Articles | Volume 15, issue 22
https://doi.org/10.5194/gmd-15-8411-2022
https://doi.org/10.5194/gmd-15-8411-2022
Model description paper
 | Highlight paper
 | 
21 Nov 2022
Model description paper | Highlight paper |  | 21 Nov 2022

Global biomass burning fuel consumption and emissions at 500 m spatial resolution based on the Global Fire Emissions Database (GFED)

Dave van Wees, Guido R. van der Werf, James T. Randerson, Brendan M. Rogers, Yang Chen, Sander Veraverbeke, Louis Giglio, and Douglas C. Morton

Related authors

Multi-decadal trends and variability in burned area from the fifth version of the Global Fire Emissions Database (GFED5)
Yang Chen, Joanne Hall, Dave van Wees, Niels Andela, Stijn Hantson, Louis Giglio, Guido R. van der Werf, Douglas C. Morton, and James T. Randerson
Earth Syst. Sci. Data, 15, 5227–5259, https://doi.org/10.5194/essd-15-5227-2023,https://doi.org/10.5194/essd-15-5227-2023, 2023
Short summary
Dynamic savanna burning emission factors based on satellite data using a machine learning approach
Roland Vernooij, Tom Eames, Jeremy Russell-Smith, Cameron Yates, Robin Beatty, Jay Evans, Andrew Edwards, Natasha Ribeiro, Martin Wooster, Tercia Strydom, Marcos Vinicius Giongo, Marco Assis Borges, Máximo Menezes Costa, Ana Carolina Sena Barradas, Dave van Wees, and Guido R. Van der Werf
Earth Syst. Dynam., 14, 1039–1064, https://doi.org/10.5194/esd-14-1039-2023,https://doi.org/10.5194/esd-14-1039-2023, 2023
Short summary
High-resolution data reveal a surge of biomass loss from temperate and Atlantic pine forests, contextualizing the 2022 fire season distinctiveness in France
Lilian Vallet, Martin Schwartz, Philippe Ciais, Dave van Wees, Aurelien de Truchis, and Florent Mouillot
Biogeosciences, 20, 3803–3825, https://doi.org/10.5194/bg-20-3803-2023,https://doi.org/10.5194/bg-20-3803-2023, 2023
Short summary
Modelling biomass burning emissions and the effect of spatial resolution: a case study for Africa based on the Global Fire Emissions Database (GFED)
Dave van Wees and Guido R. van der Werf
Geosci. Model Dev., 12, 4681–4703, https://doi.org/10.5194/gmd-12-4681-2019,https://doi.org/10.5194/gmd-12-4681-2019, 2019
Short summary

Related subject area

Climate and Earth system modeling
From weather data to river runoff: using spatiotemporal convolutional networks for discharge forecasting
Florian Börgel, Sven Karsten, Karoline Rummel, and Ulf Gräwe
Geosci. Model Dev., 18, 2005–2019, https://doi.org/10.5194/gmd-18-2005-2025,https://doi.org/10.5194/gmd-18-2005-2025, 2025
Short summary
A Fortran–Python interface for integrating machine learning parameterization into earth system models
Tao Zhang, Cyril Morcrette, Meng Zhang, Wuyin Lin, Shaocheng Xie, Ye Liu, Kwinten Van Weverberg, and Joana Rodrigues
Geosci. Model Dev., 18, 1917–1928, https://doi.org/10.5194/gmd-18-1917-2025,https://doi.org/10.5194/gmd-18-1917-2025, 2025
Short summary
A rapid-application emissions-to-impacts tool for scenario assessment: Probabilistic Regional Impacts from Model patterns and Emissions (PRIME)
Camilla Mathison, Eleanor J. Burke, Gregory Munday, Chris D. Jones, Chris J. Smith, Norman J. Steinert, Andy J. Wiltshire, Chris Huntingford, Eszter Kovacs, Laila K. Gohar, Rebecca M. Varney, and Douglas McNeall
Geosci. Model Dev., 18, 1785–1808, https://doi.org/10.5194/gmd-18-1785-2025,https://doi.org/10.5194/gmd-18-1785-2025, 2025
Short summary
The DOE E3SM version 2.1: overview and assessment of the impacts of parameterized ocean submesoscales
Katherine M. Smith, Alice M. Barthel, LeAnn M. Conlon, Luke P. Van Roekel, Anthony Bartoletti, Jean-Christophe Golaz, Chengzhu Zhang, Carolyn Branecky Begeman, James J. Benedict, Gautam Bisht, Yan Feng, Walter Hannah, Bryce E. Harrop, Nicole Jeffery, Wuyin Lin, Po-Lun Ma, Mathew E. Maltrud, Mark R. Petersen, Balwinder Singh, Qi Tang, Teklu Tesfa, Jonathan D. Wolfe, Shaocheng Xie, Xue Zheng, Karthik Balaguru, Oluwayemi Garuba, Peter Gleckler, Aixue Hu, Jiwoo Lee, Ben Moore-Maley, and Ana C. Ordoñez
Geosci. Model Dev., 18, 1613–1633, https://doi.org/10.5194/gmd-18-1613-2025,https://doi.org/10.5194/gmd-18-1613-2025, 2025
Short summary
WRF-ELM v1.0: a regional climate model to study land–atmosphere interactions over heterogeneous land use regions
Huilin Huang, Yun Qian, Gautam Bisht, Jiali Wang, Tirthankar Chakraborty, Dalei Hao, Jianfeng Li, Travis Thurber, Balwinder Singh, Zhao Yang, Ye Liu, Pengfei Xue, William J. Sacks, Ethan Coon, and Robert Hetland
Geosci. Model Dev., 18, 1427–1443, https://doi.org/10.5194/gmd-18-1427-2025,https://doi.org/10.5194/gmd-18-1427-2025, 2025
Short summary

Cited articles

Abatzoglou, J. T., Williams, A. P., and Barbero, R.: Global Emergence of Anthropogenic Climate Change in Fire Weather Indices, Geophys. Res. Lett., 46, 326–336, https://doi.org/10.1029/2018GL080959, 2019. 
Ballhorn, U., Siegert, F., Mason, M., and Limin, S.: Derivation of burn scar depths and estimation of carbon emissions with LIDAR in Indonesian peatlands, P. Natl. Acad. Sci. USA, 106, 21213–21218, https://doi.org/10.1073/pnas.0906457106, 2009. 
Berbery, E. H., Ciappesoni, H. C., and Kalnay, E.: The smoke episode in Buenos Aires, 15–20 April 2008, Geophys. Res. Lett., 35, L21801, https://doi.org/10.1029/2008GL035278, 2008. 
Download
Executive editor
Fire is a pervasive feature of the Earth system, and a cause of significant carbon emissions. This manuscript presents a higher resolution fire emissions data set than previously available, thereby providing a valuable resource to the scientific community.
Short summary
We present a global fire emission model based on the GFED model framework with a spatial resolution of 500 m. The higher resolution allowed for a more detailed representation of spatial heterogeneity in fuels and emissions. Specific modules were developed to model, for example, emissions from fire-related forest loss and belowground burning. Results from the 500 m model were compared to GFED4s, showing that global emissions were relatively similar but that spatial differences were substantial.
Share