Articles | Volume 15, issue 2
https://doi.org/10.5194/gmd-15-883-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-883-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Influence of modifications (from AoB2015 to v0.5) in the Vegetation Optimality Model
Catchment and Ecohydrology Group (CAT), Environmental Research and Innovation (ERIN), Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg
Jason Beringer
School of Agriculture and Environment, The University of Western Australia, Crawley, WA, 6909, Australia
Lindsay B. Hutley
Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT, 0909, Australia
Stanislaus J. Schymanski
Catchment and Ecohydrology Group (CAT), Environmental Research and Innovation (ERIN), Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg
Related authors
Remko C. Nijzink and Stanislaus J. Schymanski
Hydrol. Earth Syst. Sci., 26, 6289–6309, https://doi.org/10.5194/hess-26-6289-2022, https://doi.org/10.5194/hess-26-6289-2022, 2022
Short summary
Short summary
Most catchments plot close to the empirical Budyko curve, which allows for estimating the long-term mean annual evaporation and runoff. We found that a model that optimizes vegetation properties in response to changes in precipitation leads it to converge to a single curve. In contrast, models that assume no changes in vegetation start to deviate from a single curve. This implies that vegetation has a stabilizing role, bringing catchments back to equilibrium after changes in climate.
Remko C. Nijzink and Stanislaus J. Schymanski
Hydrol. Earth Syst. Sci., 26, 4575–4585, https://doi.org/10.5194/hess-26-4575-2022, https://doi.org/10.5194/hess-26-4575-2022, 2022
Short summary
Short summary
Most catchments plot close to the empirical Budyko curve, which allows for the estimation of the long-term mean annual evaporation and runoff. The Budyko curve can be defined as a function of a wetness index or a dryness index. We found that differences can occur and that there is an uncertainty due to the different formulations.
Remko C. Nijzink, Jason Beringer, Lindsay B. Hutley, and Stanislaus J. Schymanski
Hydrol. Earth Syst. Sci., 26, 525–550, https://doi.org/10.5194/hess-26-525-2022, https://doi.org/10.5194/hess-26-525-2022, 2022
Short summary
Short summary
Most models that simulate water and carbon exchanges with the atmosphere rely on information about vegetation, but optimality models predict vegetation properties based on general principles. Here, we use the Vegetation Optimality Model (VOM) to predict vegetation behaviour at five savanna sites. The VOM overpredicted vegetation cover and carbon uptake during the wet seasons but also performed similarly to conventional models, showing that vegetation optimality is a promising approach.
Remko Nijzink, Christopher Hutton, Ilias Pechlivanidis, René Capell, Berit Arheimer, Jim Freer, Dawei Han, Thorsten Wagener, Kevin McGuire, Hubert Savenije, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 20, 4775–4799, https://doi.org/10.5194/hess-20-4775-2016, https://doi.org/10.5194/hess-20-4775-2016, 2016
Short summary
Short summary
The core component of many hydrological systems, the moisture storage capacity available to vegetation, is typically treated as a calibration parameter in hydrological models and often considered to remain constant in time. In this paper we test the potential of a recently introduced method to robustly estimate catchment-scale root-zone storage capacities exclusively based on climate data to reproduce the temporal evolution of root-zone storage under change (deforestation).
Remko C. Nijzink, Luis Samaniego, Juliane Mai, Rohini Kumar, Stephan Thober, Matthias Zink, David Schäfer, Hubert H. G. Savenije, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 20, 1151–1176, https://doi.org/10.5194/hess-20-1151-2016, https://doi.org/10.5194/hess-20-1151-2016, 2016
Short summary
Short summary
The heterogeneity of landscapes in river basins strongly affects the hydrological response. In this study, the distributed mesoscale Hydrologic Model (mHM) was equipped with additional processes identified by landscapes within one modelling cell. Seven study catchments across Europe were selected to test the value of this additional sub-grid heterogeneity. In addition, the models were constrained based on expert knowledge. Generally, the modifications improved the representation of low flows.
J. I. A. Gisen, H. H. G. Savenije, and R. C. Nijzink
Hydrol. Earth Syst. Sci., 19, 2791–2803, https://doi.org/10.5194/hess-19-2791-2015, https://doi.org/10.5194/hess-19-2791-2015, 2015
Short summary
Short summary
We revised the predictive equations for two calibrated parameters in salt intrusion model (the Van der Burgh coefficient K and dispersion coefficient D) using an extended database of 89 salinity profiles including 8 newly conducted salinity measurements. The revised predictive equations consist of easily measured parameters such as the geometry of estuary, tide, friction and the Richardson number. These equations are useful in obtaining the first estimate of salinity distribution in an estuary.
S. Ceola, B. Arheimer, E. Baratti, G. Blöschl, R. Capell, A. Castellarin, J. Freer, D. Han, M. Hrachowitz, Y. Hundecha, C. Hutton, G. Lindström, A. Montanari, R. Nijzink, J. Parajka, E. Toth, A. Viglione, and T. Wagener
Hydrol. Earth Syst. Sci., 19, 2101–2117, https://doi.org/10.5194/hess-19-2101-2015, https://doi.org/10.5194/hess-19-2101-2015, 2015
Short summary
Short summary
We present the outcomes of a collaborative hydrological experiment undertaken by five different international research groups in a virtual laboratory. Moving from the definition of accurate protocols, a rainfall-runoff model was independently applied by the research groups, which then engaged in a comparative discussion. The results revealed that sharing protocols and running the experiment within a controlled environment is fundamental for ensuring experiment repeatability and reproducibility.
Remko C. Nijzink and Stanislaus J. Schymanski
Hydrol. Earth Syst. Sci., 26, 6289–6309, https://doi.org/10.5194/hess-26-6289-2022, https://doi.org/10.5194/hess-26-6289-2022, 2022
Short summary
Short summary
Most catchments plot close to the empirical Budyko curve, which allows for estimating the long-term mean annual evaporation and runoff. We found that a model that optimizes vegetation properties in response to changes in precipitation leads it to converge to a single curve. In contrast, models that assume no changes in vegetation start to deviate from a single curve. This implies that vegetation has a stabilizing role, bringing catchments back to equilibrium after changes in climate.
Bimal K. Bhattacharya, Kaniska Mallick, Devansh Desai, Ganapati S. Bhat, Ross Morrison, Jamie R. Clevery, William Woodgate, Jason Beringer, Kerry Cawse-Nicholson, Siyan Ma, Joseph Verfaillie, and Dennis Baldocchi
Biogeosciences, 19, 5521–5551, https://doi.org/10.5194/bg-19-5521-2022, https://doi.org/10.5194/bg-19-5521-2022, 2022
Short summary
Short summary
Evaporation retrieval in heterogeneous ecosystems is challenging due to empirical estimation of ground heat flux and complex parameterizations of conductances. We developed a parameter-sparse coupled ground heat flux-evaporation model and tested it across different limits of water stress and vegetation fraction in the Northern/Southern Hemisphere. The model performed particularly well in the savannas and showed good potential for evaporative stress monitoring from thermal infrared satellites.
Remko C. Nijzink and Stanislaus J. Schymanski
Hydrol. Earth Syst. Sci., 26, 4575–4585, https://doi.org/10.5194/hess-26-4575-2022, https://doi.org/10.5194/hess-26-4575-2022, 2022
Short summary
Short summary
Most catchments plot close to the empirical Budyko curve, which allows for the estimation of the long-term mean annual evaporation and runoff. The Budyko curve can be defined as a function of a wetness index or a dryness index. We found that differences can occur and that there is an uncertainty due to the different formulations.
César Dionisio Jiménez-Rodríguez, Mauro Sulis, and Stanislaus Schymanski
Biogeosciences, 19, 3395–3423, https://doi.org/10.5194/bg-19-3395-2022, https://doi.org/10.5194/bg-19-3395-2022, 2022
Short summary
Short summary
Vegetation relies on soil water reservoirs during dry periods. However, when this source is depleted, the plants may access water stored deeper in the rocks. This rock moisture contribution is usually omitted in large-scale models, which affects modeled plant water use during dry periods. Our study illustrates that including this additional source of water in the Community Land Model improves the model's ability to reproduce observed plant water use at seasonally dry sites.
Caitlyn A. Hall, Sheila M. Saia, Andrea L. Popp, Nilay Dogulu, Stanislaus J. Schymanski, Niels Drost, Tim van Emmerik, and Rolf Hut
Hydrol. Earth Syst. Sci., 26, 647–664, https://doi.org/10.5194/hess-26-647-2022, https://doi.org/10.5194/hess-26-647-2022, 2022
Short summary
Short summary
Impactful open, accessible, reusable, and reproducible hydrologic research practices are being embraced by individuals and the community, but taking the plunge can seem overwhelming. We present the Open Hydrology Principles and Practical Guide to help hydrologists move toward open science, research, and education. We discuss the benefits and how hydrologists can overcome common challenges. We encourage all hydrologists to join the open science community (https://open-hydrology.github.io).
Remko C. Nijzink, Jason Beringer, Lindsay B. Hutley, and Stanislaus J. Schymanski
Hydrol. Earth Syst. Sci., 26, 525–550, https://doi.org/10.5194/hess-26-525-2022, https://doi.org/10.5194/hess-26-525-2022, 2022
Short summary
Short summary
Most models that simulate water and carbon exchanges with the atmosphere rely on information about vegetation, but optimality models predict vegetation properties based on general principles. Here, we use the Vegetation Optimality Model (VOM) to predict vegetation behaviour at five savanna sites. The VOM overpredicted vegetation cover and carbon uptake during the wet seasons but also performed similarly to conventional models, showing that vegetation optimality is a promising approach.
Atbin Mahabbati, Jason Beringer, Matthias Leopold, Ian McHugh, James Cleverly, Peter Isaac, and Azizallah Izady
Geosci. Instrum. Method. Data Syst., 10, 123–140, https://doi.org/10.5194/gi-10-123-2021, https://doi.org/10.5194/gi-10-123-2021, 2021
Short summary
Short summary
We reviewed eight algorithms to estimate missing values of environmental drivers and three major fluxes in eddy covariance time series. Overall, machine-learning algorithms showed superiority over the rest. Among the top three models (feed-forward neural networks, eXtreme Gradient Boost, and random forest algorithms), the latter showed the most solid performance in different scenarios.
Martijn Westhoff, Axel Kleidon, Stan Schymanski, Benjamin Dewals, Femke Nijsse, Maik Renner, Henk Dijkstra, Hisashi Ozawa, Hubert Savenije, Han Dolman, Antoon Meesters, and Erwin Zehe
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2019-6, https://doi.org/10.5194/esd-2019-6, 2019
Publication in ESD not foreseen
Short summary
Short summary
Even models relying on physical laws have parameters that need to be measured or estimated. Thermodynamic optimality principles potentially offer a way to reduce the number of estimated parameters by stating that a system evolves to an optimum state. These principles have been applied successfully within the Earth system, but it is often unclear what to optimize and how. In this review paper we identify commonalities between different successful applications as well as some doubtful applications.
Philipp A. Nauer, Eleonora Chiri, David de Souza, Lindsay B. Hutley, and Stefan K. Arndt
Biogeosciences, 15, 3731–3742, https://doi.org/10.5194/bg-15-3731-2018, https://doi.org/10.5194/bg-15-3731-2018, 2018
Short summary
Short summary
Termites perform important biogeochemical processes in tropical ecosystems, but the complex structure of their mounds impede an accurate quantitative description. We present two novel low-cost field methods, based on photogrammetry and image analysis, to quantify the volume, surface area and porosities of termite mounds. The methods are accurate, rapid to apply and superior to traditional methods, and thus improve biogeochemical rate estimates such as greenhouse-gas fluxes from termite mounds.
Eva van Gorsel, James Cleverly, Jason Beringer, Helen Cleugh, Derek Eamus, Lindsay B. Hutley, Peter Isaac, and Suzanne Prober
Biogeosciences, 15, 349–352, https://doi.org/10.5194/bg-15-349-2018, https://doi.org/10.5194/bg-15-349-2018, 2018
Rhys Whitley, Jason Beringer, Lindsay B. Hutley, Gabriel Abramowitz, Martin G. De Kauwe, Bradley Evans, Vanessa Haverd, Longhui Li, Caitlin Moore, Youngryel Ryu, Simon Scheiter, Stanislaus J. Schymanski, Benjamin Smith, Ying-Ping Wang, Mathew Williams, and Qiang Yu
Biogeosciences, 14, 4711–4732, https://doi.org/10.5194/bg-14-4711-2017, https://doi.org/10.5194/bg-14-4711-2017, 2017
Short summary
Short summary
This paper attempts to review some of the current challenges faced by the modelling community in simulating the behaviour of savanna ecosystems. We provide a particular focus on three dynamic processes (phenology, root-water access, and fire) that are characteristic of savannas, which we believe are not adequately represented in current-generation terrestrial biosphere models. We highlight reasons for these misrepresentations, possible solutions and a future direction for research in this area.
Nina Hinko-Najera, Peter Isaac, Jason Beringer, Eva van Gorsel, Cacilia Ewenz, Ian McHugh, Jean-François Exbrayat, Stephen J. Livesley, and Stefan K. Arndt
Biogeosciences, 14, 3781–3800, https://doi.org/10.5194/bg-14-3781-2017, https://doi.org/10.5194/bg-14-3781-2017, 2017
Short summary
Short summary
We undertook a 3-year study (2010–2012) of eddy covariance measurements in a dry temperate eucalypt (broadleaf evergreen) forest in southeastern Australia. The forest was a large and constant carbon sink, with the greatest uptake in early spring and summer. A strong seasonal pattern in environmental controls of daytime and night-time NEE was revealed. Our results show the potential of temperate eucalypt forests to sequester large amounts of carbon when not water limited.
Stanislaus J. Schymanski, Daniel Breitenstein, and Dani Or
Hydrol. Earth Syst. Sci., 21, 3377–3400, https://doi.org/10.5194/hess-21-3377-2017, https://doi.org/10.5194/hess-21-3377-2017, 2017
Short summary
Short summary
Leaf transpiration and energy exchange are coupled processes at the small scale that have strong effects on the water cycle and climate at the large scale. In this technical note, we present a novel experimental set-up that enables detailed study of these coupled processes in the laboratory under controlled conditions. Results document the abilities of the experimental set-up to confirm or challenge our understanding of these processes.
Ian D. McHugh, Jason Beringer, Shaun C. Cunningham, Patrick J. Baker, Timothy R. Cavagnaro, Ralph Mac Nally, and Ross M. Thompson
Biogeosciences, 14, 3027–3050, https://doi.org/10.5194/bg-14-3027-2017, https://doi.org/10.5194/bg-14-3027-2017, 2017
Short summary
Short summary
We analysed a 3-year record of CO2 exchange at a eucalypt woodland and found that substantial nocturnal advective CO2 losses occurred, thus requiring correction. We demonstrated that the most common of these correction methods incurred substantial bias in long-term estimates of carbon balance if storage of CO2 below the measurement height was excluded. This is important because the majority of sites both in Australia and internationally lack such measurements.
Peter Isaac, James Cleverly, Ian McHugh, Eva van Gorsel, Cacilia Ewenz, and Jason Beringer
Biogeosciences, 14, 2903–2928, https://doi.org/10.5194/bg-14-2903-2017, https://doi.org/10.5194/bg-14-2903-2017, 2017
Short summary
Short summary
Networks of flux towers present diverse challenges to data collectors, managers and users. For data collectors, the goal is to minimise the time spent producing usable data sets. For data managers, the challenge is making data available in a timely and broad manner. For data users, the quest is for consistency in data processing across sites and networks. The OzFlux data path was developed to address these disparate needs and serves as an example of intra- and inter-network integration.
Jason Beringer, Ian McHugh, Lindsay B. Hutley, Peter Isaac, and Natascha Kljun
Biogeosciences, 14, 1457–1460, https://doi.org/10.5194/bg-14-1457-2017, https://doi.org/10.5194/bg-14-1457-2017, 2017
Short summary
Short summary
Standardised, quality-controlled and robust data from flux networks underpin the understanding of ecosystem processes and tools to manage our natural resources. The Dynamic INtegrated Gap-filling and partitioning for OzFlux (DINGO) system enables gap-filling and partitioning of fluxes and subsequently provides diagnostics and results. Quality data from robust systems like DINGO ensure the utility and uptake of flux data and facilitates synergies between flux, remote sensing and modelling.
Cassandra Denise Wilks Rogers and Jason Beringer
Biogeosciences, 14, 597–615, https://doi.org/10.5194/bg-14-597-2017, https://doi.org/10.5194/bg-14-597-2017, 2017
Short summary
Short summary
Savannas are extensive yet sensitive to variability in precipitation. We examined the relationship between climate phenomena and historical rainfall variability across Australian savannas using 16 climate indicies. Seasonal variation was most correlated with the Australian Monsoon Index, whereas interannual variability was related to a greater number of phenomena. Rainfall variability and the underlying climate processes driving variability are important.
Stanislaus J. Schymanski and Dani Or
Hydrol. Earth Syst. Sci., 21, 685–706, https://doi.org/10.5194/hess-21-685-2017, https://doi.org/10.5194/hess-21-685-2017, 2017
Short summary
Short summary
Most of the rain falling on land is returned to the atmosphere by plant leaves, which release water vapour (transpire) through tiny pores. To better understand this process, we used artificial leaves in a special wind tunnel and discovered major problems with an established approach (PM equation) widely used to quantify transpiration and its sensitivity to climate change. We present an improved set of equations, consistent with experiments and displaying more realistic climate sensitivity.
Caitlin E. Moore, Jason Beringer, Bradley Evans, Lindsay B. Hutley, and Nigel J. Tapper
Biogeosciences, 14, 111–129, https://doi.org/10.5194/bg-14-111-2017, https://doi.org/10.5194/bg-14-111-2017, 2017
Short summary
Short summary
Separating tree and grass productivity dynamics in savanna ecosystems is vital for understanding how they function over time. We showed how tree-grass phenology information can improve model estimates of gross primary productivity in an Australian tropical savanna. Our findings will contribute towards improved modelling of productivity in savannas, which will assist with their management into the future.
Remko Nijzink, Christopher Hutton, Ilias Pechlivanidis, René Capell, Berit Arheimer, Jim Freer, Dawei Han, Thorsten Wagener, Kevin McGuire, Hubert Savenije, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 20, 4775–4799, https://doi.org/10.5194/hess-20-4775-2016, https://doi.org/10.5194/hess-20-4775-2016, 2016
Short summary
Short summary
The core component of many hydrological systems, the moisture storage capacity available to vegetation, is typically treated as a calibration parameter in hydrological models and often considered to remain constant in time. In this paper we test the potential of a recently introduced method to robustly estimate catchment-scale root-zone storage capacities exclusively based on climate data to reproduce the temporal evolution of root-zone storage under change (deforestation).
Mila Bristow, Lindsay B. Hutley, Jason Beringer, Stephen J. Livesley, Andrew C. Edwards, and Stefan K. Arndt
Biogeosciences, 13, 6285–6303, https://doi.org/10.5194/bg-13-6285-2016, https://doi.org/10.5194/bg-13-6285-2016, 2016
Short summary
Short summary
Northern Australian savanna landscapes are a region earmarked for potential agricultural expansion. Greenhouse gas emissions from savanna land use change were quantified to determine the relative impact of increased rates of deforestation on Australia's national greenhouse gas accounts. Emissions from historic rates of deforestation were similar to savanna burning, but expanded clearing across northern Australia could add 3 % to Australia’s national greenhouse gas emissions.
Eva van Gorsel, Sebastian Wolf, James Cleverly, Peter Isaac, Vanessa Haverd, Cäcilia Ewenz, Stefan Arndt, Jason Beringer, Víctor Resco de Dios, Bradley J. Evans, Anne Griebel, Lindsay B. Hutley, Trevor Keenan, Natascha Kljun, Craig Macfarlane, Wayne S. Meyer, Ian McHugh, Elise Pendall, Suzanne M. Prober, and Richard Silberstein
Biogeosciences, 13, 5947–5964, https://doi.org/10.5194/bg-13-5947-2016, https://doi.org/10.5194/bg-13-5947-2016, 2016
Short summary
Short summary
Temperature extremes are expected to become more prevalent in the future and understanding ecosystem response is crucial. We synthesised measurements and model results to investigate the effect of a summer heat wave on carbon and water exchange across three biogeographic regions in southern Australia. Forests proved relatively resilient to short-term heat extremes but the response of woodlands indicates that the carbon sinks of large areas of Australia may not be sustainable in a future climate.
Jason Beringer, Lindsay B. Hutley, Ian McHugh, Stefan K. Arndt, David Campbell, Helen A. Cleugh, James Cleverly, Víctor Resco de Dios, Derek Eamus, Bradley Evans, Cacilia Ewenz, Peter Grace, Anne Griebel, Vanessa Haverd, Nina Hinko-Najera, Alfredo Huete, Peter Isaac, Kasturi Kanniah, Ray Leuning, Michael J. Liddell, Craig Macfarlane, Wayne Meyer, Caitlin Moore, Elise Pendall, Alison Phillips, Rebecca L. Phillips, Suzanne M. Prober, Natalia Restrepo-Coupe, Susanna Rutledge, Ivan Schroder, Richard Silberstein, Patricia Southall, Mei Sun Yee, Nigel J. Tapper, Eva van Gorsel, Camilla Vote, Jeff Walker, and Tim Wardlaw
Biogeosciences, 13, 5895–5916, https://doi.org/10.5194/bg-13-5895-2016, https://doi.org/10.5194/bg-13-5895-2016, 2016
Short summary
Short summary
OzFlux is the regional Australian and New Zealand flux tower network that aims to provide a continental-scale national facility to monitor and assess trends, and improve predictions, of Australia’s terrestrial biosphere and climate. We describe the evolution, design, and status as well as an overview of data processing. We suggest that a synergistic approach is required to address all of the spatial, ecological, human, and cultural challenges of managing Australian ecosystems.
Natalia Restrepo-Coupe, Alfredo Huete, Kevin Davies, James Cleverly, Jason Beringer, Derek Eamus, Eva van Gorsel, Lindsay B. Hutley, and Wayne S. Meyer
Biogeosciences, 13, 5587–5608, https://doi.org/10.5194/bg-13-5587-2016, https://doi.org/10.5194/bg-13-5587-2016, 2016
Short summary
Short summary
We re-evaluated the connection between satellite greenness products and C-flux tower data in four Australian ecosystems. We identify key mechanisms driving the carbon cycle, and provide an ecological basis for the interpretation of vegetation indices. We found relationships between productivity and greenness to be non-significant in meteorologically driven evergreen forests and sites where climate and vegetation phenology were asynchronous, and highly correlated in phenology-driven ecosystems.
Caitlin E. Moore, Tim Brown, Trevor F. Keenan, Remko A. Duursma, Albert I. J. M. van Dijk, Jason Beringer, Darius Culvenor, Bradley Evans, Alfredo Huete, Lindsay B. Hutley, Stefan Maier, Natalia Restrepo-Coupe, Oliver Sonnentag, Alison Specht, Jeffrey R. Taylor, Eva van Gorsel, and Michael J. Liddell
Biogeosciences, 13, 5085–5102, https://doi.org/10.5194/bg-13-5085-2016, https://doi.org/10.5194/bg-13-5085-2016, 2016
Short summary
Short summary
Australian vegetation phenology is highly variable due to the diversity of ecosystems on the continent. We explore continental-scale variability using satellite remote sensing by broadly classifying areas as seasonal, non-seasonal, or irregularly seasonal. We also examine ecosystem-scale phenology using phenocams and show that some broadly non-seasonal ecosystems do display phenological variability. Overall, phenocams are useful for understanding ecosystem-scale Australian vegetation phenology.
Rhys Whitley, Jason Beringer, Lindsay B. Hutley, Gab Abramowitz, Martin G. De Kauwe, Remko Duursma, Bradley Evans, Vanessa Haverd, Longhui Li, Youngryel Ryu, Benjamin Smith, Ying-Ping Wang, Mathew Williams, and Qiang Yu
Biogeosciences, 13, 3245–3265, https://doi.org/10.5194/bg-13-3245-2016, https://doi.org/10.5194/bg-13-3245-2016, 2016
Short summary
Short summary
In this study we assess how well terrestrial biosphere models perform at predicting water and carbon cycling for savanna ecosystems. We apply our models to five savanna sites in Northern Australia and highlight key causes for model failure. Our assessment of model performance uses a novel benchmarking system that scores a model’s predictive ability based on how well it is utilizing its driving information. On average, we found the models as a group display only moderate levels of performance.
Maik Renner, Sibylle K. Hassler, Theresa Blume, Markus Weiler, Anke Hildebrandt, Marcus Guderle, Stanislaus J. Schymanski, and Axel Kleidon
Hydrol. Earth Syst. Sci., 20, 2063–2083, https://doi.org/10.5194/hess-20-2063-2016, https://doi.org/10.5194/hess-20-2063-2016, 2016
Short summary
Short summary
We estimated forest transpiration (European beech) along a steep valley cross section. Atmospheric demand, obtained by the thermodynamic limit of maximum power, is the dominant control of transpiration at all sites.
To our surprise we find that transpiration is rather similar across sites with different aspect (north vs. south) and different stand structure due to systematically varying sap velocities. Such a compensation effect is highly relevant for modeling and upscaling of transpiration.
Caitlin E. Moore, Jason Beringer, Bradley Evans, Lindsay B. Hutley, Ian McHugh, and Nigel J. Tapper
Biogeosciences, 13, 2387–2403, https://doi.org/10.5194/bg-13-2387-2016, https://doi.org/10.5194/bg-13-2387-2016, 2016
Short summary
Short summary
Savannas cover 20 % of the global land surface and account for 25 % of global terrestrial carbon uptake. They support 20 % of the world’s human population and are one of the most important ecosystems on our planet. We evaluated the temporal partitioning of carbon between overstory and understory in Australian tropical savanna using eddy covariance. We found the understory contributed ~ 32 % to annual productivity, increasing to 40 % in the wet season, thus driving seasonality in carbon uptake.
Remko C. Nijzink, Luis Samaniego, Juliane Mai, Rohini Kumar, Stephan Thober, Matthias Zink, David Schäfer, Hubert H. G. Savenije, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 20, 1151–1176, https://doi.org/10.5194/hess-20-1151-2016, https://doi.org/10.5194/hess-20-1151-2016, 2016
Short summary
Short summary
The heterogeneity of landscapes in river basins strongly affects the hydrological response. In this study, the distributed mesoscale Hydrologic Model (mHM) was equipped with additional processes identified by landscapes within one modelling cell. Seven study catchments across Europe were selected to test the value of this additional sub-grid heterogeneity. In addition, the models were constrained based on expert knowledge. Generally, the modifications improved the representation of low flows.
V. Haverd, B. Smith, M. Raupach, P. Briggs, L. Nieradzik, J. Beringer, L. Hutley, C. M. Trudinger, and J. Cleverly
Biogeosciences, 13, 761–779, https://doi.org/10.5194/bg-13-761-2016, https://doi.org/10.5194/bg-13-761-2016, 2016
Short summary
Short summary
We present a new approach for modelling coupled phenology and carbon allocation in savannas, and test it using data from the OzFlux network. Model behaviour emerges from complex feedbacks between the plant physiology and vegetation dynamics, in response to resource availability, and not from imposed hypotheses about the controls on tree-grass co-existence. Results indicate that resource limitation is a stronger determinant of tree cover than disturbance in Australian savannas.
J. I. A. Gisen, H. H. G. Savenije, and R. C. Nijzink
Hydrol. Earth Syst. Sci., 19, 2791–2803, https://doi.org/10.5194/hess-19-2791-2015, https://doi.org/10.5194/hess-19-2791-2015, 2015
Short summary
Short summary
We revised the predictive equations for two calibrated parameters in salt intrusion model (the Van der Burgh coefficient K and dispersion coefficient D) using an extended database of 89 salinity profiles including 8 newly conducted salinity measurements. The revised predictive equations consist of easily measured parameters such as the geometry of estuary, tide, friction and the Richardson number. These equations are useful in obtaining the first estimate of salinity distribution in an estuary.
S. J. Schymanski and D. Or
Proc. IAHS, 371, 99–107, https://doi.org/10.5194/piahs-371-99-2015, https://doi.org/10.5194/piahs-371-99-2015, 2015
Short summary
Short summary
The common use of "potential evaporation" to estimate actual evapotranspiration or to describe the suitability of a given climate for plant growth may lead to wrong conclusions about the consequences of climate change on plant growth and water relations. Wind speed in particular can have opposite effects on potential evaporation and transpiration from plant leaves. Therefore, we recommend to avoid using the concept of potential evaporation in relation to plants and transpiration from leaves.
S. Ceola, B. Arheimer, E. Baratti, G. Blöschl, R. Capell, A. Castellarin, J. Freer, D. Han, M. Hrachowitz, Y. Hundecha, C. Hutton, G. Lindström, A. Montanari, R. Nijzink, J. Parajka, E. Toth, A. Viglione, and T. Wagener
Hydrol. Earth Syst. Sci., 19, 2101–2117, https://doi.org/10.5194/hess-19-2101-2015, https://doi.org/10.5194/hess-19-2101-2015, 2015
Short summary
Short summary
We present the outcomes of a collaborative hydrological experiment undertaken by five different international research groups in a virtual laboratory. Moving from the definition of accurate protocols, a rainfall-runoff model was independently applied by the research groups, which then engaged in a comparative discussion. The results revealed that sharing protocols and running the experiment within a controlled environment is fundamental for ensuring experiment repeatability and reproducibility.
E. Zehe, U. Ehret, L. Pfister, T. Blume, B. Schröder, M. Westhoff, C. Jackisch, S. J. Schymanski, M. Weiler, K. Schulz, N. Allroggen, J. Tronicke, L. van Schaik, P. Dietrich, U. Scherer, J. Eccard, V. Wulfmeyer, and A. Kleidon
Hydrol. Earth Syst. Sci., 18, 4635–4655, https://doi.org/10.5194/hess-18-4635-2014, https://doi.org/10.5194/hess-18-4635-2014, 2014
C. Werner, K. Reiser, M. Dannenmann, L. B. Hutley, J. Jacobeit, and K. Butterbach-Bahl
Biogeosciences, 11, 6047–6065, https://doi.org/10.5194/bg-11-6047-2014, https://doi.org/10.5194/bg-11-6047-2014, 2014
Short summary
Short summary
Atmospheric loss of N from savanna soil was dominated by N2 emissions (82-99% of total N loss to atmosphere). Nitric oxide emissions significantly contributed at 50% WFPS; high temperatures and N2O emissions were negligible. Based on a simple upscale approach we estimated annual loss of N to the atmosphere at 7.5kg yr-1. N2O emission was low for most samples, but high for a small subset of cores at 75% WFPS (due to short periods where such conditions occur this has little effect on totals).
U. Ehret, H. V. Gupta, M. Sivapalan, S. V. Weijs, S. J. Schymanski, G. Blöschl, A. N. Gelfan, C. Harman, A. Kleidon, T. A. Bogaard, D. Wang, T. Wagener, U. Scherer, E. Zehe, M. F. P. Bierkens, G. Di Baldassarre, J. Parajka, L. P. H. van Beek, A. van Griensven, M. C. Westhoff, and H. C. Winsemius
Hydrol. Earth Syst. Sci., 18, 649–671, https://doi.org/10.5194/hess-18-649-2014, https://doi.org/10.5194/hess-18-649-2014, 2014
H. Jamali, S. J. Livesley, L. B. Hutley, B. Fest, and S. K. Arndt
Biogeosciences, 10, 2229–2240, https://doi.org/10.5194/bg-10-2229-2013, https://doi.org/10.5194/bg-10-2229-2013, 2013
Related subject area
Climate and Earth system modeling
Rainbows and climate change: a tutorial on climate model diagnostics and parameterization
ModE-Sim – a medium-sized atmospheric general circulation model (AGCM) ensemble to study climate variability during the modern era (1420 to 2009)
MESMAR v1: a new regional coupled climate model for downscaling, predictability, and data assimilation studies in the Mediterranean region
Climate model Selection by Independence, Performance, and Spread (ClimSIPS v1.0.1) for regional applications
IceTFT v1.0.0: interpretable long-term prediction of Arctic sea ice extent with deep learning
The KNMI Large Ensemble Time Slice (KNMI–LENTIS)
ENSO statistics, teleconnections, and atmosphere–ocean coupling in the Taiwan Earth System Model version 1
Using probabilistic machine learning to better model temporal patterns in parameterizations: a case study with the Lorenz 96 model
The Regional Aerosol Model Intercomparison Project (RAMIP)
DSCIM-Coastal v1.1: an open-source modeling platform for global impacts of sea level rise
TIMBER v0.1: a conceptual framework for emulating temperature responses to tree cover change
Recalibration of a three-dimensional water quality model with a newly developed autocalibration toolkit (EFDC-ACT v1.0.0): how much improvement will be achieved with a wider hydrological variability?
Description and evaluation of the JULES-ES set-up for ISIMIP2b
Simplified Kalman smoother and ensemble Kalman smoother for improving reanalyses
Modelling the terrestrial nitrogen and phosphorus cycle in the UVic ESCM
Modeling river water temperature with limiting forcing data: Air2stream v1.0.0, machine learning and multiple regression
A machine learning approach targeting parameter estimation for plant functional type coexistence modeling using ELM-FATES (v2.0)
The fully coupled regionally refined model of E3SM version 2: overview of the atmosphere, land, and river results
The mixed-layer depth in the Ocean Model Intercomparison Project (OMIP): impact of resolving mesoscale eddies
A new simplified parameterization of secondary organic aerosol in the Community Earth System Model Version 2 (CESM2; CAM6.3)
Deep learning for stochastic precipitation generation – deep SPG v1.0
Developing spring wheat in the Noah-MP land surface model (v4.4) for growing season dynamics and responses to temperature stress
Robust 4D climate-optimal flight planning in structured airspace using parallelized simulation on GPUs: ROOST V1.0
The Earth system model CLIMBER-X v1.0 – Part 2: The global carbon cycle
SMLFire1.0: a stochastic machine learning (SML) model for wildfire activity in the western United States
LandInG 1.0: a toolbox to derive input datasets for terrestrial ecosystem modelling at variable resolutions from heterogeneous sources
Conservation of heat and mass in P-SKRIPS version 1: the coupled atmosphere–ice–ocean model of the Ross Sea
Predicting the climate impact of aviation for en-route emissions: the algorithmic climate change function submodel ACCF 1.0 of EMAC 2.53
Implementation of a machine-learned gas optics parameterization in the ECMWF Integrated Forecasting System: RRTMGP-NN 2.0
Differentiable programming for Earth system modeling
Evaluation of CMIP6 model performances in simulating fire weather spatiotemporal variability on global and regional scales
Data-driven aeolian dust emission scheme for climate modelling evaluated with EMAC 2.55.2
Testing the reconstruction of modelled particulate organic carbon from surface ecosystem components using PlankTOM12 and machine learning
An improved method of the Globally Resolved Energy Balance model by the Bayesian networks
Assessing predicted cirrus ice properties between two deterministic ice formation parameterizations
Various ways of using empirical orthogonal functions for climate model evaluation
C-Coupler3.0: an integrated coupler infrastructure for Earth system modelling
FEOTS v0.0.0: a new offline code for the fast equilibration of tracers in the ocean
Pace v0.2: a Python-based performance-portable atmospheric model
Simulated stable water isotopes during the mid-Holocene and pre-industrial using AWI-ESM-2.1-wiso
Hydrological modelling on atmospheric grids: using graphs of sub-grid elements to transport energy and water
The sea level simulator v1.0: a model for integration of mean sea level change and sea level extremes into a joint probabilistic framework
Assimilation of the AMSU-A radiances using the CESM (v2.1.0) and the DART (v9.11.13)/RTTOV (v12.3)
Structural k-means (S k-means) and clustering uncertainty evaluation framework (CUEF) for mining climate data
The emergence of the Gulf Stream and interior western boundary as key regions to constrain the future North Atlantic carbon uptake
Evaluating wind profiles in a numerical weather prediction model with Doppler lidar
Evaluation of bias correction methods for a multivariate drought index: case study of the Upper Jhelum Basin
Modernizing the open-source community Noah-MP land surface model (version 5.0) with enhanced modularity, interoperability, and applicability
URock 2023a: An open source GIS-based wind model for complex urban settings
The impact of lateral boundary forcing in the CORDEX-Africa ensemble over southern Africa
Andrew Gettelman
Geosci. Model Dev., 16, 4937–4956, https://doi.org/10.5194/gmd-16-4937-2023, https://doi.org/10.5194/gmd-16-4937-2023, 2023
Short summary
Short summary
A representation of rainbows is developed for a climate model. The diagnostic raises many common issues. Simulated rainbows are evaluated against limited observations. The pattern of rainbows in the model matches observations and theory about when and where rainbows are most common. The diagnostic is used to assess the past and future state of rainbows. Changes to clouds from climate change are expected to increase rainbows as cloud cover decreases in a warmer world.
Ralf Hand, Eric Samakinwa, Laura Lipfert, and Stefan Brönnimann
Geosci. Model Dev., 16, 4853–4866, https://doi.org/10.5194/gmd-16-4853-2023, https://doi.org/10.5194/gmd-16-4853-2023, 2023
Short summary
Short summary
ModE-Sim is an ensemble of simulations with an atmosphere model. It uses observed sea surface temperatures, sea ice conditions, and volcanic aerosols for 1420 to 2009 as model input while accounting for uncertainties in these conditions. This generates several representations of the possible climate given these preconditions. Such a setup can be useful to understand the mechanisms that contribute to climate variability. This paper describes the setup of ModE-Sim and evaluates its performance.
Andrea Storto, Yassmin Hesham Essa, Vincenzo de Toma, Alessandro Anav, Gianmaria Sannino, Rosalia Santoleri, and Chunxue Yang
Geosci. Model Dev., 16, 4811–4833, https://doi.org/10.5194/gmd-16-4811-2023, https://doi.org/10.5194/gmd-16-4811-2023, 2023
Short summary
Short summary
Regional climate models are a fundamental tool for a very large number of applications and are being increasingly used within climate services, together with other complementary approaches. Here, we introduce a new regional coupled model, intended to be later extended to a full Earth system model, for climate investigations within the Mediterranean region, coupled data assimilation experiments, and several downscaling exercises (reanalyses and long-range predictions).
Anna L. Merrifield, Lukas Brunner, Ruth Lorenz, Vincent Humphrey, and Reto Knutti
Geosci. Model Dev., 16, 4715–4747, https://doi.org/10.5194/gmd-16-4715-2023, https://doi.org/10.5194/gmd-16-4715-2023, 2023
Short summary
Short summary
Using all Coupled Model Intercomparison Project (CMIP) models is unfeasible for many applications. We provide a subselection protocol that balances user needs for model independence, performance, and spread capturing CMIP’s projection uncertainty simultaneously. We show how sets of three to five models selected for European applications map to user priorities. An audit of model independence and its influence on equilibrium climate sensitivity uncertainty in CMIP is also presented.
Bin Mu, Xiaodan Luo, Shijin Yuan, and Xi Liang
Geosci. Model Dev., 16, 4677–4697, https://doi.org/10.5194/gmd-16-4677-2023, https://doi.org/10.5194/gmd-16-4677-2023, 2023
Short summary
Short summary
To improve the long-term forecast skill for sea ice extent (SIE), we introduce IceTFT, which directly predicts 12 months of averaged Arctic SIE. The results show that IceTFT has higher forecasting skill. We conducted a sensitivity analysis of the variables in the IceTFT model. These sensitivities can help researchers study the mechanisms of sea ice development, and they also provide useful references for the selection of variables in data assimilation or the input of deep learning models.
Laura Muntjewerf, Richard Bintanja, Thomas Reerink, and Karin van der Wiel
Geosci. Model Dev., 16, 4581–4597, https://doi.org/10.5194/gmd-16-4581-2023, https://doi.org/10.5194/gmd-16-4581-2023, 2023
Short summary
Short summary
The KNMI Large Ensemble Time Slice (KNMI–LENTIS) is a large ensemble of global climate model simulations with EC-Earth3. It covers two climate scenarios by focusing on two time slices: the present day (2000–2009) and a future +2 K climate (2075–2084 in the SSP2-4.5 scenario). We have 1600 simulated years for the two climates with (sub-)daily output frequency. The sampled climate variability allows for robust and in-depth research into (compound) extreme events such as heat waves and droughts.
Yi-Chi Wang, Wan-Ling Tseng, Yu-Luen Chen, Shih-Yu Lee, Huang-Hsiung Hsu, and Hsin-Chien Liang
Geosci. Model Dev., 16, 4599–4616, https://doi.org/10.5194/gmd-16-4599-2023, https://doi.org/10.5194/gmd-16-4599-2023, 2023
Short summary
Short summary
This study focuses on evaluating the performance of the Taiwan Earth System Model version 1 (TaiESM1) in simulating the El Niño–Southern Oscillation (ENSO), a significant tropical climate pattern with global impacts. Our findings reveal that TaiESM1 effectively captures several characteristics of ENSO, such as its seasonal variation and remote teleconnections. Its pronounced ENSO strength bias is also thoroughly investigated, aiming to gain insights to improve climate model performance.
Raghul Parthipan, Hannah M. Christensen, J. Scott Hosking, and Damon J. Wischik
Geosci. Model Dev., 16, 4501–4519, https://doi.org/10.5194/gmd-16-4501-2023, https://doi.org/10.5194/gmd-16-4501-2023, 2023
Short summary
Short summary
How can we create better climate models? We tackle this by proposing a data-driven successor to the existing approach for capturing key temporal trends in climate models. We combine probability, allowing us to represent uncertainty, with machine learning, a technique to learn relationships from data which are undiscoverable to humans. Our model is often superior to existing baselines when tested in a simple atmospheric simulation.
Laura J. Wilcox, Robert J. Allen, Bjørn H. Samset, Massimo A. Bollasina, Paul T. Griffiths, James Keeble, Marianne T. Lund, Risto Makkonen, Joonas Merikanto, Declan O'Donnell, David J. Paynter, Geeta G. Persad, Steven T. Rumbold, Toshihiko Takemura, Kostas Tsigaridis, Sabine Undorf, and Daniel M. Westervelt
Geosci. Model Dev., 16, 4451–4479, https://doi.org/10.5194/gmd-16-4451-2023, https://doi.org/10.5194/gmd-16-4451-2023, 2023
Short summary
Short summary
Changes in anthropogenic aerosol emissions have strongly contributed to global and regional climate change. However, the size of these regional impacts and the way they arise are still uncertain. With large changes in aerosol emissions a possibility over the next few decades, it is important to better quantify the potential role of aerosol in future regional climate change. The Regional Aerosol Model Intercomparison Project will deliver experiments designed to facilitate this.
Nicholas Depsky, Ian Bolliger, Daniel Allen, Jun Ho Choi, Michael Delgado, Michael Greenstone, Ali Hamidi, Trevor Houser, Robert E. Kopp, and Solomon Hsiang
Geosci. Model Dev., 16, 4331–4366, https://doi.org/10.5194/gmd-16-4331-2023, https://doi.org/10.5194/gmd-16-4331-2023, 2023
Short summary
Short summary
This work presents a novel open-source modeling platform for evaluating future sea level rise (SLR) impacts. Using nearly 10 000 discrete coastline segments around the world, we estimate 21st-century costs for 230 SLR and socioeconomic scenarios. We find that annual end-of-century costs range from USD 100 billion under a 2 °C warming scenario with proactive adaptation to 7 trillion under a 4 °C warming scenario with minimal adaptation, illustrating the cost-effectiveness of coastal adaptation.
Shruti Nath, Lukas Gudmundsson, Jonas Schwaab, Gregory Duveiller, Steven J. De Hertog, Suqi Guo, Felix Havermann, Fei Luo, Iris Manola, Julia Pongratz, Sonia I. Seneviratne, Carl F. Schleussner, Wim Thiery, and Quentin Lejeune
Geosci. Model Dev., 16, 4283–4313, https://doi.org/10.5194/gmd-16-4283-2023, https://doi.org/10.5194/gmd-16-4283-2023, 2023
Short summary
Short summary
Tree cover changes play a significant role in climate mitigation and adaptation. Their regional impacts are key in informing national-level decisions and prioritising areas for conservation efforts. We present a first step towards exploring these regional impacts using a simple statistical device, i.e. emulator. The emulator only needs to train on climate model outputs representing the maximal impacts of aff-, re-, and deforestation, from which it explores plausible in-between outcomes itself.
Chen Zhang and Tianyu Fu
Geosci. Model Dev., 16, 4315–4329, https://doi.org/10.5194/gmd-16-4315-2023, https://doi.org/10.5194/gmd-16-4315-2023, 2023
Short summary
Short summary
A new automatic calibration toolkit was developed and implemented into the recalibration of a 3-D water quality model, with observations in a wider range of hydrological variability. Compared to the model calibrated with the original strategy, the recalibrated model performed significantly better in modeled total phosphorus, chlorophyll a, and dissolved oxygen. Our work indicates that hydrological variability in the calibration periods has a non-negligible impact on the water quality models.
Camilla Mathison, Eleanor Burke, Andrew J. Hartley, Douglas I. Kelley, Chantelle Burton, Eddy Robertson, Nicola Gedney, Karina Williams, Andy Wiltshire, Richard J. Ellis, Alistair A. Sellar, and Chris D. Jones
Geosci. Model Dev., 16, 4249–4264, https://doi.org/10.5194/gmd-16-4249-2023, https://doi.org/10.5194/gmd-16-4249-2023, 2023
Short summary
Short summary
This paper describes and evaluates a new modelling methodology to quantify the impacts of climate change on water, biomes and the carbon cycle. We have created a new configuration and set-up for the JULES-ES land surface model, driven by bias-corrected historical and future climate model output provided by the Inter-Sectoral Impacts Model Intercomparison Project (ISIMIP). This allows us to compare projections of the impacts of climate change across multiple impact models and multiple sectors.
Bo Dong, Ross Bannister, Yumeng Chen, Alison Fowler, and Keith Haines
Geosci. Model Dev., 16, 4233–4247, https://doi.org/10.5194/gmd-16-4233-2023, https://doi.org/10.5194/gmd-16-4233-2023, 2023
Short summary
Short summary
Traditional Kalman smoothers are expensive to apply in large global ocean operational forecast and reanalysis systems. We develop a cost-efficient method to overcome the technical constraints and to improve the performance of existing reanalysis products.
Makcim L. De Sisto, Andrew H. MacDougall, Nadine Mengis, and Sophia Antoniello
Geosci. Model Dev., 16, 4113–4136, https://doi.org/10.5194/gmd-16-4113-2023, https://doi.org/10.5194/gmd-16-4113-2023, 2023
Short summary
Short summary
In this study, we developed a nitrogen and phosphorus cycle in an intermediate-complexity Earth system climate model. We found that the implementation of nutrient limitation in simulations has reduced the capacity of land to take up atmospheric carbon and has decreased the vegetation biomass, hence, improving the fidelity of the response of land to simulated atmospheric CO2 rise.
Manuel C. Almeida and Pedro S. Coelho
Geosci. Model Dev., 16, 4083–4112, https://doi.org/10.5194/gmd-16-4083-2023, https://doi.org/10.5194/gmd-16-4083-2023, 2023
Short summary
Short summary
Water temperature (WT) datasets of low-order rivers are scarce. In this study, five different models are used to predict the WT of 83 rivers. Generally, the results show that the models' hyperparameter optimization is essential and that to minimize the prediction error it is relevant to apply all the models considered in this study. Results also show that there is a logarithmic correlation among the error of the predicted river WT and the watershed time of concentration.
Lingcheng Li, Yilin Fang, Zhonghua Zheng, Mingjie Shi, Marcos Longo, Charles D. Koven, Jennifer A. Holm, Rosie A. Fisher, Nate G. McDowell, Jeffrey Chambers, and L. Ruby Leung
Geosci. Model Dev., 16, 4017–4040, https://doi.org/10.5194/gmd-16-4017-2023, https://doi.org/10.5194/gmd-16-4017-2023, 2023
Short summary
Short summary
Accurately modeling plant coexistence in vegetation demographic models like ELM-FATES is challenging. This study proposes a repeatable method that uses machine-learning-based surrogate models to optimize plant trait parameters in ELM-FATES. Our approach significantly improves plant coexistence modeling, thus reducing errors. It has important implications for modeling ecosystem dynamics in response to climate change.
Qi Tang, Jean-Christophe Golaz, Luke P. Van Roekel, Mark A. Taylor, Wuyin Lin, Benjamin R. Hillman, Paul A. Ullrich, Andrew M. Bradley, Oksana Guba, Jonathan D. Wolfe, Tian Zhou, Kai Zhang, Xue Zheng, Yunyan Zhang, Meng Zhang, Mingxuan Wu, Hailong Wang, Cheng Tao, Balwinder Singh, Alan M. Rhoades, Yi Qin, Hong-Yi Li, Yan Feng, Yuying Zhang, Chengzhu Zhang, Charles S. Zender, Shaocheng Xie, Erika L. Roesler, Andrew F. Roberts, Azamat Mametjanov, Mathew E. Maltrud, Noel D. Keen, Robert L. Jacob, Christiane Jablonowski, Owen K. Hughes, Ryan M. Forsyth, Alan V. Di Vittorio, Peter M. Caldwell, Gautam Bisht, Renata B. McCoy, L. Ruby Leung, and David C. Bader
Geosci. Model Dev., 16, 3953–3995, https://doi.org/10.5194/gmd-16-3953-2023, https://doi.org/10.5194/gmd-16-3953-2023, 2023
Short summary
Short summary
High-resolution simulations are superior to low-resolution ones in capturing regional climate changes and climate extremes. However, uniformly reducing the grid size of a global Earth system model is too computationally expensive. We provide an overview of the fully coupled regionally refined model (RRM) of E3SMv2 and document a first-of-its-kind set of climate production simulations using RRM at an economic cost. The key to this success is our innovative hybrid time step method.
Anne Marie Treguier, Clement de Boyer Montégut, Alexandra Bozec, Eric P. Chassignet, Baylor Fox-Kemper, Andy McC. Hogg, Doroteaciro Iovino, Andrew E. Kiss, Julien Le Sommer, Yiwen Li, Pengfei Lin, Camille Lique, Hailong Liu, Guillaume Serazin, Dmitry Sidorenko, Qiang Wang, Xiaobio Xu, and Steve Yeager
Geosci. Model Dev., 16, 3849–3872, https://doi.org/10.5194/gmd-16-3849-2023, https://doi.org/10.5194/gmd-16-3849-2023, 2023
Short summary
Short summary
The ocean mixed layer is the interface between the ocean interior and the atmosphere and plays a key role in climate variability. We evaluate the performance of the new generation of ocean models for climate studies, designed to resolve
ocean eddies, which are the largest source of ocean variability and modulate the mixed-layer properties. We find that the mixed-layer depth is better represented in eddy-rich models but, unfortunately, not uniformly across the globe and not in all models.
Duseong S. Jo, Simone Tilmes, Louisa K. Emmons, Siyuan Wang, and Francis Vitt
Geosci. Model Dev., 16, 3893–3906, https://doi.org/10.5194/gmd-16-3893-2023, https://doi.org/10.5194/gmd-16-3893-2023, 2023
Short summary
Short summary
A new simple secondary organic aerosol (SOA) scheme has been developed for the Community Atmosphere Model (CAM) based on the complex SOA scheme in CAM with detailed chemistry (CAM-chem). The CAM with the new SOA scheme shows better agreements with CAM-chem in terms of aerosol concentrations and radiative fluxes, which ensures more consistent results between different compsets in the Community Earth System Model. The new SOA scheme also has technical advantages for future developments.
Leroy J. Bird, Matthew G. W. Walker, Greg E. Bodeker, Isaac H. Campbell, Guangzhong Liu, Swapna Josmi Sam, Jared Lewis, and Suzanne M. Rosier
Geosci. Model Dev., 16, 3785–3808, https://doi.org/10.5194/gmd-16-3785-2023, https://doi.org/10.5194/gmd-16-3785-2023, 2023
Short summary
Short summary
Deriving the statistics of expected future changes in extreme precipitation is challenging due to these events being rare. Regional climate models (RCMs) are computationally prohibitive for generating ensembles capable of capturing large numbers of extreme precipitation events with statistical robustness. Stochastic precipitation generators (SPGs) provide an alternative to RCMs. We describe a novel single-site SPG that learns the statistics of precipitation using a machine-learning approach.
Zhe Zhang, Yanping Li, Fei Chen, Phillip Harder, Warren Helgason, James Famiglietti, Prasanth Valayamkunnath, Cenlin He, and Zhenhua Li
Geosci. Model Dev., 16, 3809–3825, https://doi.org/10.5194/gmd-16-3809-2023, https://doi.org/10.5194/gmd-16-3809-2023, 2023
Short summary
Short summary
Crop models incorporated in Earth system models are essential to accurately simulate crop growth processes on Earth's surface and agricultural production. In this study, we aim to model the spring wheat in the Northern Great Plains, focusing on three aspects: (1) develop the wheat model at a point scale, (2) apply dynamic planting and harvest schedules, and (3) adopt a revised heat stress function. The results show substantial improvements and have great importance for agricultural production.
Abolfazl Simorgh, Manuel Soler, Daniel González-Arribas, Florian Linke, Benjamin Lührs, Maximilian M. Meuser, Simone Dietmüller, Sigrun Matthes, Hiroshi Yamashita, Feijia Yin, Federica Castino, Volker Grewe, and Sabine Baumann
Geosci. Model Dev., 16, 3723–3748, https://doi.org/10.5194/gmd-16-3723-2023, https://doi.org/10.5194/gmd-16-3723-2023, 2023
Short summary
Short summary
This paper addresses the robust climate optimal trajectory planning problem under uncertain meteorological conditions within the structured airspace. Based on the optimization methodology, a Python library has been developed, which can be accessed using the following DOI: https://doi.org/10.5281/zenodo.7121862. The developed tool is capable of providing robust trajectories taking into account all probable realizations of meteorological conditions provided by an EPS computationally very fast.
Matteo Willeit, Tatiana Ilyina, Bo Liu, Christoph Heinze, Mahé Perrette, Malte Heinemann, Daniela Dalmonech, Victor Brovkin, Guy Munhoven, Janine Börker, Jens Hartmann, Gibran Romero-Mujalli, and Andrey Ganopolski
Geosci. Model Dev., 16, 3501–3534, https://doi.org/10.5194/gmd-16-3501-2023, https://doi.org/10.5194/gmd-16-3501-2023, 2023
Short summary
Short summary
In this paper we present the carbon cycle component of the newly developed fast Earth system model CLIMBER-X. The model can be run with interactive atmospheric CO2 to investigate the feedbacks between climate and the carbon cycle on temporal scales ranging from decades to > 100 000 years. CLIMBER-X is expected to be a useful tool for studying past climate–carbon cycle changes and for the investigation of the long-term future evolution of the Earth system.
Jatan Buch, A. Park Williams, Caroline S. Juang, Winslow D. Hansen, and Pierre Gentine
Geosci. Model Dev., 16, 3407–3433, https://doi.org/10.5194/gmd-16-3407-2023, https://doi.org/10.5194/gmd-16-3407-2023, 2023
Short summary
Short summary
We leverage machine learning techniques to construct a statistical model of grid-scale fire frequencies and sizes using climate, vegetation, and human predictors. Our model reproduces the observed trends in fire activity across multiple regions and timescales. We provide uncertainty estimates to inform resource allocation plans for fuel treatment and fire management. Altogether the accuracy and efficiency of our model make it ideal for coupled use with large-scale dynamical vegetation models.
Sebastian Ostberg, Christoph Müller, Jens Heinke, and Sibyll Schaphoff
Geosci. Model Dev., 16, 3375–3406, https://doi.org/10.5194/gmd-16-3375-2023, https://doi.org/10.5194/gmd-16-3375-2023, 2023
Short summary
Short summary
We present a new toolbox for generating input datasets for terrestrial ecosystem models from diverse and partially conflicting data sources. The toolbox documents the sources and processing of data and is designed to make inconsistencies between source datasets transparent so that users can make their own decisions on how to resolve these should they not be content with our default assumptions. As an example, we use the toolbox to create input datasets at two different spatial resolutions.
Alena Malyarenko, Alexandra Gossart, Rui Sun, and Mario Krapp
Geosci. Model Dev., 16, 3355–3373, https://doi.org/10.5194/gmd-16-3355-2023, https://doi.org/10.5194/gmd-16-3355-2023, 2023
Short summary
Short summary
Simultaneous modelling of ocean, sea ice, and atmosphere in coupled models is critical for understanding all of the processes that happen in the Antarctic. Here we have developed a coupled model for the Ross Sea, P-SKRIPS, that conserves heat and mass between the ocean and sea ice model (MITgcm) and the atmosphere model (PWRF). We have shown that our developments reduce the model drift, which is important for long-term simulations. P-SKRIPS shows good results in modelling coastal polynyas.
Feijia Yin, Volker Grewe, Federica Castino, Pratik Rao, Sigrun Matthes, Katrin Dahlmann, Simone Dietmüller, Christine Frömming, Hiroshi Yamashita, Patrick Peter, Emma Klingaman, Keith P. Shine, Benjamin Lührs, and Florian Linke
Geosci. Model Dev., 16, 3313–3334, https://doi.org/10.5194/gmd-16-3313-2023, https://doi.org/10.5194/gmd-16-3313-2023, 2023
Short summary
Short summary
This paper describes a newly developed submodel ACCF V1.0 based on the MESSy 2.53.0 infrastructure. The ACCF V1.0 is based on the prototype algorithmic climate change functions (aCCFs) v1.0 to enable climate-optimized flight trajectories. One highlight of this paper is that we describe a consistent full set of aCCFs formulas with respect to fuel scenario and metrics. We demonstrate the usage of the ACCF submodel using AirTraf V2.0 to optimize trajectories for cost and climate impact.
Peter Ukkonen and Robin J. Hogan
Geosci. Model Dev., 16, 3241–3261, https://doi.org/10.5194/gmd-16-3241-2023, https://doi.org/10.5194/gmd-16-3241-2023, 2023
Short summary
Short summary
Climate and weather models suffer from uncertainties resulting from approximated processes. Solar and thermal radiation is one example, as it is computationally too costly to simulate precisely. This has led to attempts to replace radiation codes based on physical equations with neural networks (NNs) that are faster but uncertain. In this paper we use global weather simulations to demonstrate that a middle-ground approach of using NNs only to predict optical properties is accurate and reliable.
Maximilian Gelbrecht, Alistair White, Sebastian Bathiany, and Niklas Boers
Geosci. Model Dev., 16, 3123–3135, https://doi.org/10.5194/gmd-16-3123-2023, https://doi.org/10.5194/gmd-16-3123-2023, 2023
Short summary
Short summary
Differential programming is a technique that enables the automatic computation of derivatives of the output of models with respect to model parameters. Applying these techniques to Earth system modeling leverages the increasing availability of high-quality data to improve the models themselves. This can be done by either using calibration techniques that use gradient-based optimization or incorporating machine learning methods that can learn previously unresolved influences directly from data.
Carolina Gallo, Jonathan M. Eden, Bastien Dieppois, Igor Drobyshev, Peter Z. Fulé, Jesús San-Miguel-Ayanz, and Matthew Blackett
Geosci. Model Dev., 16, 3103–3122, https://doi.org/10.5194/gmd-16-3103-2023, https://doi.org/10.5194/gmd-16-3103-2023, 2023
Short summary
Short summary
This study conducts the first global evaluation of the latest generation of global climate models to simulate a set of fire weather indicators from the Canadian Fire Weather Index System. Models are shown to perform relatively strongly at the global scale, but they show substantial regional and seasonal differences. The results demonstrate the value of model evaluation and selection in producing reliable fire danger projections, ultimately to support decision-making and forest management.
Klaus Klingmüller and Jos Lelieveld
Geosci. Model Dev., 16, 3013–3028, https://doi.org/10.5194/gmd-16-3013-2023, https://doi.org/10.5194/gmd-16-3013-2023, 2023
Short summary
Short summary
Desert dust has significant impacts on climate, public health, infrastructure and ecosystems. An impact assessment requires numerical predictions, which are challenging because the dust emissions are not well known. We present a novel approach using satellite observations and machine learning to more accurately estimate the emissions and to improve the model simulations.
Anna Denvil-Sommer, Erik T. Buitenhuis, Rainer Kiko, Fabien Lombard, Lionel Guidi, and Corinne Le Quéré
Geosci. Model Dev., 16, 2995–3012, https://doi.org/10.5194/gmd-16-2995-2023, https://doi.org/10.5194/gmd-16-2995-2023, 2023
Short summary
Short summary
Using outputs of global biogeochemical ocean model and machine learning methods, we demonstrate that it will be possible to identify linkages between surface environmental and ecosystem structure and the export of carbon to depth by sinking organic particles using real observations. It will be possible to use this knowledge to improve both our understanding of ecosystem dynamics and of their functional representation within models.
Zhenxia Liu, Zengjie Wang, Jian Wang, Zhengfang Zhang, Dongshuang Li, Zhaoyuan Yu, Linwang Yuan, and Wen Luo
Geosci. Model Dev., 16, 2939–2955, https://doi.org/10.5194/gmd-16-2939-2023, https://doi.org/10.5194/gmd-16-2939-2023, 2023
Short summary
Short summary
This study introduces an improved method of the Globally Resolved Energy Balance (GREB) model by the Bayesian network. The improved method constructs a coarse–fine structure that combines a dynamical model with a statistical model based on employing the GREB model as the global framework and utilizing Bayesian networks as the local optimization. The results show that the improved model has better applicability and stability on a global scale and maintains good robustness on the timescale.
Colin Tully, David Neubauer, and Ulrike Lohmann
Geosci. Model Dev., 16, 2957–2973, https://doi.org/10.5194/gmd-16-2957-2023, https://doi.org/10.5194/gmd-16-2957-2023, 2023
Short summary
Short summary
A new method to simulate deterministic ice nucleation processes based on the differential activated fraction was evaluated against a cumulative approach. Box model simulations of heterogeneous-only ice nucleation within cirrus suggest that the latter approach likely underpredicts the ice crystal number concentration. Longer simulations with a GCM show that choosing between these two approaches impacts ice nucleation competition within cirrus but leads to small and insignificant climate effects.
Rasmus E. Benestad, Abdelkader Mezghani, Julia Lutz, Andreas Dobler, Kajsa M. Parding, and Oskar A. Landgren
Geosci. Model Dev., 16, 2899–2913, https://doi.org/10.5194/gmd-16-2899-2023, https://doi.org/10.5194/gmd-16-2899-2023, 2023
Short summary
Short summary
A mathematical method known as common EOFs is not widely used within the climate research community, but it offers innovative ways of evaluating climate models. We show how common EOFs can be used to evaluate large ensembles of global climate model simulations and distill information about their ability to reproduce salient features of the regional climate. We can say that they represent a kind of machine learning (ML) for dealing with big data.
Li Liu, Chao Sun, Xinzhu Yu, Hao Yu, Qingu Jiang, Xingliang Li, Ruizhe Li, Bin Wang, Xueshun Shen, and Guangwen Yang
Geosci. Model Dev., 16, 2833–2850, https://doi.org/10.5194/gmd-16-2833-2023, https://doi.org/10.5194/gmd-16-2833-2023, 2023
Short summary
Short summary
C-Coupler3.0 is an integrated coupler infrastructure with new features, i.e. a series of parallel-optimization technologies, a common halo-exchange library, a common module-integration framework, a common framework for conveniently developing a weakly coupled ensemble data assimilation system, and a common framework for flexibly inputting and outputting fields in parallel. It is able to handle coupling under much finer resolutions (e.g. more than 100 million horizontal grid cells).
Joseph Schoonover, Wilbert Weijer, and Jiaxu Zhang
Geosci. Model Dev., 16, 2795–2809, https://doi.org/10.5194/gmd-16-2795-2023, https://doi.org/10.5194/gmd-16-2795-2023, 2023
Short summary
Short summary
FEOTS aims to enhance the value of data produced by state-of-the-art climate models by providing a framework to diagnose and use ocean transport operators for offline passive tracer simulations. We show that we can capture ocean transport operators from a validated climate model and employ these operators to estimate water mass budgets in an offline regional simulation, using a small fraction of the compute resources required to run a full climate simulation.
Johann Dahm, Eddie Davis, Florian Deconinck, Oliver Elbert, Rhea George, Jeremy McGibbon, Tobias Wicky, Elynn Wu, Christopher Kung, Tal Ben-Nun, Lucas Harris, Linus Groner, and Oliver Fuhrer
Geosci. Model Dev., 16, 2719–2736, https://doi.org/10.5194/gmd-16-2719-2023, https://doi.org/10.5194/gmd-16-2719-2023, 2023
Short summary
Short summary
It is hard for scientists to write code which is efficient on different kinds of supercomputers. Python is popular for its user-friendliness. We converted a Fortran code, simulating Earth's atmosphere, into Python. This new code auto-converts to a faster language for processors or graphic cards. Our code runs 3.5–4 times faster on graphic cards than the original on processors in a specific supercomputer system.
Xiaoxu Shi, Alexandre Cauquoin, Gerrit Lohmann, Lukas Jonkers, Qiang Wang, Hu Yang, Yuchen Sun, and Martin Werner
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-68, https://doi.org/10.5194/gmd-2023-68, 2023
Revised manuscript accepted for GMD
Short summary
Short summary
We develpoed a new climate model with isotopic capabilities and simulated the pre-industrial and mid-Holocene periods. Despite certain regional model biases, the modeled isotope composition is in good agreement with observation and reconstruction. Based on our analyses, the observed isotope-temperature relationship in polar regions may have a summertime bias. Using daily model outputs, we developed a novel isotope-based approach for determining the onset date of the West African summer monsoon.
Jan Polcher, Anthony Schrapffer, Eliott Dupont, Lucia Rinchiuso, Xudong Zhou, Olivier Boucher, Emmanuel Mouche, Catherine Ottlé, and Jérôme Servonnat
Geosci. Model Dev., 16, 2583–2606, https://doi.org/10.5194/gmd-16-2583-2023, https://doi.org/10.5194/gmd-16-2583-2023, 2023
Short summary
Short summary
The proposed graphs of hydrological sub-grid elements for atmospheric models allow us to integrate the topographical elements needed in land surface models for a realistic representation of horizontal water and energy transport. The study demonstrates the numerical properties of the automatically built graphs and the simulated water flows.
Magnus Hieronymus
Geosci. Model Dev., 16, 2343–2354, https://doi.org/10.5194/gmd-16-2343-2023, https://doi.org/10.5194/gmd-16-2343-2023, 2023
Short summary
Short summary
A statistical model called the sea level simulator is presented and made freely available. The sea level simulator integrates mean sea level rise and sea level extremes into a joint probabilistic framework that is useful for flood risk estimation. These flood risk estimates are contingent on probabilities given to different emission scenarios and the length of the planning period. The model is also useful for uncertainty quantification and in decision and adaptation problems.
Young-Chan Noh, Yonghan Choi, Hyo-Jong Song, Kevin Raeder, Joo-Hong Kim, and Youngchae Kwon
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-60, https://doi.org/10.5194/gmd-2023-60, 2023
Revised manuscript accepted for GMD
Short summary
Short summary
This is the first attempt to assimilate the observations of microwave temperature sounders into the global climate forecast model in which the satellite observations have not been assimilated in the past. To do this, preprocessing schemes are developed to make the satellite observations suitable to be assimilated. In the assimilation experiments, the model analysis is significantly improved by assimilating the observations of microwave temperature sounders.
Quang-Van Doan, Toshiyuki Amagasa, Thanh-Ha Pham, Takuto Sato, Fei Chen, and Hiroyuki Kusaka
Geosci. Model Dev., 16, 2215–2233, https://doi.org/10.5194/gmd-16-2215-2023, https://doi.org/10.5194/gmd-16-2215-2023, 2023
Short summary
Short summary
This study proposes (i) the structural k-means (S k-means) algorithm for clustering spatiotemporally structured climate data and (ii) the clustering uncertainty evaluation framework (CUEF) based on the mutual-information concept.
Nadine Goris, Klaus Johannsen, and Jerry Tjiputra
Geosci. Model Dev., 16, 2095–2117, https://doi.org/10.5194/gmd-16-2095-2023, https://doi.org/10.5194/gmd-16-2095-2023, 2023
Short summary
Short summary
Climate projections of a high-CO2 future are highly uncertain. A new study provides a novel approach to identifying key regions that dynamically explain the model uncertainty. To yield an accurate estimate of the future North Atlantic carbon uptake, we find that a correct simulation of the upper- and interior-ocean volume transport at 25–30° N is key. However, results indicate that models rarely perform well for both indicators and point towards inconsistencies within the model ensemble.
Pyry Pentikäinen, Ewan J. O'Connor, and Pablo Ortiz-Amezcua
Geosci. Model Dev., 16, 2077–2094, https://doi.org/10.5194/gmd-16-2077-2023, https://doi.org/10.5194/gmd-16-2077-2023, 2023
Short summary
Short summary
We used Doppler lidar to evaluate the wind profiles generated by a weather forecast model. We first compared the Doppler lidar observations with co-located radiosonde profiles, and they agree well. The model performs best over marine and coastal locations. Larger errors were seen in locations where the surface was more complex, especially in the wind direction. Our results show that Doppler lidar is a suitable instrument for evaluating the boundary layer wind profiles in atmospheric models.
Rubina Ansari, Ana Casanueva, Muhammad Usman Liaqat, and Giovanna Grossi
Geosci. Model Dev., 16, 2055–2076, https://doi.org/10.5194/gmd-16-2055-2023, https://doi.org/10.5194/gmd-16-2055-2023, 2023
Short summary
Short summary
Bias correction (BC) has become indispensable to climate model output as a post-processing step to render output more useful for impact assessment studies. The current work presents a comparison of different state-of-the-art BC methods (univariate and multivariate) and BC approaches (direct and component-wise) for climate model simulations from three initiatives (CMIP6, CORDEX, and CORDEX-CORE) for a multivariate drought index (i.e., standardized precipitation evapotranspiration index).
Cenlin He, Prasanth Valayamkunnath, Michael Barlage, Fei Chen, David Gochis, Ryan Cabell, Tim Schneider, Roy Rasmussen, Guo-Yue Niu, Zong-Liang Yang, Dev Niyogi, and Michael Ek
EGUsphere, https://doi.org/10.5194/egusphere-2023-675, https://doi.org/10.5194/egusphere-2023-675, 2023
Short summary
Short summary
Noah-MP is one of the most widely-used community land surface models in the world, which is designed for applications ranging from uncoupled land-surface and ecohydrological process studies to coupled numerical weather prediction and decadal climate simulations. To facilitate model developments and applications, we modernize Noah-MP by adopting modern Fortran code and data structures and standards, which substantially enhances the model modularity, interoperability, and applicability.
Jérémy Bernard, Fredrik Lindberg, and Sandro Oswald
EGUsphere, https://doi.org/10.5194/egusphere-2023-354, https://doi.org/10.5194/egusphere-2023-354, 2023
Short summary
Short summary
The UMEP plug-in integrated in the free QGIS software can now calculate the spatial variation of the wind speed within urban settings. This manuscript shows that the new wind model, URock, fits generally well with observations and highlights the main needed improvements. According to this work, pedestrian wind fields and outdoor thermal comfort can now simply be estimated by any QGIS user (researchers, students and practitioners).
Maria Chara Karypidou, Stefan Pieter Sobolowski, Lorenzo Sangelantoni, Grigory Nikulin, and Eleni Katragkou
Geosci. Model Dev., 16, 1887–1908, https://doi.org/10.5194/gmd-16-1887-2023, https://doi.org/10.5194/gmd-16-1887-2023, 2023
Short summary
Short summary
Southern Africa is listed among the climate change hotspots; hence, accurate climate change information is vital for the optimal preparedness of local communities. In this work we assess the degree to which regional climate models (RCMs) are influenced by the global climate models (GCMs) from which they receive their lateral boundary forcing. We find that although GCMs exert a strong impact on RCMs, RCMs are still able to display substantial improvement relative to the driving GCMs.
Cited articles
Abramowitz, G.: Towards a public, standardized, diagnostic benchmarking system for land surface models, Geosci. Model Dev., 5, 819–827, https://doi.org/10.5194/gmd-5-819-2012, 2012. a, b
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration
– Guidelines for computing crop water requirements, Irrigation and drainage
paper 56, FAO – Food and Agriculture Organization of the United Nations,
Rome, 1998. a
Asrar, G., Fuchs, M., Kanemasu, E. T., and Hatfield, J. L.: Estimating
Absorbed Photosynthetic Radiation and Leaf Area Index from
Spectral Reflectance in Wheat1, Agronom. J., 76, 300,
https://doi.org/10.2134/agronj1984.00021962007600020029x, 1984. a
Beringer, J., Hutley, L. B., McHugh, I., Arndt, S. K., Campbell, D., Cleugh, H. A., Cleverly, J., Resco de Dios, V., Eamus, D., Evans, B., Ewenz, C., Grace, P., Griebel, A., Haverd, V., Hinko-Najera, N., Huete, A., Isaac, P., Kanniah, K., Leuning, R., Liddell, M. J., Macfarlane, C., Meyer, W., Moore, C., Pendall, E., Phillips, A., Phillips, R. L., Prober, S. M., Restrepo-Coupe, N., Rutledge, S., Schroder, I., Silberstein, R., Southall, P., Yee, M. S., Tapper, N. J., van Gorsel, E., Vote, C., Walker, J., and Wardlaw, T.: An introduction to the Australian and New Zealand flux tower network – OzFlux, Biogeosciences, 13, 5895–5916, https://doi.org/10.5194/bg-13-5895-2016, 2016. a, b
Beringer, J., McHugh, I., Hutley, L. B., Isaac, P., and Kljun, N.: Technical note: Dynamic INtegrated Gap-filling and partitioning for OzFlux (DINGO), Biogeosciences, 14, 1457–1460, https://doi.org/10.5194/bg-14-1457-2017, 2017. a
Bierkens, M. F. P. and van den Hurk, B. J. J. M.: Groundwater convergence as a
possible mechanism for multi-year persistence in rainfall, Geophys.
Res. Lett., 34, L02402, https://doi.org/10.1029/2006GL028396, 2007. a, b
Blyth, E., Clark, D. B., Ellis, R., Huntingford, C., Los, S., Pryor, M., Best, M., and Sitch, S.: A comprehensive set of benchmark tests for a land surface model of simultaneous fluxes of water and carbon at both the global and seasonal scale, Geosci. Model Dev., 4, 255–269, https://doi.org/10.5194/gmd-4-255-2011, 2011. a, b
Buckley, T. N. and Roberts, D. W.: DESPOT, a process-based tree growth model
that allocates carbon to maximize carbon gain, Tree Physiol., 26, 129–144,
https://doi.org/10.1093/treephys/26.2.129, 2006. a
Carsel, R. F. and Parrish, R. S.: Developing joint probability distributions of
soil water retention characteristics, Water Resour. Res., 24, 755–769,
https://doi.org/10.1029/WR024i005p00755, 1988. a, b
Clark, M. P., Zolfaghari, R., Green, K. R., Trim, S., Knoben, W. J. M.,
Bennett, A., Nijssen, B., Ireson, A., and Spiteri, R. J.: The Numerical
Implementation of Land Models: Problem Formulation and Laugh
Tests, J. Hydrometeorol., 22, 1627–1648,
https://doi.org/10.1175/JHM-D-20-0175.1, 2021. a, b
Donohue, R., McVicar, T., and Roderick, M.: Australian monthly fPAR derived
from Advanced Very High Resolution Radiometer reflectances –
version 5. v1. CSIRO, Data Collection,
https://doi.org/10.4225/08/50FE0CBE0DD06, 2013. a, b
Donohue, R. J., Roderick, M. L., and McVicar, T. R.: Deriving consistent
long-term vegetation information from AVHRR reflectance data using a
cover-triangle-based framework, Remote Sens. Environ., 112,
2938–2949, https://doi.org/10.1016/j.rse.2008.02.008, 2008. a, b
Duan, Q., Sorooshian, S., and Gupta, V. K.: Optimal use of the SCE-UA
global optimization method for calibrating watershed models, J.
Hydrol., 158, 265–284, https://doi.org/10.1016/0022-1694(94)90057-4, 1994. a
Givnish, T.: Adaptation to Sun and Shade: a Whole-Plant Perspective,
Funct. Plant Biol., 15, 63, https://doi.org/10.1071/PP9880063, 1988. a
Hikosaka, K.: A Model of Dynamics of Leaves and Nitrogen in a Plant
Canopy: An Integration of Canopy Photosynthesis, Leaf Life
Span, and Nitrogen Use Efficiency, The American Naturalist, 162,
149–164, https://doi.org/10.1086/376576, 2003. a
Hutley, L. B., Beringer, J., Isaac, P. R., Hacker, J. M., and Cernusak, L. A.:
A sub-continental scale living laboratory: Spatial patterns of savanna
vegetation over a rainfall gradient in northern Australia, Agricult.
Forest Meteorol., 151, 1417–1428, https://doi.org/10.1016/j.agrformet.2011.03.002,
2011. a, b, c
Keeling, C. D., Piper, S. C., Bacastow, R. B., Wahlen, M., Whorf, T. P.,
Heimann, M., and Meijer, H. A.: Atmospheric CO2 and 13CO2 Exchange with
the Terrestrial Biosphere and Oceans from 1978 to 2000: Observations
and Carbon Cycle Implications, in: A History of Atmospheric CO2
and its effects on Plants, Animals, and Ecosystems, edited by: Ehleringer, J. R., Cerling, T. E.,
and Dearing, M. D.,
Springer Verlag, New York, 83–113, https://doi.org/10.1007/b138533, 2005. a, b, c
Lu, H.: Decomposition of vegetation cover into woody and herbaceous components
using AVHRR NDVI time series, Remote Sens. Environ., 86, 1–18,
https://doi.org/10.1016/S0034-4257(03)00054-3, 2003. a
Ma, X., Huete, A., Yu, Q., Coupe, N. R., Davies, K., Broich, M., Ratana, P.,
Beringer, J., Hutley, L. B., Cleverly, J., Boulain, N., and Eamus, D.:
Spatial patterns and temporal dynamics in savanna vegetation phenology across
the North Australian Tropical Transect, Remote Sens.
Environ., 139, 97–115, https://doi.org/10.1016/j.rse.2013.07.030, 2013. a
Maxwell, R. M., Chow, F. K., and Kollet, S. J.: The
groundwater–land-surface–atmosphere connection: Soil moisture effects
on the atmospheric boundary layer in fully-coupled simulations, Adv.
Water Resour., 30, 2447–2466, https://doi.org/10.1016/j.advwatres.2007.05.018, 2007. a, b
Medlyn, B. E., Dreyer, E., Ellsworth, D., Forstreuter, M., Harley, P. C.,
Kirschbaum, M. U. F., Roux, X. L., Montpied, P., Strassemeyer, J., Walcroft,
A., Wang, K., and Loustau, D.: Temperature response of parameters of a
biochemically based model of photosynthesis. II. A review of experimental
data, Plant Cell Environ., 25, 1167–1179,
https://doi.org/10.1046/j.1365-3040.2002.00891.x, 2002. a
Nijzink, R. C.: VOMcases, RenkuLab [code/data], available at: https://renkulab.io/gitlab/remko.nijzink/vomcases, last access: 27 January 2022. a
Nijzink, R. C. and Schymanski, S. J.: schymans/VOM: Code used for 2020 paper on the NATT (v0.5), Zenodo [code], https://doi.org/10.5281/zenodo.3630081, 2020. a, b
Nijzink, R. and Schymanski, S.: VOMcases (v0.3), Zenodo [code/data], https://doi.org/10.5281/zenodo.5789101, 2021. a, b
Nijzink, R. C., Beringer, J., Hutley, L. B., and Schymanski, S. J.:
Does maximization of net carbon profit enable the prediction of vegetation behaviour in savanna sites along a precipitation gradient?, Hydrol. Earth Syst. Sci., 26, 525–550, https://doi.org/10.5194/hess-26-525-2022, 2022. a, b, c, d, e, f, g, h, i, j, k
Radcliffe, D. E. and Rasmussen, T. C.: Soil water movement, in: Physics
Companion, edited by:
Warrick, A. W., CRC Press, Boca Raton, Fla, 85–126, ISBN 9781420041651, 2002. a
Raupach, M. R.: 19 Dynamics and Optimality in Coupled Terrestrial
Energy, Water, Carbon and Nutrient Cycles, in: Predictions in
Ungauged Basins: International Perspectives on State of the Art
and Pathways Forward, edited by: Franks, S., Sivapalan, M., Takeuchi, K., and Tachikawa, Y., IAHS Press, Wallingford, 16, ISBN 978-1901502381, 2005. a
Reggiani, P., Sivapalan, M., and Hassanizadeh, S. M.: Conservation equations
governing hillslope responses: Exploring the physical basis of water
balance, Water Resour. Res., 36, 1845–1863,
https://doi.org/10.1029/2000WR900066, 2000. a, b
Rodríguez-Iturbe, I., D'Odorico, P., Porporato, A., and Ridolfi, L.: On the
spatial and temporal links between vegetation, climate, and soil moisture,
Water Resour. Res., 35, 3709–3722, https://doi.org/10.1029/1999WR900255, 1999a. a
Rodríguez-Iturbe, I., D'Odorico, P., Porporato, A., and Ridolfi, L.:
Tree-grass coexistence in Savannas: The role of spatial dynamics and
climate fluctuations, Geophys. Res. Lett., 26, 247–250,
https://doi.org/10.1029/1998GL900296, 1999b. a
Savenije, H. H. G.: The importance of interception and why we should delete the
term evapotranspiration from our vocabulary, Hydrol. Process., 18,
1507–1511, https://doi.org/10.1002/hyp.5563, 2004. a
Schenk, H. J. and Jackson, R. B.: Rooting depths, lateral root spreads and
below-ground/above-ground allometries of plants in water-limited ecosystems,
J. Ecol., 90, 480–494, 2002. a
Schymanski, S.: VOM, GitHub [code], available at: https://github.com/schymans/VOM, last access: 27 January 2022. a
Schymanski, S. J., Roderick, M. L., Sivapalan, M., Hutley, L. B., and Beringer,
J.: A canopy-scale test of the optimal water use hypothesis, Plant Cell
Environ., 31, 97–111, https://doi.org/10.1111/j.1365-3040.2007.01740.x,
2008a. a, b
Schymanski, S. J., Roderick, M. L., and Sivapalan, M.: Using an optimality
model to understand medium and long-term responses of vegetation water use to
elevated atmospheric CO2 concentrations, AoB Plants, 7, plv060,
https://doi.org/10.1093/aobpla/plv060, 2015. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, aa, ab
van Genuchten, M. T.: A Closed-form Equation for Predicting the
Hydraulic Conductivity of Unsaturated Soils, Soil Sci. Soc.
Am. J., 44, 892–898,
https://doi.org/10.2136/sssaj1980.03615995004400050002x,
1980. a, b, c
Viscarra Rossel, R., Chen, C., Grundy, M., Searle, R., Clifford, D., Odgers,
N., Holmes, K., Griffin, T., Liddicoat, C., and Kidd, D.: Soil and
Landscape Grid National Soil Attribute Maps – Clay (3′′
resolution) – Release 1, CSIRO Data Access Portal, https://doi.org/10.4225/08/546EEE35164BF,
2014a. a, b
Viscarra Rossel, R., Chen, C., Grundy, M., Searle, R., Clifford, D., Odgers,
N., Holmes, K., Griffin, T., Liddicoat, C., and Kidd, D.: Soil and
Landscape Grid National Soil Attribute Maps – Silt (3′′
resolution) – Release 1, CSIRO Data Access Portal, https://doi.org/10.4225/08/546F48D6A6D48,
2014b. a, b
Viscarra Rossel, R., Chen, C., Grundy, M., Searle, R., Clifford, D., Odgers,
N., Holmes, K., Griffin, T., Liddicoat, C., and Kidd, D.: Soil and
Landscape Grid National Soil Attribute Maps – Sand (3′′
resolution) – Release 1, , CSIRO Data Access Portal, https://doi.org/10.4225/08/546F29646877E,
2014c. a, b
von Caemmerer, S.: Biochemical Models of Leaf Photosynthesis, in:
Techniques in Plant Sciences, CSIRO Publishing, Collingwood, 2, https://doi.org/10.1071/9780643103405,
2000. a
Whitley, R., Beringer, J., Hutley, L. B., Abramowitz, G., De Kauwe, M. G., Duursma, R., Evans, B., Haverd, V., Li, L., Ryu, Y., Smith, B., Wang, Y.-P., Williams, M., and Yu, Q.: A model inter-comparison study to examine limiting factors in modelling Australian tropical savannas, Biogeosciences, 13, 3245–3265, https://doi.org/10.5194/bg-13-3245-2016, 2016. a, b, c, d, e, f, g, h, i, j
Williams, R. J., Duff, G. A., Bowman, D. M. J. S., and Cook, G. D.: Variation
in the composition and structure of tropical savannas as a function of
rainfall and soil texture along a large-scale climatic gradient in the
Northern Territory, Australia, J. Biogeogr., 23, 747–756,
https://doi.org/10.1111/j.1365-2699.1996.tb00036.x, 1996. a
Wright, I. J., Reich, P. B., Westoby, M., Ackerly, D. D., Baruch, Z., Bongers,
F., Cavender-Bares, J., Chapin, T., Cornelissen, J. H. C., Diemer, M.,
Flexas, J., Garnier, E., Groom, P. K., Gulias, J., Hikosaka, K., Lamont,
B. B., Lee, T., Lee, W., Lusk, C., and Midgley, J. J.: The worldwide leaf
economics spectrum, Nature, 428, 821–827, https://doi.org/10.1038/nature02403, 2004. a
York, J. P., Person, M., Gutowski, W. J., and Winter, T. C.: Putting aquifers
into atmospheric simulation models: an example from the Mill Creek
Watershed, northeastern Kansas, Adv. Water Resour., 25,
221–238, https://doi.org/10.1016/S0309-1708(01)00021-5, 2002. a, b
Short summary
The Vegetation Optimality Model (VOM) is a coupled water–vegetation model that predicts vegetation properties rather than determines them based on observations. A range of updates to previous applications of the VOM has been made for increased generality and improved comparability with conventional models. This showed that there is a large effect on the simulated water and carbon fluxes caused by the assumption of deep groundwater tables and updated soil profiles in the model.
The Vegetation Optimality Model (VOM) is a coupled water–vegetation model that predicts...