp — upBp — katdp Bp
+ kdet Bs, (12)
0Bs
o = y Bs — up Bs + ka0 Bp — kdet Bs. (13)

Cac and Cny, are the concentrations of acetate and am-
monium, respectively; Bp is the planktonic biomass density;
Bs is the sessile biomass density; u denotes the flow field;
6 indicates the presence (6 = 1) or absence (§ =0) of a grain
surface (ds) and a biomass grid cell (8g); and Dac, Dnh,,
and Dp are the diffusion coefficients of acetate, ammonium,
and planktonic biomass, respectively, which differ between
pore, biomass, and solids. For simplicity, the diffusivities
of all the metabolites and planktonic biomass were set to
10" m?s~! in the pores, 8 x 1071°m?s~! in biomass grid
cells, and 0O in the solid. Biomass attachment and detachment
(ki and kger), biomass decay (up), and organic matter min-
eralization (knp,) were simulated using the reaction kinet-
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ics solver, with the corresponding rate constants summarized
in Table 1. The simulation assumed that G. metallireducens
grows only on solid surfaces and planktonic biomass attaches
only to existing surface-attached aggregates (Grinberg et al.,
2019).

The computational efficiency and parallel performance
of CompLaB was tested by executing four independent
simulations utilizing each reaction solver. The cell-specific
metabolic fluxes (F, Eq. 9) and biomass growth rates (y,
Eq. 12) were calculated either through FBA (CPY or GLPK),
ANN, and/or reaction kinetics (KNS). The KNS solver was
combined with other solvers (CPY, GLPK, and ANN) or used
as a stand-alone reaction solver with the cellular automa-
ton algorithm invoked (CA) and Bpax set to 100 gpw L.
The model performance simulations with the FBA solvers
(CPY and GLPK) were prepared with the same conditions
used for training the ANN model (Sect. 5). The pre-trained
ANN model from Sect. 5 was used for the separate simula-
tion ANN. For the CA simulation, we create a situation sim-
ilar to the above examples but in which substantial biofilm
growth over a short simulation time is artificially induced.
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To that end, F and y were computed as

C C
F = kins ( Ac ) ( Al ) (14)
Cac+ Kac/ \ Cny, + Knny

y =Y Fac, (15)

where F denotes the metabolic fluxes (for simplic-
ity assuming Fac=Fnp,), ¥ is the biomass growth
rate, kyps =2.5 X 107 mMs~! (Marozava et al., 2014)
is the maximum uptake rate, and Ka.=0.1mM and
KnH, =0.01 mM are the half-saturation constants for acetate
and ammonium, respectively. The growth yield Y is set to
40000 gpw mmolxcl, an arbitrarily large number used only
to invoke the CA algorithm within 10 000 time steps (440s).
The flow field was updated every 10 time steps when the
CA algorithm was invoked (as, e.g., Thullner and Baveye,
2008; Jung and Meile, 2021).

The performance tests were carried out on the computing
nodes of the Georgia Advanced Computing Resources Cen-
ter. Each node has an AMD EPYC 7702P 64-core processor
with a 2.0 GHz clock cycle (AMD Rome), with 128 GB of
RAM. The nodes are interconnected via an EDR InfiniBand
network with 100 GBs~! effective throughput and run a 64-
bit Linux operating system (CentOS 7.9 distribution). The
elapsed (wall-clock) time for 10 000 time steps was recorded.

6.2 Performance

A comparison of simulation times for flow, transport, and
reaction shows that most compute time is used for simu-
lating the reactions, in particular when integrating in silico
cell models into a reactive transport framework (Fig. 5). This
highlights the benefit of using efficient surrogate models. The
surrogate ANN model substantially improves computational
efficiency compared to CPY and GLPK (about 2 orders of
magnitude in total elapsed time; Fig. 5a) because calculating
the pre-trained ANN is much faster than solving the linear
programming problem every time step in FBA (Fig. 5¢). For
reaction calculations (Fig. 5d), the ANN simulation (solid
sky-blue line with gray square symbols) even exhibits com-
parable but slightly shorter simulation times than the tradi-
tional reaction kinetics calculation (KNS; dashed lines with
orange symbols) because the ANN implementation only op-
erates on biomass grid cells while KNS operates on both
biomass and pore grid cells.

In addition to the computational efficiency, negligible er-
rors introduced by the surrogate ANN model assure the use
of a surrogate ANN model (Fig. B1). Although the error in
biomass calculation accumulates over simulation time steps,
it is kept to very low values throughout the simulation (the
relative error is on the order of 107; Appendix B) and has
practically no influence on metabolite concentration calcu-
lations. This observation illustrates that CompLaB can cal-
culate microbial metabolic reactions in porous media with a
heterogeneous distribution of pore, biomass, organic matter,
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and minerals, based on the genome-scale metabolic model
with the superior computational efficiency of a surrogate
model without losing accuracy. Applying Monte Carlo simu-
lations to generate FBA data to train a neural network model
required solving the linear programming problem 5000 times
with a set of randomly chosen uptake rates of acetate and am-
monium, which does not add a significant computational bur-
den. In our application, we determined the number of layers
and nodes in the neural network to be 4 and 10, respectively,
because no further improvement in model performance was
observed beyond those values.

The computational efficiency of ANN also works in fa-
vor of scalability. The reaction processes of CompLaB are
inherently an embarrassing parallel task because calculat-
ing biogeochemical sub-processes is completely indepen-
dent of the neighbors (except CA) and all model perfor-
mance simulations show the reasonable scalability up to
64 cores (Fig. 5). However, the scaling behaviors of all sim-
ulations except ANN illustrate suboptimal scalability with
no or limited speed-up when using more compute resources.
The loss of efficiency originates mostly from the calcula-
tion of reaction processes (Fig. 5¢) because the domain de-
composition applied to the heterogeneous simulation domain
(Fig. 4) resulted in an uneven distribution of biofilm grid
cells per subdomain and hence a variable size of the prob-
lem to be solved on each core. In fact, in our simple exam-
ple problem (a total of 500 x 300 computational grid cells,
constant random seeds), a domain decomposition when us-
ing 64, 128, and 192 cores produced 6, 38, and 76 subdo-
mains, respectively, that have no initial biomass grid cells.
Such subdomains do not contribute to computing microbial
metabolisms (FBA) and biomass redistribution (CA) that
consumes most of the computational cost (e.g., GLPK cal-
culation consumes ~ 99 % of the total computational cost),
preventing ideal parallel performance (Fig. 5d). While this
is also true for ANN, computational efficiency of ANN re-
duces the time wasted by such subdomains. As a result, the
suboptimality is not readily apparent in ANN (Fig. 5¢).

The CA algorithm implemented in CompLaB is a nonlocal
process requiring information from neighboring grid cells,
but the result still exhibits a good scalability when using up
to 64 cores and suboptimal scalability when more cores are
used. The CA simulation required less time than FBA sim-
ulations because the metabolic reactions were calculated us-
ing KNS. But CA spent extra time on updating the flow field
(Fig. 5b) and redistributing excess biomass (Fig. 5c and d).
This illustrates that the actual time required for the CA algo-
rithm depends on the nature of the biomass expansion. For
example, more time will be required for a system with rapid
biofilm growth excess because excess biomass has to travel
a longer distance through a thick biofilm. Furthermore, flow
fields will need to be updated more often to reflect the influ-
ence of rapid biofilm growth on flow.

Geosci. Model Dev., 16, 1683-1696, 2023
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Figure 5. The wall-clock time recorded in seconds for (a) the total, (b) flow and transport, (c) all reactions, and (d) each reaction part of the
CompLaB algorithm. Four different simulations were carried out deploying each reaction solver: three simulations used COBRApy (CPY),
GLPK, artificial neural network (ANN) solvers for microbial metabolism calculation, and a kinetic solver (KNS) for the attachment/detach-
ment of biomass (AT-DT). One simulation used only a kinetic solver for both microbial metabolism and AT-DT with the cellular automaton
algorithm invoked (CA). The simulation time for CA only can be inferred by subtracting the time for AT-DT with CA (dashed green line with
orange triangle symbols) from the time for KNS including CA (solid green line with gray triangle symbols) in (d). Each symbol represents
the average of two simulations. The simulations exhibiting no or limited speed-up with 128 and 192 cores except the ANN simulation were
excluded when drawing the regression lines. The negative numbers are the slopes of the solid regression lines. The average slope of all the

dashed regression lines in panel (d) is —1.14.

7 Conclusions

The numerical modeling platform CompLaB for simulat-
ing 2D pore-scale reactive transport processes is capable of
utilizing the quantitative implementation of the microbial
metabolism through the coupling of genome-scale metabolic
models. The integration of in silico cell models with reactive
transport simulations makes this framework broadly appli-
cable and enables the integration of knowledge gained from
the “omics”-based characterization of microbial systems. For
example, the successful reproduction of experimentally ob-
served convergences to a stable composition of a two-species
consortium (S. enterica and E. coli) demonstrates the capa-
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bility of CompLaB to investigate metabolic interactions be-
tween multiple microbial species.

Our novel numerical framework based on the lattice Boltz-
mann method allows simulating advection as well as diffu-
sion of metabolites in complex porous media. A wide range
of simulation domains can be used to represent soil struc-
ture and fractured rock images directly obtained from various
imaging techniques (e.g., u-CT, FIB-SEM) or numerically
generated porous media with material numbers assigned to
pore, solid, and source/sink grid cells for biogeochemical re-
actions which include but are not limited to biofilms. The in-
herent parallel efficiency of CompLaB facilitates simulating
dynamic flux balance analysis capturing the microbial feed-
back on flow and transport in porous media, as done previ-
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ously using Monod-type representations of microbial activ-
ity (Jung and Meile, 2021). Furthermore, the versatile sim-
ulation environment of CompLaB allows utilizing surrogate
models, such as an artificial neural network. The resulting
speed-up enables the investigation of complex biogeochemi-
cal processes in natural environments.

Appendix A: Convergence of the verification model to a
stable ratio after 100 h

The six simulation cases used in Sect. 4 for model verifica-
tion were run for 100 h of simulation time to further evaluate
whether the observed convergence to an average composi-
tion ratio is stable (Fig. A1). The composition ratio observed
after 48 h (0.75) is largely maintained through the extended
simulation period (increases only to 0.78 after 100 h).
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Figure A1. The evolution of the fraction of E. coli relative to the to-
tal cell density (E. coli+ S. enterica) over 100 h. Dashed and dotted
lines denote an initial abundance of 99 and 1 % E. coli, respectively.

Appendix B: Surrogate model accuracy

The surrogate modeling approach inevitably introduces er-
rors in model estimations. The errors should be maintained
sufficiently low throughout the surrogate simulation other-
wise errors can propagate in successive iterations and re-
sult in unphysical results. To quantify the errors in surrogate
model estimations, the solutions of our artificial neural net-
work (ANN) were compared to the reference simulation CO-
BRApy (CPY) by calculating the arithmetic mean of the root
mean squared errors:

—
| & \/,%,.Z,- "(CPY; j — ANN; ;)2
error; = — E '
m e max(CPY ;),

where j is the variable type (Bs, Bp, Cac, and Cnn,), m is
the number of variables j used in calculating the error, 7 is

, (BI)
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the number of grid cells for each variable j, and # is the time
step where the error is evaluated. The differences between
the FBA simulations using GLPK and CPY solvers are neg-
ligible, so only the CPY solution was chosen as the reference
(Fig. B1).

biomass

5 H metabolites

Error (x107)
w

Time steps (x103)

Figure B1. The discrepancy (relative error) between the surrogate
ANN and the fully fledged physical model simulation using CO-
BRApy calculated via Eq. (A1). The surrogate model overestimates
biomass (Bg + Bp), and the errors accumulate over time. But the
errors are kept low and negligible throughout the simulation, as evi-
denced by no influence on metabolite concentrations (Cac+CNH,)-
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