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Abstract. In fire emission models, the spatial resolution of
both the modelling framework and the satellite data used
to quantify burned area can have considerable impact on
emission estimates. Consideration of this sensitivity is es-
pecially important in areas with heterogeneous land cover
and fire regimes and when constraining model output with
field measurements. We developed a global fire emissions
model with a spatial resolution of 500 m using MODerate
resolution Imaging Spectroradiometer (MODIS) data. To ac-
commodate this spatial resolution, our model is based on
a simplified version of the Global Fire Emissions Database
(GFED) modelling framework. Tree mortality as a result of
fire, i.e. fire-related forest loss, was modelled based on the
overlap between 30 m forest loss data and MODIS burned
area and active fire detections. Using this new 500 m model,
we calculated global average carbon emissions from fire of
2.1±0.2 (±1σ interannual variability, IAV) Pg C yr−1 during
2002–2020. Fire-related forest loss accounted for 2.6±0.7 %
(uncertainty range= 1.9 %–3.3 %) of global burned area and
24± 6 % (uncertainty range = 16 %–31 %) of emissions, in-
dicating that fuel consumption in forest fires is an order of
magnitude higher than the global average. Emissions from
the combustion of soil organic carbon (SOC) in the bo-
real region and tropical peatlands accounted for 13± 4 %
of global emissions. Our global fire emissions estimate was
higher than the 1.5 Pg C yr−1 from GFED4 and similar to
2.1 Pg C yr−1 from GFED4s. Even though GFED4s included

more burned area by accounting for small fires undetected by
the MODIS burned area mapping algorithm, our emissions
were similar to GFED4s due to higher average fuel consump-
tion. The global difference in fuel consumption could mainly
be explained by higher SOC emissions from the boreal re-
gion as constrained by additional measurements. The higher
resolution of the 500 m model also contributed to the differ-
ence by improving the simulation of landscape heterogeneity
and reducing the scale mismatch in comparing field measure-
ments to model grid cell averages during model calibration.
Furthermore, the fire-related forest loss algorithm introduced
in our model led to more accurate and widespread estima-
tion of high-fuel-consumption burned area. Recent advances
in burned area detection at resolutions of 30 m and finer show
a substantial amount of burned area that remains undetected
with 500 m sensors, suggesting that global carbon emissions
from fire are likely higher than our 500 m estimates. The abil-
ity to model fire emissions at 500 m resolution provides a
framework for further improvements with the development
of new satellite-based estimates of fuels, burned area, and
fire behaviour, for use in the next generation of GFED.

Published by Copernicus Publications on behalf of the European Geosciences Union.



8412 D. van Wees et al.: Global biomass burning fuel consumption and emissions at 500 m spatial resolution

1 Introduction

Fires are an essential component of the Earth system, shaping
ecosystems and emitting substantial amounts of greenhouse
gases and aerosols into the atmosphere (Masson-Delmotte et
al., 2021; McLauchlan et al., 2020). Fires therefore have a
major influence on global climate and carbon cycling. Global
fire emissions have been studied intensively since the 1980s
(Seiler and Crutzen, 1980), initially using biome-specific pa-
rameterizations in combination with static vegetation maps
and later using remote-sensing data in combination with dy-
namic modelling. Models used for estimating contemporary
global fire emissions are typically based on either a biogeo-
chemical model for estimation of fuel load and fuel con-
sumption in combination with satellite-based burned area to
calculate emissions (e.g. van der Werf et al., 2017), or re-
motely sensed active fire detections from thermal anoma-
lies in combination with parametric relationships that con-
vert fire radiative power (FRP) to fire radiative energy (FRE)
and emissions (e.g. Kaiser et al., 2012; Mota and Wooster,
2018). The biogeochemical modelling approach relies heav-
ily on remote-sensing data of vegetation cover, vegetation
productivity, and moisture conditions, whereas the FRP ap-
proach bypasses some of these dependencies by directly re-
lating FRE to emissions. However, active fire detections are
limited to actively burning fires during cloud-free satellite
overpasses, whereas burned area detections can be derived
from a set of images before and after the fire and give a more
accurate estimate of the fire-affected area. Active fire detec-
tions can also be used in biogeochemical models to estimate
the burned area from small fires undetected by burned area
detection algorithms (Randerson et al., 2012). The MOD-
erate resolution Imaging Spectroradiometer (MODIS) sen-
sors on board the Terra and Aqua satellites, launched in 1999
and 2002, respectively, and with a spatial resolution between
250–1000 m dependent on the reflectance band, have been
among the main sources of data used by global fire emis-
sion models for the last 20 years. The Global Fire Emissions
Database (GFED) estimates fire emissions based on a bio-
geochemical model that relies on various MODIS-derived
datasets including burned area (Giglio et al., 2018; van der
Werf et al., 2017). GFED has provided a benchmark for eval-
uating fire emissions estimates from prognostic models and
has been used widely within different scientific communities,
for example, the Intergovernmental Panel on Climate Change
(IPCC) reports, the Global Carbon Project, and as a valida-
tion tool for other estimation methods (Friedlingstein et al.,
2020; Hantson et al., 2016; Masson-Delmotte et al., 2021).

Current estimates of global fire emissions are around
2 Pg C yr−1 (Kaiser et al., 2012; van der Werf et al., 2017).
In contrast to emissions from fossil fuel burning, only a por-
tion of global fire emissions contribute to net emissions and
thus the build-up of CO2 in the Earth’s atmosphere. In many
ecosystems where the fire regime is not rapidly changing,
carbon losses from fire emissions are balanced by carbon ac-

cumulation associated with vegetation recovery and post-fire
succession. Fire-affected area and emissions from fire can
vary substantially between regions and biomes, as can their
drivers and impacts (Cattau et al., 2020; Kelley et al., 2019).
About 70 % of global burned area occurs in Africa, primarily
due to frequently burning surface fires in savannas (Giglio
et al., 2018). As a result of the relatively low fuel consump-
tion of these fires (the amount of carbon emitted per unit area
burned), they account for only about half of global fire car-
bon emissions (van der Werf et al., 2017), and many of these
emissions are sequestered by regrowth within a year. Fuel
consumption rates of roughly an order of magnitude larger
are observed in fires in forests that involve the burning of
tree biomass and larger amounts of accumulated surface fu-
els (Krylov et al., 2014; van Wees et al., 2021). In forest
ecosystems, regrowth is slower, and lost carbon takes longer
to accumulate. Emissions are especially impactful in the case
of deforestation, as regrowth is largely or fully inhibited. In
the tropics, slash-and-burn practices are used to convert land
from tropical forest to agriculture, which involves a deliber-
ate set of management efforts to harvest, aggregate, and dry
woody fuels that increases fuel consumption (Carvalho et al.,
1995; Kauffman et al., 1995). In tropical peatlands and bo-
real forests, fire can also burn into carbon-rich soil organic
layers, leading to even higher fuel consumption rates and the
release of carbon that is not re-accumulated for hundreds or
thousands of years (Page and Hooijer, 2016; Walker et al.,
2019).

Global net fire emissions are estimated to be around
0.4 Pg C yr−1, primarily from deforestation and peat fires
(van der Werf et al., 2017). Net fire emissions are a major
contributor to total land use and land cover change (LULCC)
emissions, which are estimated to be around 1.6± 0.7 (±1σ
uncertainty) Pg C yr−1 during 2010–2019 (Friedlingstein et
al., 2020). In addition to fire, LULCC emissions are gen-
erated from logging, forest degradation, and shifting agri-
culture. Although fossil fuel emissions are much larger
(9.6± 0.5 Pg C yr−1; ±1σ uncertainty; Friedlingstein et al.,
2020), LULCC emissions introduce considerable interannual
and decadal variability and uncertainty into estimates of the
global carbon budget (van Marle et al., 2022). Fire emissions
from deforestation are a particularly large source of direct net
emissions with substantial interannual variability. However,
difficulties remain in determining the causal relationship be-
tween fire detections and reductions in tree cover, both spa-
tially and temporally. Van Wees et al. (2021) estimated that
38 % of global forest loss was related to fire. This fraction
was higher in primary humid tropical forests (41 %), illus-
trating the important role of fire as a disturbance agent in
tropical forests, both due to deforestation and drought-related
fires (Aragão et al., 2018; Brando et al., 2019). These were
gross fire-related forest loss estimates and thus included both
cases of permanent conversion and cases where the distur-
bance was followed by regrowth. Regrowth of forest gener-
ally occurs after stand-replacing wildfires in temperate and
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boreal forests and shifting agriculture in the tropics. How-
ever, even without permanent land cover change, fires can
lead to net emissions due to shortening fire-return intervals as
a result of changes in land management and climate change
(Walker et al., 2019; Wang et al., 2021). Although numerous
studies have linked recent record-breaking fire events in bo-
real, temperate, and tropical regions to climate change (Abat-
zoglou et al., 2019; Canadell et al., 2021; Gutierrez et al.,
2022; Williams et al., 2019), the global influence of climate
on net emissions remains uncertain. These uncertainties and
the extrapolation of climate–fire interactions into the future
require improved fire emission models.

Considerable uncertainties exist in current fire emission
estimates (Carter et al., 2020; Liu et al., 2020). For exam-
ple, GFED reports emissions with a substantial estimated
uncertainty of ±50 % for continental- to global-scale esti-
mates (van der Werf et al., 2017). However, improvements
have been made with respect to burned area detection and
fire modelling since the last GFED release. Furthermore, nu-
merous field campaigns have been conducted that provide
additional data for model calibration and validation. One
large remaining source of uncertainty is spatial resolution.
Fire emission models have historically been implemented at
a spatial resolution much coarser than the satellite data used
to derive burned area and vegetation properties. For exam-
ple, although the model framework of GFED4 (hereafter de-
scribed as GFED4(s), which comprises emission estimates
from GFED4 without small fires and GFED4s with small
fires) draws upon MODIS-derived data products with a reso-
lution of 500 m, these data are aggregated by vegetation type
to a spatial resolution of 0.25◦ (approximately 28× 28 km at
the Equator) for carbon model calculations. A case study for
sub-Saharan Africa by van Wees and van der Werf (2019)
showed that this spatial aggregation can have a substantial
impact on estimated fire emissions. Comparing model simu-
lations at the native 500 m and at aggregated 0.25◦ resolution
using a modelling framework similar to GFED, they found
24 % lower emissions based on the 500 m resolution model.
The difference was mainly explained by a reduction in rep-
resentation errors for the finer-resolution model when com-
paring modelled fuel load and consumption to field measure-
ments. Representation errors follow from the scale mismatch
between field plots and model grid cell averages (Janjić et
al., 2018). The finer model grid cell provides a better approx-
imation of the field-measured value, as field plots can be as
small as 30× 30 m. Because field measurements play a cru-
cial role in model calibration, both fuel load and consumption
estimates are strongly influenced by spatial resolution. Other
mechanisms that contributed to the difference included the
impact of spatial aggregation on non-linearities in the model
and the loss of variability in the aggregated representation
of biomes (van Wees and van der Werf, 2019). The benefits
of higher-resolution fire emission modelling have yet to be
extended to a global scale.

In this paper we present a global fire emissions model
with a spatial resolution of 500 m, with the aim of providing
an improved modelling framework for estimating fire emis-
sions at both local and global scales. The model presented
in this paper builds on an earlier 500 m model case study
for sub-Saharan Africa as described in van Wees and van
der Werf (2019) and with application in Ramo et al. (2021).
The main advancements made since the initial case study
include (1) global coverage; (2) updated input datasets, in-
cluding upgrades from MODIS Collection 5 (C5) to MODIS
Collection 6 (C6) for burned area and vegetation cover and
ERA-Interim to ERA5-land reanalysis for surface climate;
(3) automated calibration of net primary production (NPP)
using the MODIS NPP product; (4) automated calibration of
aboveground biomass using reference biomass maps; (5) an
updated field measurement synthesis database that allows for
the calibration of fuel loads and fuel consumption for individ-
ual biomass and litter pools at 500 m resolution; and (6) inte-
gration of a fire-related forest loss module based on van Wees
et al. (2021) for modelling tree mortality.

2 Methods

For this study we developed a global fire emissions model
with a 500 m spatial resolution and a monthly temporal res-
olution for the 2002–2020 time period. The model was de-
rived from the GFED modelling framework, which origi-
nates from the Carnegie–Ames–Stanford Approach (CASA)
biosphere model (Field et al., 1995; Potter et al., 1993). In
GFED, the CASA model is used to diagnostically model veg-
etation production and decomposition in order to estimate
fuel loads, with heavy reliance on remote-sensing products
of vegetation cover and productivity. Fuel loads are multi-
plied by satellite-derived burned area and metrics for com-
bustion completeness (CC) to calculate emissions (Seiler and
Crutzen, 1980). To account for the increase in spatial resolu-
tion from 0.25◦ to 500 m and the associated computational
costs, the original GFED framework was simplified by omit-
ting herbivory and grazing processes, for which accurate rep-
resentations at 500 m resolution do not exist, excluding dy-
namic belowground carbon cycling of soil organic carbon
(SOC) and using a modified version of the heterotrophic res-
piration scheme. We will first describe the model framework
(Sect. 2.1), with a focus on changes made and additional
modules introduced since the case study described in van
Wees and van der Werf (2019). Next, we describe the model
input datasets (Sect. 2.2). Finally, we present the model cali-
bration steps and simulation procedure (Sect. 2.3).

2.1 Model description

In the model, carbon input from satellite-based NPP is par-
titioned between aboveground and belowground biomass
pools. Biomass mortality, including from disturbance pro-
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cesses such as fire, converts the aboveground biomass to sur-
face litter pools. Carbon output occurs from microbial de-
composition of litter followed by respiration, as well as from
fire emissions.

2.1.1 Biomass production and decomposition

NPP (in g C m−2) is based on the CASA light-use efficiency
model and calculated at each 500 m grid cell, x, and monthly
time step, t , as

NPP(x, t)= SSR(x, t) · 0.5 · fPAR(x, t) · T1 (x)

· T2(x, t) ·W (x, t) · εmax, (1)

where SSR is the downward solar radiation at the surface (in
MJ m−2) from ERA5-land reanalysis; fPAR is the fraction
of photosynthetically active radiation absorbed by vegetation
derived from MODIS; T1, T2, andW are unitless temperature
and water stress scalars (adopted from Field et al., 1995); and
εmax is the maximum light-use efficiency (in g C MJ−1). The
factor 0.5 represents the fraction of solar radiation in the pho-
tosynthetically active radiation wavelengths (400–700 nm)
(Myneni et al., 2015). The temperature scalars, T1 and T2,
are given by

T1(x)= 0.8+ 0.02
[
◦C−1

]
Topt (x)

− 0.0005
[
◦C−2

]
Topt(x)

2 (2)

T2(x, t)= 1.1814
1

1+ e0.2[◦C−1](Topt(x)−10[◦C]−T (x,t))

·
1

1+ e0.3[◦C−1](−Topt(x)−10[◦C]+T (x,t))
, (3)

where T is the 2 m air temperature (in ◦C) from ERA5-land
reanalysis, and Topt is the mean temperature during the month
with the maximum fPAR. The water stress scalar, W , is a
linear function based on the evaporative stress factor, S, and
calculated as

W (x, t)= 0.5+
S(x, t)

2
. (4)

Evaporative stress converts potential evaporation into actual
evaporation and is based on vegetation optical depth as a
proxy for vegetation water content and simulations of soil
moisture in the root zone from the Global Land Evaporation
Amsterdam Model (GLEAM; Martens et al., 2017; Miralles
et al., 2011). The light-use efficiency is halved at maximum
water stress (S = 0) and increases linearly towards optimal
conditions. Modelled NPP is partitioned between stem, leaf,
grass, and root biomass pools based on fractional tree cover
(FTC) and fractional non-tree vegetation cover (NTV) data.
Tree vegetation is represented by the stem, leaf, and root
pools, each of which receive tree-allocated NPP in ratios of
0.27, 0.33, and 0.40, respectively. These ratios follow from
the initial assumption in the original CASA model that each

of the biomass pools receives one-third of NPP, which in van
Wees and van der Werf (2019) was combined with a redis-
tribution of 20 % of stem NPP to the roots for more realistic
root biomass turnover rates (van der Werf et al., 2009). Non-
tree vegetation, including grasses, shrubs, and crops, is rep-
resented by the grass and root pools, both receiving half of
the non-tree-allocated NPP. Biome-dependent turnover rates
determine the mortality rate of aboveground biomass conver-
sion to surface litter, represented by the fine litter and coarse
woody debris (CWD) model pools. Decomposition causes
the stepwise degradation of CWD to fine litter and fine litter
to SOC. The model does not include a root fine litter pool,
and root mortality feeds directly into the SOC pool. The de-
composition rate is dependent on temperature and moisture
conditions, which are represented in the abiotic scalar, εA,
defined as

εA(x, t)=
εT(x, t) · εSM(x, t)

0.9
with 0.1< εA < 1.0, (5)

where εT and εSM are the temperature and soil moisture
scalar, respectively. The temperature scalar is defined as

εT(x, t)=Q

T (x,t)−30[◦C]
10[◦C]

10 with εT > 1.0= 1.0, (6)

where Q10 is the temperature coefficient. We used a Q10
value of 1.5, implying a 50 % increase for every 10 ◦C rise
in temperature, up to a temperature of 30 ◦C. The soil mois-
ture scalar is defined as

εSM(x, t)=
SM(x, t)

0.45
with 0.1< εSM < 1.0, (7)

where SM is the volumetric soil water content in the 0–
7 cm soil depth layer from ERA5-land reanalysis, in units
of volume fraction. The factor 0.45 increases the dynam-
ics range of εSM since SM typically has a maximum around
0.45 m3 m−3, except for some wetland areas (see Sect. 2.1.3).

Part of the carbon turnover from biomass mortality is
caused by fire and forest loss processes. The amount of
biomass and litter exposed to fire is based on burned area de-
tections and additional burned area derived in the fire-related
forest loss module from overlap between forest loss and ac-
tive fire detections (see Sect. 2.1.2 below). The portion of the
fire-exposed vegetation and litter that is combusted by fire
and released to the atmosphere, i.e. CC, is determined by the
soil moisture scalar εSM (see Table S3). The portion of the
fire-exposed live biomass that is not combusted is killed and
becomes litter. More specifically, unburned grass and leaves
become surface fine litter, stems become CWD, and roots
become SOC. Trees are only affected by fire in case of fire-
related forest loss, in which case the stem and leaf CC values
apply. In case of fire-related forest loss in commodity-driven
deforestation regions, the CC values for the stem, CWD, and
root pools are increased to range between 40 %–90 %, 65 %–
95 %, and 20 %–50 % respectively, in order to simulate re-
peated slash burning and tree uprooting. Forest loss without
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fire (e.g. forestry) causes a reduction in tree cover, and a por-
tion of the affected stem, leaf, and root pools is converted to
surface litter. In this case, only 20 % of the stem biomass lost
is converted to CWD, assuming a logging efficiency of 80 %.
The other 80 % is assumed to end up in wood products and
is not emitted during the simulation period.

2.1.2 Fire-related forest loss module

We used a fire-related forest loss module to represent tree
mortality from fire. This approach replaces the mortality
scalar based on FTC used in a case study of Africa by van
Wees and van der Werf (2019) and in GFED4(s) (van der
Werf et al., 2017). Instead of the mortality scalar, trees, rep-
resented by the stem and leaf pools, are now only affected by
fire in case of fire-related forest loss. This module follows the
methodology described in van Wees et al. (2021) for deter-
mining annual fire-related forest loss. In short, fire-related
forest loss is determined by the probability-based spatio-
temporal detection overlap of annual Landsat-based 30 m
forest loss (Hansen et al., 2013), monthly MODIS 500 m
burned area, and MODIS 1 km (nadir) active fire detections
(Giglio et al., 2016, 2018). Van Wees et al. (2021) also in-
cluded fire detections from the year before forest loss was
mapped in the time series from Hansen et al. (2013) to ac-
count for lagged detection of forest cover loss from fire that
occurred in previous years. For model integration, we have
now distributed the annual fire-related forest loss across the
24 months considered, based on the fire detection timing. The
monthly-distributed fire-related forest loss area was normal-
ized for each year to ensure that the annual sum of monthly-
distributed values did not exceed the annual total fire-related
forest loss area in case of multiple overlapping fire detections
within a year. This normalization step was mostly relevant for
the boreal region, where forest loss can be the result of indi-
vidual fires that burned for multiple months within a 500 m
grid cell. Given that forest loss was based on aggregated 30 m
Landsat values, forest loss area was represented as a fraction
of each 500 m grid cell. The fractional forest loss area was
applied to the portion of the 500 m grid cell with tree cover,
by dividing forest loss area by the grid cell’s pre-disturbance
FTC value. The pre-disturbance FTC value was determined
as the maximum FTC among the current year and the year
preceding disturbance. By dividing by the maximum FTC
of 2 years, we aimed to minimize possible overestimation
due to interannual variability in the FTC dataset. In the case
a (binary) burned area detection coincided with (fractional)
fire-related forest loss within a single 500 m grid cell, the fire-
related forest loss fraction affected the stem and leaf pools,
while the remainder of the grid cell was modelled as fire
without forest loss. All estimates of fire-related forest loss
area and emission in this study are reported with an estimate
range based on the minimum- and maximum-probability fire-
related forest loss as calculated in van Wees et al. (2021).
This range was based on the spatial overlap between forest

loss and active fire pixels. Here, the estimate range is used as
a measure of the uncertainty in fire emissions stemming from
the fire-related forest loss part.

Forest loss without fire was calculated as the remainder
after subtracting fire-related forest loss from total forest loss.
Forest loss without fire includes disturbance processes such
as logging, mechanized forest conversion without fire, insect
and disease outbreaks, and wind storms (Goulden and Bales,
2019; Kurz et al., 2008). This type of forest loss was calcu-
lated annually, after which 1/12 of the annual value was sub-
tracted from the stem and leaf pools each month. In this way,
fire-related forest loss and forest loss without fire adjusted
carbon stocks within the model, allowing the model to better
represent cases where forest loss is caused by fire and cases
where fire follows forest loss (fire after forest degradation
due to, for example, logging or insect outbreaks). In a sensi-
tivity simulation, we accounted for forest loss without fire 2
years after the fire year. This resulted in a change of +0.2 %
in global emissions and of +1.0 % in fire-related forest loss
emissions, showing that cases where fire-related forest loss
and forest loss without fire both occur in one model grid cell
throughout a single year were of minor importance to emis-
sions.

2.1.3 Fire emissions from belowground pools

In conditions of low soil moisture, fires can burn into the
carbon-rich soils in tropical peatlands and the Arctic-boreal
region, generating substantial carbon emissions (Page et al.,
2002; Walker et al., 2020). Modelled belowground fuel con-
sumption of soil organic carbon was based on static SOC ref-
erence maps instead of dynamic soil pools (see Sect. 2.2).
Reference maps were used to ensure reliable SOC amounts
while avoiding demanding modelling and validation of long-
term soil pools and the requirement of an extended model
spin-up. Fire emissions from the combustion of SOC were
only modelled for the boreal region and specific tropical
peatlands, whereas in other regions the soil was assumed not
to be affected by fire. Soils were modelled to burn both in
cases of fire-related forest loss and fire without forest loss.
We limited tropical peat fire emissions to regions with doc-
umented belowground burning, namely the peatlands of In-
donesia and Malaysia (Gaveau et al., 2021; Page et al., 2002),
the Pantanal wetland area in Brazil (Leal Filho et al., 2021;
Libonati et al., 2020; Marengo et al., 2021), and the Paraná
delta wetlands in Argentina (Berbery et al., 2008). The trop-
ical peat burn depth, Dburn_tropics, in centimetres, is based
on a linear regression function derived from the relationship
between field measurements of burn depth (Ballhorn et al.,
2009; Hirano et al., 2014; Konecny et al., 2016; Saharjo and
Nurhayati, 2006; Simpson et al., 2016; Stockwell et al., 2016;
Usup et al., 2004) and a soil moisture scalar (Fig. 1):

Dburn_tropics =−51 · εSM 0−100 cm+ 57 , (8)
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Figure 1. Parameterization of burn depth in tropical peatlands
(Dburn_tropics) as a function of the soil moisture scalar. The tropical
peat burn depth was based on a linear regression function derived
from the relationship between field measurements of burn depth and
the soil moisture scalar, εSM 0−100 cm. The soil moisture scalar was
based on the depth-weighted average volumetric soil water content
over the ERA5-land model depths of 0–7, 7–28, and 28–100 cm
(Muñoz Sabater, 2019).

where εSM 0−100 cm is the soil moisture scalar analogous to
Eq. (7) but for the depth-weighted average volumetric soil
water content over the ERA5-land model depths of 0–7, 7–
28, and 28–100 cm. At minimum moisture conditions, the
burn depth reaches a maximum of 57 cm, which is close to
the average depth of 51 cm reported for the severe 1997 In-
donesian peat fires (Page et al., 2002). For the wetlands in
South America the burn depth was halved to represent shal-
lower burn depths due to the absence of anthropogenic peat
drainage as found in Southeast Asia. The amount of burned
SOC per 500 m grid cell was calculated by multiplying the
burn depth by a peat carbon bulk density of 54 kg C m−3

(Page et al., 2011) and the fraction of peatland in the grid
cell.

The boreal soil burn depth, Dburn_boreal, was based on an
empirical linear function:

Dburn_boreal =−20 · εSM 0−28 cm+ 20 , (9)

where εSM 0−28 cm is the soil moisture scalar analogous to
Eq. (7) but for the depth-weighted average volumetric soil
water content over the ERA5-land model depths of 0–7 and
7–28 cm. This function, with a maximum burn depth of
20 cm, was designed to mimic mean field measurements of
burn depth and soil carbon emissions. Even though about
8 % of field entries in the combustion database from NASA’s
Arctic-Boreal Vulnerability Experiment (ABoVE; Walker et
al. 2020) represent deeper burning, a maximum depth of
20 cm was chosen for best correspondence with the aver-
age SOC emissions over all field entries in the boreal re-
gion. The volumetric soil water content was adjusted to in-

crease variability in areas within the boreal region with con-
sistently high soil moisture such as the Lena River basin.
Grid cells with a water content that did not dip below
0.35 m3 m−3 over the full period of 2002–2020 were adjusted
to range from 0.25 to 0.45 m3 m−3 based on a linear scaling
function (Fig. S1). This adjustment improved belowground
combustion compared to measurements from Veraverbeke
et al. (2021) in the Lena River basin and from Walker et
al. (2020) in boreal North America. The soil organic carbon
depth was calculated by dividing the SOC content from the
NCSCD dataset by a soil carbon bulk density of 35 kg C m−3.
This bulk density was determined as the average bulk den-
sity over all field records in the combustion database from
Walker et al. (2020). We only modelled boreal soil burn-
ing for the boreal forest, sparse boreal forest, tundra, and
wetland biomes and excluded boreal croplands and temper-
ate biomes. This way we excluded belowground emissions
from agricultural burning, as these fires typically only con-
sume aboveground fuels. Especially in southern Russia, agri-
cultural burning leads to substantial burned area that would
otherwise lead to unrealistically high emissions (Hall et al.,
2016). The consumed SOC was subtracted from the initial
NCSCD stocks so that less carbon was available with each
repeated burn, until the SOC pool was fully depleted. In con-
trast, for the tropical peatlands the carbon pool was assumed
to be unlimited, given that peat depths in Indonesia reach
several metres (Gumbricht et al., 2017).

Roots were modelled to burn only in the case of fire-
related forest loss in combination with soil burning and/or
commodity-driven deforestation. In other cases of fire-
related forest loss, and in cases of forest loss without fire,
roots were modelled to die and eventually become soil or-
ganic matter. Fires without forest loss were considered to not
affect roots. In the case of soil burning, the root CC was lin-
early scaled with burn depth to range from 0 % to 10 %. For
commodity-driven deforestation, the root CC was linearly
scaled with the soil moisture scalar and boosted to range from
20 % to 50 % in order to represent mechanical tree uproot-
ing followed by repeated burning of the slash (Carvalho et
al., 1995; Kauffman et al., 1995). In grid cells with both soil
burning and commodity-driven deforestation, the latter CC
scheme was used, assuming that roots were uprooted regard-
less of soil burning.

2.2 Input datasets

Model input data primarily consisted of MODIS Collection 6
(C6) satellite observation products with a 500 m spatial res-
olution, combined with coarser reanalysis meteorology data
and other additional datasets focused on forest loss and re-
gion masking (Table 1). All datasets were reprojected to the
MODIS sinusoidal 500 m grid for model use, using nearest-
neighbour interpolation for coarser-resolution datasets and
average-based interpolation for finer-resolution datasets. The
simulation starting year of 2002 was based on the availabil-
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Table 1. Overview of datasets used as input for the global model.

Variable Acronym Product Spatial Temporal Temporal Reference
resolution resolution coverage

Fraction of photosyn-
thetically active radia-
tion

fPAR MCD15A2H 500 m 8-daily 2002–present Myneni et al. (2015)

Gross primary produc-
tion, net photosynthesis

GPP, PSNnet MOD17A2HGF 500 m 8-daily 2000–present Running and Zhao (2019a)

Net primary production NPP MOD17A3HGF 500 m Annual 2000–present Running and Zhao (2019b)

Fraction tree cover,
non-tree vegetation
cover

FTC, NTV MOD44B 250 m Annual 2000–present Dimiceli et al. (2015)

Land-water mask – MOD44W 250 m Annual 2000–2015 Carroll et al. (2017)

Land cover types Biomes MCD12Q1 500 m Annual 2001–2020 Friedl and Sulla-Menashe (2019)

Burned area BA MCD64A1 500 m Monthly 2000–present Giglio et al. (2018)

Active fires – MCD14ML 1 km Daily 2000–present Giglio et al. (2016)

Forest loss – GFC v1.9 30 m Annual 2001–2021 Hansen et al. (2013)

Aboveground and be-
lowground biomass

AGB, BGB Harmonized global biomass 300 m – 2010 Spawn et al. (2020)

Surface solar radiation
downwards

SSR ERA5-land 0.10◦ Monthly 1950–present Muñoz Sabater (2019)

2 m air temperature T ERA5-land 0.10◦ Monthly 1950–present Muñoz Sabater (2019)

Volumetric soil water SM ERA5-land 0.10◦ Monthly 1950–present Muñoz Sabater (2019)

Evaporative stress S GLEAM v3.6b 0.25◦ Monthly 2003–2021 Martens et al. (2017); Miralles et al. (2011)

Soil organic carbon 0–
30 cm

SOC 0–30 cm NCSCD 0.05◦ – – Hugelius et al. (2013)

Peat cover – SWAMP Global Wetlands 236 m – 2011 Gumbricht et al. (2017)

Ecozones – FAO GEZ2010 1 km – – FAO (2012)

Commodity-driven de-
forestation

– Forest loss drivers 10 km – 2001–2019 Curtis et al. (2018)

ity of MODIS data from both the Terra and Aqua satellites.
For the calculation of NPP, we used MODIS MCD15A2H
fPAR (Myneni et al., 2015) in combination with ERA5-land
surface downward solar radiation and air temperature (2 m
above surface) (Muñoz Sabater, 2019) and evaporative stress
from GLEAM v3.6b (Martens et al., 2017; Miralles et al.,
2011) to calculate the temperature and water stress scalars.
Since ERA5-land only contains data for land grid cells, large
water bodies were complemented with ERA5 data (non-land)
(Hersbach et al., 2019) in order to ensure valid data values
for coastal grid cells at 500 m resolution. Model NPP was
calibrated using MODIS MOD17A3HGF annual NPP. For
comparison, monthly MODIS-derived NPP was estimated
based on the MOD17 product algorithm and using MODIS
MOD17A2HGF monthly gross primary productivity (GPP)
and net photosynthesis (PSNnet) (see Sect. S1 in the Sup-
plement). Model NPP was distributed over tree and non-
tree vegetation classes using the FTC and NTV data from
the MODIS MOD44B Vegetation Continuous Fields (VCF)
product (Dimiceli et al., 2015). Soil moisture scalars for

the calculation of litter decomposition rates, CC, and burn
depth were based on ERA5-land volumetric soil water for
the model depths 0–7, 7–28, and 28–100 cm (Muñoz Sabater,
2019). Burned area was derived from the MODIS MCD64A1
burned area dataset (Giglio et al., 2018). Both burned area
and additional fire detections from the MODIS MCD14ML
active fire product (Giglio et al., 2016) were combined with
Landsat 30 m forest loss detections from the Global Forest
Change (GFC) product (Hansen et al., 2013) to derive fire-
related forest loss at 500 m resolution based on the algorithm
from van Wees et al. (2021). Active fire detections were only
used where they overlapped with forest loss, using forest loss
area as a constraint for burned area. Biome classes were de-
lineated using the MODIS MCD12Q1 land cover type prod-
uct (Friedl and Sulla-Menashe, 2019). Land cover types from
the International Geosphere-Biosphere Programme (IGBP)
classification were reclassified to fit model purposes (Ta-
ble S1; Fig. S2). For the classification of biomes over lat-
itudinal zones, we used the boreal, temperate, and tropical
ecozones from the FAO Global Ecological Zones 2010 up-
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date (FAO, 2012). The subtropics were categorized under
the temperate zone. For water masking we used the MODIS
MOD44W land-water mask, defining land as grid cells with
at least one land classification over 2000–2015 (Carroll et
al., 2017). For boreal belowground fuel consumption, we
used the SOC stocks for 0–30 cm depth from the Northern
Circumpolar Soil Carbon Database (NCSCD) with a spatial
resolution of 0.012◦ (Hugelius et al., 2013). The domain of
this dataset is the northern circumpolar permafrost region,
which is roughly delineated by mean annual ground tem-
peratures below freezing (Obu et al., 2019). We delineated
tropical peatlands using the 236 m binary peatland layer from
the SWAMP Global Wetlands Map (Gumbricht et al., 2017),
and aggregated these data to derive fractional peat cover at
500 m resolution. Commodity-driven deforestation regions
were delineated based on the classification of forest loss
drivers by Curtis et al. (2018).

2.3 Model calibration

2.3.1 Calibration of NPP

Model NPP was calibrated against satellite-based annual
NPP from the MOD17A3HGF product (Running and Zhao,
2019b) by optimizing the modelled maximum light-use effi-
ciency, εmax, per biome (Table S2). The parameter εmax was
determined per biome by minimizing a least-squares func-
tion, as proposed by Zhu et al. (2006) and used at a global
scale by Liu et al. (2019). The least-squares error, E, is de-
scribed by

E(z)=

j∑
i=1

(mi − ni · y)
2, (10)

where mi is the reference NPP, and ni is the product of
SSR, fPAR, T1, T2, W , and the factor 0.5 (see Eq. 1), multi-
plied by the function variable y. For each biome, available
annual reference NPP values are denoted by i, with a to-
tal number of values j . Minimization of the error term E

yields the maximum light-use efficiency, z, calibrated for
each biome. The comparison was performed for all global
land grid cells at 0.05◦ resolution. Model NPP was compared
to monthly MODIS-derived NPP estimated using MODIS
annual NPP from the MOD17A3HGF product in combi-
nation with MODIS monthly GPP and PSNnet from the
MOD17A2HGF product (Running and Zhao, 2019a) (see
Sect. S1 and Fig. S3 in the Supplement).

2.3.2 Calibration of above- and belowground biomass

After calibration of model NPP, biome-specific turnover rates
of the stem and root biomass pools were calibrated to match
reference above- and belowground biomass for 2010 from
Spawn et al. (2020) (Table S2). The dataset from Spawn et
al. (2020) integrates a large collection of previously pub-
lished biomass maps to provide harmonized above- and be-

lowground biomass maps encompassing all vegetation types.
The reference biomass was compared to the average of 2009–
2011 model biomass to reduce the impact of interannual vari-
ability. The optimal turnover rate for each biome was calcu-
lated by solving for the biomass in- and output equations that
hold for the model equilibrium state. The reference above-
ground biomass was used as the equilibrium state for the
stem pool, and the reference belowground biomass was used
for the root pool. For the stem pool, the fraction of NPP that
it receives is given by

steminput = NPPstem =
1
3

NPP ·
FTC

FTC+NTV
·

4
5
, (11)

where steminput and NPPstem are the monthly stem biomass
input, NPP is the total monthly NPP, and FTC and NTV are
the fractions of tree cover and non-tree vegetation cover that
distribute NPP over trees and grasses. In CASA, 1/3 of NPP
is allocated to the stem pool. The factor of 4/5 follows from
the relocation of 20 % of stem NPP to the roots, as described
in Sect. 2.1. Ignoring disturbance factors such as fire, the out-
put from the stem pool is only based on the natural turnover
rate, τstem:

stemoutput = stem · τstem. (12)

After model spin-up, equilibrium between the stem input and
output ensures that

τstem =
NPPstem

AGB
, (13)

where AGB is the reference aboveground biomass from
Spawn et al. (2020). The calibrated τstem for each biome is
calculated as the median of τstem over all 500 m grid cells
within that biome. For the boreal biomes, calibrated stem
turnover rates were found to be notably different between
North America and Eurasia. Therefore, the stem turnover
rates for these continents were determined separately, avoid-
ing overestimation of aboveground biomass for boreal North
America (see Table S2). This could be related to the differ-
ence in fire regime between the continents for the boreal re-
gion (Rogers et al., 2015), accounted for by different turnover
rates.

The root pool NPP input is the sum of the NPP allocated to
the roots of trees and the roots of non-tree vegetation, giving

rootinput = NPProot =
1
3

NPP ·
FTC

FTC+NTV
·

6
5

+
1
2

NPP ·
NTV

FTC+NTV
, (14)

where rootinput and NPProot are the monthly root biomass in-
put. The root turnover rate, τroot, was calculated analogous to
Eq. (13) but substituted with NPProot and the reference be-
lowground biomass, BGB. In CASA, 1/3 of tree NPP and
1/2 of grass NPP are allocated to the root pool. The factor
6/5 in Eq. (14) follows from the relocation of 20 % of stem
NPP to the roots, as described in Sect. 2.1.
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Table 2. Overview of reference data for field measurements of fuel load and fuel consumption for producing the updated synthesis database.
Each measurement count represents a data entry of fuel load and/or fuel consumption for a measurement-specific set of fuel classes.

Reference Region Measurement time span No. of measurements

Van Leeuwen et al. (2014) Global 1972–2011 306
Walker et al. (2020) Boreal North America 1983–2016 791
Dieleman et al. (2020a, b) Saskatchewan 2015 78
Veraverbeke et al. (2021) Siberia 2019 41
Eames et al. (2021), Russell-Smith et al. (2021) Botswana and Mozambique 2019 73
Kukavskaya et al. (2017) Siberia 2014 1
Carvalho et al. (2016) Brazil 2010–2014 3
Cianciaruso et al. (2010) Brazil 2006 1
Clark et al. (2015) United States 2008 1
Girardin et al. (2010) Peru 2005 9
Ivanova et al. (2019) Siberia 2002–2003 3
Mueller et al. (2017) United States 2013–2014 2
Nijmeijer et al. (2019) Cameroon 2015 2
Ottmar et al. (2016) United States 2011–2012 2
Russell-Smith et al. (2014) Australia 2012 1
Schmidt et al. (2017) Brazil 2009–2010 3
Sparks et al. (2017) United States 2014 1
Thomas et al. (2017) United States 2016 1
Turcios et al. (2016) Brazil 2014 1
Virkkula et al. (2014) Finland 2009 1

Total Global 1972–2019 1321

2.3.3 Calibration of fuel load and consumption

In the final calibration step, the turnover rates for the re-
maining aboveground biomass pools (leaf, grass) and the sur-
face litter pools (fine litter, CWD) were tuned individually
so that the modelled fuel loads matched measured pools and
total fuel loads (Table S2). Next, CC values were tuned so
the model matched measured fuel consumption values (Ta-
ble S3). Field measurements of fuel load and consumption
were based on the compiled global database by van Leeuwen
et al. (2014), in combination with a large number of addi-
tional measurements from more recently published datasets
(see Table 2). A link to the updated field measurement syn-
thesis database can be found in the “Data availability” sec-
tion. These more recent datasets include the collection of
field measurements from the ABoVE dataset for boreal North
America (Walker et al., 2020), a field campaign in Siberia
(Veraverbeke et al., 2021), and a field campaign in Botswana
and Mozambique (Eames et al., 2021; Russell-Smith et al.,
2021). Furthermore, the original dataset compiled by van
Leeuwen et al. (2014) was completely revised by referring
back to the source publication of each data entry. In the revi-
sion we have resolved several data entry errors, improved the
precision of plot coordinates, collected measurement data of
individual fuel classes where available, and used other rele-
vant plot information not yet included in the dataset by van
Leeuwen et al. (2014). By collecting source data on individ-
ual fuel classes, we were able to compare modelled to mea-

sured fuel load and consumption for each individual model
pool. In the dataset by van Leeuwen et al. (2014) these data
were clustered into plot totals, which limited the model com-
parisons in van Wees and van der Werf (2019) and van der
Werf et al. (2017). The precision of the reported plot geo-
graphic coordinates was increased to four decimals (0.36′′)
where possible, for more accurate plot localization and com-
patibility with 500 m resolution. Inaccuracies in plot coordi-
nates were solved by selecting a nearby location based on
the plot description in the source publication. For example,
plots were slightly relocated in cases where the original plot
coordinate described a nearby city or when a model grid cell
was previously already burned or deforested (depending on
the plot’s reported fire history).

Further adjustments were made to fully utilize the avail-
able field measurement data for model calibration. Entries
with a burn date prior to 2002 were compared to 2002 model
estimates. In cases where the month was not specified, the
month in the middle of the regional fire season was used.
For the field data from Walker et al. (2020), only entries
with a burn date from 2004 or later were included to ensure
consistency of the measurement protocol, correct informa-
tion on which fuel pools were included in each measurement
(Xanthe Walker, personal communication, 2021), and a mea-
surement date within the model period. A selection of en-
tries from Walker et al. (2020) were replaced with values
from Dieleman et al. (2020a, b) because fuel class-specific
data were available for the aboveground pools (stem, leaf,
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and fine litter) for these plots. On the contrary, the Walker et
al. (2020) dataset only reports total aboveground and below-
ground pools.

2.4 Simulations

We ran our 500 m resolution fire emissions model for the
2002–2020 period at a monthly time step. The model re-
quired a spin-up in order to stabilize carbon pools. In or-
der to reduce required computational resources, the spin-up
was divided into a 300-year annual phase to stabilize pools
with slow turnover rates (e.g. stems) and a 30-year monthly
phase to introduce monthly variability. Both phases were
based on the 2002–2004 climatology of input data to rep-
resent the early period of vegetation cover while reducing
the influence of interannual variability, except for the biome
data and burned area data. For the biome data, the major-
ity biome in the 2001–2003 period was used in order to re-
duce interannual variability and to reduce the influence of
land conversion (e.g. deforestation) during the first simula-
tion years. For the burned area data, different climatologies
were used for biomes with a short or long fire return inter-
val. For biomes that burned relatively frequently on average,
namely shrublands, savannas, grasslands, and croplands, the
2002–2020 climatology was calculated per 500 m grid cell.
For biomes with a longer fire return interval (generally high
tree cover), the burned area during the spin-up was set to
zero, and instead the biome-specific turnover rates (Table S2)
and tree and non-tree vegetation cover fractions implicitly
accounted for the fire regime. For these biomes the time-
averaged burned area was generally < 1 % of a 500 m grid
cell, allowing for approximation by zero. Setting the burn
climatology to zero for these biomes minimized underesti-
mation of local biomass before the actual fire event. For the
annual spin-up phase, monthly turnover rates were converted
to annual rates via

τannual = 1−
(
1− τmonthly

)12
, (15)

where τannual and τmonthly are the turnover rates per year and
month, respectively. During the spin-up, processes related to
forest loss and belowground fire were switched off because
of their long-term impact.

3 Results

3.1 Model optimization

Average annual model NPP was 57± 1 (±1σ interannual
variability; IAV) Pg C yr−1, compared to 58±2 Pg C yr−1 for
MODIS and 63± 1 Pg C yr−1 for GFED4(s) (from 2002 to
2016). The seasonal pattern was largely in agreement with
MODIS (Fig. S3). The overall effective light-use efficiency
(εeff) for our model was 0.29 g C MJ−1 (Table S2). Optimized
stem turnover rates ranged from about 40 years in some low-

tree cover biomes up to 82 years for boreal forests and tun-
dra, with a global average of 48 years (Table S2). Effective
average root turnover rates ranged from 1 year in temperate
croplands to almost 10 years in the boreal tundra. Based on
the biome-dependent stem and root turnover rates, the spa-
tial pattern of above- and belowground biomass aligned well
with the reference data (R2

= 0.91 for stem, R2
= 0.82 for

roots) from Spawn et al. (2020) (see Fig. 2 for aboveground
and Fig. S4 for belowground). As a result, total global above-
ground biomass was 284 Pg C, and belowground biomass
was 121 Pg C, identical to the values reported by Spawn et
al. (2020). The total biomass of 404 Pg C is slightly higher
than another independent estimate of 380 Pg C reported by
Xu et al. (2022). Spatial differences in aboveground biomass
between the model and the reference map were largely the re-
sult of the reliance on MODIS-based FTC and NTV for the
spatial distribution of biomass in the model. For example,
tree biomass for the western part of the Congo Basin tropi-
cal rainforests was underestimated as a consequence of low
MODIS FTC in this area (Figs. 2 and S5a). For belowground
biomass, the largest areas with discrepancies were also found
in Africa. For some savannas across Kenya and Somalia, the
reference belowground biomass density locally was greater
than 4000 g C m−2, which was not reproduced by the model
(Figs. S4 and S5b). However, because belowground burning
is not occurring in those areas, this has no impact on fire
emissions.

Biome-averaged fuel load and fuel consumption agreed
well with field measurements (Fig. 3) as a result of opti-
mizing the turnover rates and CC per biome and fuel class
(Fig. S6). Even though the mean value and variability were
optimized for each biome and fuel class, the model was not
always able to capture the full variability among field mea-
surements. Particularly for the data from Walker et al. (2020),
representing 60 % of all field data entries (Table 2), the model
was often not able to represent individual measurements.
When omitting the data entries from Walker et al. (2020),
the model correlated well with individual field measurements
of fuel consumption (R2

= 0.73). However, by including the
data from Walker et al. (2020), the correlation was much
lower (R2

= 0.28), likely as a consequence of fine-scale vari-
ation in site drainage regulating fuel consumption in boreal
forests that was not resolved at a 500 m spatial resolution
(Walker et al., 2020).

The average distribution of biomass over roots, stems, and
leaves in forest biomes was 26 %, 69 %, and 4 %, respec-
tively (Figs. 4a, S7a and c). For savanna, shrubland, grass-
land, and cropland biomes combined, this was 41 %, 51 %,
and 8 % on average. These ratios were largely in accordance
with field-measured distributions as synthesized by Poorter
et al. (2012). Fine litter and CWD each constituted on av-
erage 10 % and 11 % of total aboveground (live and dead)
plant material, respectively, for all biomes combined. For
emissions, the fine litter and CWD pools played a much
larger role, representing about half of all aboveground fuel
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Figure 2. (a) Modelled aboveground biomass (AGB) averaged over 2002–2020 and (b) comparison of modelled versus reference above-
ground biomass from Spawn et al. (2020), at an aggregated 0.25◦ grid cell level. Model AGB comprises the stem, leaf, and grass model pools
and does not include litter pools. Panel (a) has been aggregated to 0.25◦ for display.

consumption for all biomes (Figs. 4b, S7b and d). In forest
biomes, the consumption of stems was the following major
contributor, dependent on the amount of fire-related forest
loss, whereas in low-tree-cover biomes, the consumption of
grasses played an important role.

3.2 Fuel consumption and emissions

Global average carbon emissions from fire for 2002–2020
were 2.1± 0.2 Pg C yr−1 (Figs. 5 and 6; Table 3). These
emissions resulted from 415± 42 Mha yr−1 of burned area,
of which 410± 43 Mha yr−1 originated from the MODIS
MCD64A1 product and 5.4± 1.2 Mha yr−1 (uncertainty
range = 2.5–8.3 Mha yr−1) from forest loss area overlapped
by active fire detections calculated as part of the fire-related
forest loss module. Global averaged fuel consumption was
501 g C m−2, of which almost half originated from the sur-
face litter pools. In the boreal region and the tropical peat-
lands of Equatorial Asia, fuel consumption was dominated

by the SOC pool. Notably, fuel consumption in the boreal
region transitioned abruptly at 60◦ E due to the domain lim-
its of the northern circumpolar permafrost region from the
NCSCD dataset, related to a temperature transition at the
Ural Mountains (Fig. 5b). Emissions were largest in 2015
at 2.4 Pg C yr−1 and smallest in 2018 with 1.7 Pg C yr−1

(Fig. 6). Of all emissions, 76 % originated from the tropics,
with 1072 Tg C yr−1 from tropical savannas, grasslands, and
shrublands and 445 Tg C yr−1 from tropical humid and dry
forests. The temperate regions accounted for 9 % of global
emissions, with 75 Tg C yr−1 from temperate forests and
54 Tg C yr−1 from temperate grass- and shrublands. Finally,
the boreal region accounted for 14 % of global emissions,
or 291 Tg C yr−1, of which 209 Tg C yr−1 (72 %) was the re-
sult of belowground burning of SOC. In comparison, tropi-
cal peatlands emitted 64 Tg C yr−1 (3 % of global emissions),
with considerably more annual variability. Only in 2006 were
SOC fire emissions from tropical peatlands larger than those
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Figure 3. Comparison of field measurements of (a) fuel load,
(b) combustion completeness (CC), and (c) fuel consumption versus
model estimates for all field data (Table 2), grouped per biome class.
The number of measurement records included is given above each
box plot. Aboveground and belowground fuel classes are grouped
separately. Belowground fuel classes (tropical peat and boreal soil)
are only reported for fuel consumption measurements because our
model relied on static SOC density maps for calculating soil fire
emissions (see Sect. 2.1.3). Global values are for the total mea-
sured fuel available, which in the case of (a) and (b) are above-
ground values and for (c) are the sum of above- and belowground for
each measurement record. Note that the number of fuel consump-
tion measurements for the individual biomes does not sum to the
global total number of sites (1321) because measurement records
with both aboveground and belowground values are being counted
as one record in the global class. The y axes of panels (a) and (c) are
logarithmic, and the y axis of panel (b) is linear. Box plot whiskers
give the range of data.

from the boreal region. Cropland emissions from tropical,
temperate, and southern boreal regions were 136 Tg C yr−1

in total, with most emissions (79 Tg C yr−1) from the tropics,
followed by temperate croplands (56 Tg C yr−1).

Fire-related forest loss accounted for 10.9± 2.9 Mha yr−1

(uncertainty range = 8.1–13.7 Mha yr−1; 1.9 %–3.3 % of
global total) of burned area, resulting in emissions of 541±
144 Tg C yr−1 (uncertainty range = 390–673 Tg C yr−1;
19 %–32 % of global total) (Fig. S8). This illustrates how
fuel consumption rates are more than a factor of 10 higher on
average in the case of fire-related forest loss (4966 g C m−2

burned) as compared to fire without forest loss (381 g C m−2

burned). The IAV in emissions from fire-related forest loss
was 144 Tg C yr−1 and thus an important contributor to the
interannual variability in global emissions. On a regional
scale, the contribution of fire-related forest loss to total fire
emissions varied widely, from close to 0 % in most savannas
to 100 % in some forested areas (Fig. S9). The latter situation
primarily occurred in closed-canopy forests with relatively
small-scale fires, such as the interior tropical rainforests and
temperate forests with minor fire activity. In these cases, fire-
related forest loss was often only captured by MODIS active
fire detections and not in the MCD64A1 burned area product
(Fig. S9c) (van Wees et al., 2021).

Emissions from the burning of SOC were considerable,
accounting for 281±93 Tg C yr−1 (13±4 % of global total).
Both for the boreal region and equatorial Asia these emis-
sions represented the majority of total emissions (Fig. 7). For
the boreal region, SOC fire emissions accounted for between
66 % and 79 % of total annual emissions, a fraction that was
relatively stable over years. In contrast, the relative share of
peat fires to total emissions for equatorial Asia varied sub-
stantially from year to year, with a minimum of 17 % in 2008
and a maximum of 75 % in 2019.

4 Discussion

We have produced global fire emissions estimates based on
fuel load modelling at an unprecedented spatial resolution
of 500 m. Our approach was based on the modelling frame-
work that was built for a case study for sub-Saharan Africa
(van Wees and van der Werf, 2019) and has been expanded
to global extent with, among other refinements, an updated
calibration procedure, a fire-related forest loss module, and
parameterizations for SOC emissions. While the framework
for modelling NPP and the turnover rates of fuel pools re-
mained similar, the calibration of most of the underlying
parameters has been automated and further extended to be
biome-specific to ensure optimized model performance. CC
ranges have also been changed to be biome-specific, consid-
erably improving the representation of fuel consumption as
compared to field measurements (Table S3; Figs. 3 and S6).
With a global extent at 500 m resolution, the model required
additional model complexity to represent all biomes and fire
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Figure 4. 2002–2020 average (a) fuel load and (b) fuel consumption per biome. Bars are subdivided in model biomass and litter pools.
Because of the use of static SOC maps, panel (a) does not include soil organic carbon fuel loads.

types. This included representing deforestation mechanisms
in the Amazon, peat fires in Indonesia, and belowground fuel
consumption in boreal forests.

4.1 Comparison to field measurements

Modelled fuel load and consumption were calibrated to
match individual field-measured pools to constrain the
amount of fuel stored and emitted per pool. Van Wees and
van der Werf (2019) showed that the comparison of field
plots to 500 m model grid cells reduced the representa-
tion error as compared to calibration at 0.25◦ resolution
in GFED4(s). In general, the model performed well in re-
producing measured averages and variability for individual
biomes and pools (Figs. 3 and S6). Nonetheless, model vari-
ability was generally lower, and discrepancies for individ-
ual measurements could still be large. However, this is not
surprising considering that many of the specific field condi-
tions reported in field studies were not explicitly part of the
modelling framework. The impacts of different field condi-
tions are often among the main focal points of field stud-
ies (e.g. Cianciaruso et al., 2010; Walker et al., 2020), influ-
encing fuel conditions and fire behaviour. This includes, for
example, the time since last burn, local fallow and/or graz-
ing conditions, forest management approaches, site drainage
conditions, and vegetation species composition, all of which
may influence fine-scale variability in fuel consumption and
fire severity. Furthermore, for some of the field data en-
tries, the exact measurement location or time was unknown,
and/or the measurement was conducted before the start of the

model period in 2002. Optimal direct comparison between
field data and models would require 20–30 m satellite data
and models, as ultimately 500 m resolution is still too coarse
to represent the sub-500 m heterogeneity found among field
plots. This was well-illustrated in boreal North America, for
which the large number of available measurements demon-
strate the large variability in fuel loads and consumption
among field plots. Nonetheless, even models specific to bo-
real North America that partially or fully incorporated 30 m
resolution predictors of fuel load and consumption still un-
derrepresented the heterogeneity among fuel consumption as
observed by field measurements (Dieleman et al., 2020a; Ve-
raverbeke et al., 2015; Walker et al., 2018). This shows that
besides including the best-available spatio-temporal predic-
tors, additional vegetation and combustion process simula-
tion may be required for improved estimates. Additional field
measurements in the tropical and temperate regions might re-
veal that such added model refinement is also required for
other biomes. Even though available biomass and litter pools
are constrained with biome averages, additional representa-
tion of spatial variability in CC is required for both above-
ground and belowground fuel classes.

Since the release of the field measurement synthesis by van
Leeuwen et al. (2014), a substantial number of new field ob-
servations have become available, increasing the number of
field data entries in our updated synthesis database to a total
of 1321 (Table 2). Most new field data became available for
the boreal region as a result of a synthesis effort sponsored by
NASA’s ABoVE campaign for boreal North America (Diele-
man et al., 2020a, b; Walker et al., 2020) and additional
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Figure 5. Global annual (a) burned area, (b) fuel consumption, and (c) emissions, averaged over 2002–2020. Burned area displayed in
panel (a) is the total burned area derived from combining the MODIS MCD64A1 product and additional fire-related forest loss burned area
from active fire detections that overlap forest loss. Maps are aggregated to 0.25◦ for display.
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Figure 6. Global annual emissions for 2002–2020 based on the
500 m model. Bars are subdivided into biomes, with belowground
emissions in two separate classes (tropical peat and boreal soil).

field campaigns in Siberia (Kukavskaya et al., 2017; Ver-
averbeke et al., 2021). Furthermore, recent field campaigns
in Africa have roughly doubled the available measurements
for the savanna biomes (Eames et al., 2021; Russell-Smith et
al., 2021). The additional field data better constrain fuel con-
sumption globally. For the boreal region this reframes the
consensus on the amount of belowground consumption of
SOC in boreal fires. Boreal forest fire emissions were con-
siderably higher than in GFED4s, mainly due to higher fuel
consumption of soils, as revealed by the recent measurements
from Walker et al. (2020) (Figs. 8 and S10). With climate
change, the combination of increased fire activity and per-
mafrost degradation could further increase the share of the
boreal region in global fire emissions (Veraverbeke et al.,
2021).

By revising the available field data, we were able to com-
pare individual fuel pools at a global scale, allowing for im-
proved constraints of fuel load and consumption for each
model pool. The model results show that about half of global
emissions originate from the fine litter and CWD pools,
stressing the importance of representing these pools cor-
rectly. At the same time, fine litter and CWD fuel loads are
probably the most difficult to estimate on a global scale due
to the difficulty in using satellite remote sensing to measure
these fuels on the ground and below the canopy. Recent de-
velopments in the estimation of aboveground biomass using
emergent technologies such as lidar are an important prereq-
uisite for improved fuel models (Duncanson et al., 2022),
but better constraints on litter pools may require yet differ-
ent approaches, such as local-scale multispectral drone ob-
servations (Eames et al., 2021). Until those difficulties are
resolved, field data on pool-specific fuel loads and consump-
tion will continue to be vital for informing models such as
ours.

4.2 Comparison to GFED4(s)

Our estimate of global fire emissions of 2.1± 0.2 Pg C yr−1

is higher than the 1.5± 0.2 Pg C yr−1 for GFED4 but similar
to 2.1± 0.2 Pg C yr−1 for GFED4s (Figs. 8, S10 and S11).
Differences between the model estimates can be attributed to
differences in both the amount of burned area and the mod-
elled fuel consumption and emissions at finer spatial resolu-
tion (Fig. 9). GFED4 burned area was based on the MODIS
MCD64A1 Collection 5.1 product, which mapped less global
burned area than the Collection 6 product used in our study.
For the 2002–2016 time period, Collection 6 burned area was
26 % higher than Collection 5.1, with increases in most re-
gions (Giglio et al., 2018). With the inclusion of small-fire
burned area in GFED4s, 37 % additional burned area was
added to Collection 5.1 (Randerson et al., 2012), resulting
in 11 % more global total burned area than Collection 6. By
including fire-related forest loss based on active fire detec-
tions in our model, we added an additional 3 % to Collec-
tion 6 burned area, with a strong bias towards high-fuel-
consumption fires. As a result, the burned area in our model
(428 Mha yr−1) was 8 % lower than GFED4s (462 Mha−1)
for the 2002–2016 period, while global emissions from our
model and GFED4s differed by only 1 % (Table 3).

Other factors that explain the difference in emissions be-
tween our 500 m model and GFED4(s) can be summarized
by differences in modelled fuel consumption, which fol-
low from differences in the modelling framework, better-
constrained model calibration due to additional field data,
and more fundamental differences following from the higher
spatial resolution of our model. Global average fuel con-
sumption for our model was 501 g C m−2, which is 12 %
higher than the 448 g C m−2 in GFED4s and counteracted the
8 % lower burned area. The higher fuel consumption could
mainly be attributed to more combustion of SOC in the bo-
real region. This increase primarily originates from algorithm
changes regarding belowground fuel consumption, based
on improved measurements. Notably, in regions with little
burned area (e.g. Middle East, Europe), fuel consumption
was also considerably higher as a result of more resolved fuel
consumption heterogeneity at 500 m resolution. As described
by van Wees and van der Werf (2019), the higher model res-
olution of 500 m also plays an important role by (1) reduc-
ing the representation error between model grid cells versus
field-measured data, which in turn impacts model calibration,
(2) removing the non-linear propagation of aggregated input
datasets, (3) reducing biome misclassification (edge effects
whereby multiple biomes within a grid cell are given one
summary value), and (4) improving fuel-tracking in case of
repeated burns. In combination with differences in the mod-
elling framework and additional field data for calibration,
this mainly resulted in higher fuel consumption in the inte-
rior tropical forests and boreal forests and lower emissions
towards the edges of these forest biomes, as compared to
GFED4s (Fig. S11). Higher fuel consumption for the 500 m
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Figure 7. Annual 2002–2020 emissions for the global total, global fire-related forest loss, and the 14 GFED regions. Bars are subdivided
into aboveground and belowground emissions and into fire without forest loss and with forest loss (i.e. fire-related forest loss).

model in the interior tropical forest, but also some temperate
forests such as in the south-eastern United States, is largely
explained by the additional burned area from fire-related for-
est loss based on active fire detections in regions with fires
too small to be detected by the MODIS 500 m burned-area
algorithm. Other positive and negative differences between
models can mainly be explained by a combination of differ-
ences in the model calibration per biome and increased spa-
tial variability in fuels at finer resolution.

4.3 Fire-related forest loss

Here we estimated fire-related forest loss emissions of 0.54±
0.14 Pg C yr−1 (uncertainty range = 0.39–0.67 Pg C yr−1).

By combining the 30 m annual forest loss data with monthly
500 m fire data, fire-related forest loss emissions could be
distributed over months at 500 m resolution. The benefits of
satellite-derived information on the spatial extent of forest
loss and the timing of fire activity allowed for a more con-
strained emissions estimate compared to the previously used
mortality scalar in GFED. Despite these benefits, there are
several caveats to this approach.

First, the underlying forest loss time series is inconsistent
over time, inhibiting trend analysis (Hansen et al., 2013; van
Wees et al., 2021). The forest loss detection algorithm de-
veloped by Hansen et al. (2013) was different for the 2001–
2012, 2013–2014, and 2015–present time periods due to the
introduction of Landsat-8 OLI images from 2013 onwards
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Figure 8. Annual global emissions for the 500 m model for 2002–2020 versus GFED4s for the same time period and GFED4 for 2002–2016
as (a) time series and (b) latitudinal total emissions. Contributions to 500 m model emissions from fire-related forest loss (FLf) and SOC
burning are displayed separately. Note that these subcategories partly overlap: fire-related forest loss emissions include part of SOC burning
emissions and vice versa. Transparent bands around estimates show the range between minimum- and maximum-probability fire-related
forest loss. All lines in panel (b) are based on 0.25◦ aggregated data and smoothed using a moving-average filter with a window size of four
grid cells, i.e. 1◦ latitude.

and changes in the detection algorithm. These changes led
to improved detection efficiency and an artificial increas-
ing trend in the forest loss time series. Therefore, the in-
crease in fire-related forest loss emissions (+0.02 Pg C yr−2;
p < 0.01) as shown in Fig. 8a should be interpreted with cau-
tion. We did not find any significant trends in fire-related
forest loss emissions for the individual 2002–2012, 2013–
2014, and 2015–present periods. We did find a significant
negative trend in fire emissions unrelated to forest loss of
−0.03 Pg C yr−2 (p < 0.01) for 2002–2020 and a trend of
−0.03 Pg C yr−2 (p = 0.03) for 2002–2012, in line with an
observed decline in global burned area (Andela et al., 2017).
This decline is counteracted by the increase in fire-related
forest loss emissions, which disproportionally affects global

total emissions due to the relatively high fuel consumption
of fires related to forest loss. Despite these limitations, high
global fire emissions in the years 2012, 2015, and 2019
can still largely be explained by high fire-related forest loss
(Fig. 8a). Another approach is required to disentangle emis-
sion trends resulting from the decline in global burned area
and an opposing increase in forest fire emissions (Zheng et
al., 2021).

A second caveat to the fire-related forest loss module fol-
lows from the discrepancy in burned area from the fire-
related forest loss algorithm as compared to MCD64A1 Col-
lection 6. Originating from the 30 m forest loss data, the
fire-related forest loss area is a fraction of a 500 m grid
cell, whereas the MCD64A1 burned area is binary at 500 m.
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Figure 9.
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Figure 9. Regional maps of annual emissions from the 500 m model (left column) and GFED4s (right column; with a model resolution of
0.25◦). (a) Deforestation in the south-eastern part of the Brazilian Amazon and the transition to savanna fires in the Brazilian Cerrado for
2004. (b) Deforestation on Borneo for 2006, including fires in drained peatlands (primarily on the southern coast). (c) Savanna fires and
deforestation in the south-eastern part of the Congo Basin for 2016. (d) Boreal wildfires north and east of Lake Baikal in Siberia for 2017.
(e) Temperate wildfires on the west coast of the United States for 2018. Greyscales show fractional tree cover.

Therefore, the burned area and emissions from these two
sources should be compared with caution. Because of its
finer source resolution, we expect the fire-related forest loss
area to be more accurate than MCD64A1 for fires related to
forest loss, while the 500 m product is more likely to suf-
fer from omission errors due to missed detections and to a
lesser extent from commission errors due to binary 500 m
resolution. For most biomes the discrepancy between 500
and 30 m burned area has a negligible effect on emissions
because the fuel consumption from fire-related forest loss is
an order of magnitude higher than fire types without forest
loss. However, in the case of belowground burning in the bo-
real region and tropical peatlands, emissions from fire-related

forest loss and belowground burning are of the same magni-
tude, and their ratios could therefore be biased. In 500 m grid
cells where burned area detections coincide with fire-related
forest loss, only a fraction of the grid cell is affected by fire-
related forest loss, while belowground burning affects the en-
tire grid cell. In boreal North America, for example, where
the majority of fires are stand-replacing, emissions from be-
lowground burning without forest loss might therefore be rel-
atively overrepresented due to the binary 500 m burned area
data, whereas emissions with forest loss are based on frac-
tional fire-related forest loss area (Fig. 7). Burned area data
with a resolution of 30 m would be required to match the
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resolution of the forest loss data and overcome these discrep-
ancies.

4.4 Estimating emissions from higher-resolution
burned area

Given the emission differences between our model and
GFED4(s) described in Sect. 4.2, we expect a more substan-
tial change in emission estimates with the use of sub-500 m
resolution burned area datasets, e.g. based on 30 m Land-
sat or 20 m Sentinel-2 data. These products detect substan-
tial amounts of additional burned area, primarily from fires
that are too small to be detected by the coarser MODIS sen-
sors (Randerson et al., 2012). Ramo et al. (2021) for example
found 80 % more burned area for sub-Saharan Africa in 2016
based on Sentinel-2 MultiSpectral Instrument (MSI) images
compared to the MODIS-derived MCD64A1 C6 product,
due to the improved detection of small fires. In combination
with the 500 m emissions model described by van Wees and
van der Werf (2019), they found a doubling of fire emissions
based on Sentinel-2 MSI burned area as compared to MODIS
burned area. Other Landsat and Sentinel-2-based burned area
products report similar findings, with substantial increases
in detected burned area as compared to the MODIS burned-
area product for, for example, Indonesia for the year 2019
(+50 % additional burned area) (Gaveau et al., 2021), Alaska
for 2000–2015 (+53 %) (Moreno-Ruiz et al., 2019), the con-
terminous United States for 2003–2018 (+56 %) (Hawbaker
et al., 2020), a study region in southern Africa for July 2016
(+73 %) (Roy et al., 2019), and the Russian 2020 spring fire
season (+500 %) (Glushkov et al., 2021). To a lesser extent,
sub-500 m burned area products may give lower burned area
and emissions in regions with many large fires because of
better accounting for landscape heterogeneity, for example,
in regions with many small water bodies such as the Cana-
dian Shield (Walker et al., 2018).

On a global scale, the increased detection of small fires is
expected to result in a substantial increase in emissions when
integrating the 20 and 30 m burned area data into our model.
The exact magnitude of increase in emissions will depend on
the spatial and temporal distribution of the burned area, while
locally, emissions might be lower due to reduced commission
errors. Ramo et al. (2021) found that the additional burned
area from the Sentinel-2 MSI sensor for Africa due to small
fires was relatively most important at the onset and the end of
the fire season, effectively lengthening the fire season. This
is crucial information when converting carbon emissions to
emissions of trace gases and aerosols using time-dependent
emission factors (Vernooij et al., 2021). From the compari-
son of our 500 m model to GFED4(s), we can conclude that
the globally averaged fuel consumption from our model is
only slightly higher and that the additional burned area from
30 and 20 m satellite sensors is more likely to lead to a truly
substantial difference in emissions. With our 500 m model,
we provide a framework in line with the prevailing develop-

ments towards higher-resolution products, with the potential
to further improve local- and global-scale fire emission esti-
mates including use for a forthcoming GFED5 release.

Code and data availability. Emissions and burned
area from the 500 m model are available at
https://doi.org/10.5281/zenodo.7229674 (van Wees et al., 2022a).
More specific model data are available on request. The updated
field measurement synthesis database of fuel load and con-
sumption is available at https://doi.org/10.5281/zenodo.6670869
(van Wees et al., 2022b). The 500 m model code is available
at https://doi.org/10.5281/zenodo.7229039 (van Wees et al.,
2022c). Emissions and burned area from GFED4s are available at
https://www.globalfiredata.org/ (last access: 19 October 2022).
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Janjić, T., Bormann, N., Bocquet, M., Carton, J. A., Cohn, S.
E., Dance, S. L., Losa, S. N., Nichols, N. K., Potthast, R.,
Waller, J. A., and Weston, P.: On the representation error in
data assimilation, Q. J. Roy. Meteor. Soc., 144, 1257–1278,
https://doi.org/10.1002/qj.3130, 2018.

Kaiser, J. W., Heil, A., Andreae, M. O., Benedetti, A., Chubarova,
N., Jones, L., Morcrette, J.-J., Razinger, M., Schultz, M. G.,
Suttie, M., and van der Werf, G. R.: Biomass burning emis-
sions estimated with a global fire assimilation system based
on observed fire radiative power, Biogeosciences, 9, 527–554,
https://doi.org/10.5194/bg-9-527-2012, 2012.

Kauffman, J. B., Cummings, D. L., Ward, D. E., and Babbitt,
R.: Fire in the Brazilian Amazon: 1. Biomass, nutrient pools,
and losses in slashed primary forests, Oecologia, 104, 397–408,
https://doi.org/10.1007/BF00341336, 1995.

Kelley, D. I., Bistinas, I., Whitley, R., Burton, C., Marthews, T. R.,
and Dong, N.: How contemporary bioclimatic and human con-
trols change global fire regimes, Nat. Clim. Chang., 9, 690–696,
https://doi.org/10.1038/s41558-019-0540-7, 2019.

Konecny, K., Ballhorn, U., Navratil, P., Jubanski, J., Page, S.
E., Tansey, K., Hooijer, A., Vernimmen, R., and Siegert,
F.: Variable carbon losses from recurrent fires in drained
tropical peatlands, Glob. Chang. Biol., 22, 1469–1480,
https://doi.org/10.1111/gcb.13186, 2016.

Krylov, A., McCarty, J. L., Potapov, P., Loboda, T., Tyukav-
ina, A., Turubanova, S., and Hansen, M. C.: Remote sens-
ing estimates of stand-replacement fires in Russia, 2002–2011,
Environ. Res. Lett., 9, 105007, https://doi.org/10.1088/1748-
9326/9/10/105007, 2014.

Kukavskaya, E. A., Buryak, L. V, Kalenskaya, O. P., and Zarubin,
D. S.: Transformation of the ground cover after surface fires and
estimation of pyrogenic carbon emissions in the dark-coniferous
forests of Central Siberia, Contemp. Probl. Ecol., 10, 62–70,
https://doi.org/10.1134/S1995425517010073, 2017.

Kurz, W. A., Dymond, C. C., Stinson, G., Rampley, G. J., Neilson,
E. T., Carroll, A. L., Ebata, T., and Safranyik, L.: Mountain pine
beetle and forest carbon feedback to climate change, Nature, 452,
987–990, https://doi.org/10.1038/nature06777, 2008.

Leal Filho, W., Azeiteiro, U. M., Salvia, A. L., Fritzen,
B., and Libonati, R.: Fire in Paradise: Why the Pan-

tanal is burning, Environ. Sci. Policy, 123, 31–34,
https://doi.org/10.1016/j.envsci.2021.05.005, 2021.

Libonati, R., DaCamara, C. C., Peres, L. F., Sander de Carvalho,
L. A., and Garcia, L. C.: Rescue Brazil’s burning Pantanal wet-
lands, Nature, 588, 217–219, https://doi.org/10.1038/d41586-
020-03464-1, 2020.

Liu, T., Mickley, L. J., Marlier, M. E., DeFries, R. S., Khan, M.
F., Latif, M. T., and Karambelas, A.: Diagnosing spatial biases
and uncertainties in global fire emissions inventories: Indone-
sia as regional case study, Remote Sens. Environ., 237, 111557,
https://doi.org/10.1016/j.rse.2019.111557, 2020.

Liu, X., Pei, F., Wen, Y., Li, X., Wang, S., Wu, C., Cai, Y.,
Wu, J., Chen, J., Feng, K., Liu, J., Hubacek, K., Davis, S. J.,
Yuan, W., Yu, L., and Liu, Z.: Global urban expansion offsets
climate-driven increases in terrestrial net primary productivity,
Nat. Commun., 10, 5558, https://doi.org/10.1038/s41467-019-
13462-1, 2019.

Marengo, J. A., Cunha, A. P., Cuartas, L. A., Deusdará Leal, K.
R., Broedel, E., Seluchi, M. E., Michelin, C. M., De Praga
Baião, C. F., Chuchón Ângulo, E., Almeida, E. K., Kazmier-
czak, M. L., Mateus, N. P. A., Silva, R. C., and Bender, F.: Ex-
treme Drought in the Brazilian Pantanal in 2019–2020: Char-
acterization, Causes, and Impacts, Front. Water, 3, 639204,
https://doi.org/10.3389/frwa.2021.639204, 2021.

Martens, B., Miralles, D. G., Lievens, H., van der Schalie, R., de
Jeu, R. A. M., Fernández-Prieto, D., Beck, H. E., Dorigo, W. A.,
and Verhoest, N. E. C.: GLEAM v3: satellite-based land evapora-
tion and root-zone soil moisture, Geosci. Model Dev., 10, 1903–
1925, https://doi.org/10.5194/gmd-10-1903-2017, 2017.

Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan,
C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis,
M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B.
R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and
Zhou, B. (Eds.): IPCC, 2021: Climate Change 2021: The
Physical Science Basis., in: Contribution of Working Group
I to the Sixth Assessment Report of the Intergovernmen-
tal Panel on Climate Change, Cambridge University Press,
https://doi.org/10.1017/9781009157896, 2021.

McLauchlan, K. K., Higuera, P. E., Miesel, J., Rogers, B. M.,
Schweitzer, J., Shuman, J. K., Tepley, A. J., Varner, J. M., Ve-
blen, T. T., Adalsteinsson, S. A., Balch, J. K., Baker, P., Batllori,
E., Bigio, E., Brando, P., Cattau, M., Chipman, M. L., Coen, J.,
Crandall, R., Daniels, L., Enright, N., Gross, W. S., Harvey, B. J.,
Hatten, J. A., Hermann, S., Hewitt, R. E., Kobziar, L. N., Landes-
mann, J. B., Loranty, M. M., Maezumi, S. Y., Mearns, L., Moritz,
M., Myers, J. A., Pausas, J. G., Pellegrini, A. F. A., Platt, W. J.,
Roozeboom, J., Safford, H., Santos, F., Scheller, R. M., Sher-
riff, R. L., Smith, K. G., Smith, M. D., and Watts, A. C.: Fire as
a fundamental ecological process: Research advances and fron-
tiers, J. Ecol., 108, 2047–2069, https://doi.org/10.1111/1365-
2745.13403, 2020.

Miralles, D. G., Holmes, T. R. H., De Jeu, R. A. M., Gash, J. H.,
Meesters, A. G. C. A., and Dolman, A. J.: Global land-surface
evaporation estimated from satellite-based observations, Hydrol.
Earth Syst. Sci., 15, 453–469, https://doi.org/10.5194/hess-15-
453-2011, 2011.

Moreno-Ruiz, J. A., García-Lázaro, J. R., Arbelo, M., Riaño, D.,
Moreno-Ruiz, J. A., García-Lázaro, J. R., Arbelo, M., and Riaño,
D.: A Comparison of Burned Area Time Series in the Alaskan

Geosci. Model Dev., 15, 8411–8437, 2022 https://doi.org/10.5194/gmd-15-8411-2022

https://doi.org/10.24381/cds.f17050d7
https://doi.org/10.1111/gcb.12296
https://doi.org/10.5194/essd-5-3-2013
https://doi.org/10.1007/s11676-019-01038-0
https://doi.org/10.1002/qj.3130
https://doi.org/10.5194/bg-9-527-2012
https://doi.org/10.1007/BF00341336
https://doi.org/10.1038/s41558-019-0540-7
https://doi.org/10.1111/gcb.13186
https://doi.org/10.1088/1748-9326/9/10/105007
https://doi.org/10.1088/1748-9326/9/10/105007
https://doi.org/10.1134/S1995425517010073
https://doi.org/10.1038/nature06777
https://doi.org/10.1016/j.envsci.2021.05.005
https://doi.org/10.1038/d41586-020-03464-1
https://doi.org/10.1038/d41586-020-03464-1
https://doi.org/10.1016/j.rse.2019.111557
https://doi.org/10.1038/s41467-019-13462-1
https://doi.org/10.1038/s41467-019-13462-1
https://doi.org/10.3389/frwa.2021.639204
https://doi.org/10.5194/gmd-10-1903-2017
https://doi.org/10.1017/9781009157896
https://doi.org/10.1111/1365-2745.13403
https://doi.org/10.1111/1365-2745.13403
https://doi.org/10.5194/hess-15-453-2011
https://doi.org/10.5194/hess-15-453-2011


D. van Wees et al.: Global biomass burning fuel consumption and emissions at 500 m spatial resolution 8435

Boreal Forests from Different Remote Sensing Products, Forests,
10, 363, https://doi.org/10.3390/f10050363, 2019.

Mota, B. and Wooster, M. J.: A new top-down approach for
directly estimating biomass burning emissions and fuel con-
sumption rates and totals from geostationary satellite fire ra-
diative power (FRP), Remote Sens. Environ., 206, 45–62,
https://doi.org/10.1016/j.rse.2017.12.016, 2018.

Mueller, E. V, Skowronski, N., Clark, K., Gallagher, M., Kre-
mens, R., Thomas, J. C., El Houssami, M., Filkov, A.,
Hadden, R. M., Mell, W., and Simeoni, A.: Utilization
of remote sensing techniques for the quantification of fire
behavior in two pine stands, Fire Saf. J., 91, 845–854,
https://doi.org/10.1016/j.firesaf.2017.03.076, 2017.

Muñoz Sabater, J.: ERA5-Land monthly averaged data from 1981
to present. Copernicus Climate Change Service (C3S) Climate
Data Store (CDS), https://doi.org/10.24381/cds.68d2bb30, 2019.

Myneni, R., Knyazikhin, Y., and Park, T.: MCD15A2H MODIS-
/Terra+Aqua Leaf Area Index/FPAR 8-day L4 Global 500 m
SIN Grid V006, NASA EOSDIS L. Process. DAAC [data set],
https://doi.org/10.5067/MODIS/MCD15A2H.006, 2015.

Nijmeijer, A., Lauri, P.-É., Harmand, J.-M., and Saj, S.: Carbon dy-
namics in cocoa agroforestry systems in Central Cameroon: af-
forestation of savannah as a sequestration opportunity, Agrofor.
Syst., 93, 851–868, https://doi.org/10.1007/s10457-017-0182-6,
2019.

Obu, J., Westermann, S., Bartsch, A., Berdnikov, N., Christiansen,
H. H., Dashtseren, A., Delaloye, R., Elberling, B., Etzelmüller,
B., Kholodov, A., Khomutov, A., Kääb, A., Leibman, M. O.,
Lewkowicz, A. G., Panda, S. K., Romanovsky, V., Way, R. G.,
Westergaard-Nielsen, A., Wu, T., Yamkhin, J., and Zou, D.:
Northern Hemisphere permafrost map based on TTOP modelling
for 2000–2016 at 1 km2 scale, Earth-Sci. Rev., 193, 299–316,
https://doi.org/10.1016/j.earscirev.2019.04.023, 2019.

Ottmar, R. D., Hudak, A. T., Prichard, S. J., Wright, C. S., Restaino,
J. C., Kennedy, M. C., and Vihnanek, R. E.: Pre-fire and post-
fire surface fuel and cover measurements collected in the south-
eastern United States for model evaluation and development –
RxCADRE 2008, 2011 and 2012, Int. J. Wildl. Fire, 25, 10–24,
https://doi.org/10.1071/WF15092, 2016.

Page, S. E. and Hooijer, A.: In the line of fire: The peatlands
of Southeast Asia, Philos. Trans. R. Soc. B, 371, 20150176,
https://doi.org/10.1098/rstb.2015.0176, 2016.

Page, S. E., Siegert, F., Rieley, J. O., Boehm, H. D. V., Jaya,
A., and Limin, S.: The amount of carbon released from peat
and forest fires in Indonesia during 1997, Nature, 420, 61–65,
https://doi.org/10.1038/nature01131, 2002.

Page, S. E., Rieley, J. O., and Banks, C. J.: Global and regional im-
portance of the tropical peatland carbon pool, Glob. Chang. Biol.,
17, 798–818, https://doi.org/10.1111/j.1365-2486.2010.02279.x,
2011.

Poorter, H., Niklas, K. J., Reich, P. B., Oleksyn, J., Poot, P., and
Mommer, L.: Biomass allocation to leaves, stems and roots:
meta-analysis of interspecific variation and environmental con-
trol, New Phytol., 193, 30–50, https://doi.org/10.1111/j.1469-
8137.2011.03952.x, 2012.

Potter, C. S., Randerson, J. T., Field, C. B., Matson, P. A., Vi-
tousek, P. M., Mooney, H. A., and Klooster, S. A.: Terrestrial
ecosystem production: a process model based on global satel-

lite and surface data, Global Biogeochem. Cycles, 7, 811–841,
https://doi.org/10.1029/93GB02725, 1993.

Ramo, R., Roteta, E., Bistinas, I., van Wees, D., Bastarrika, A., Chu-
vieco, E., and van der Werf, G. R.: African burned area and fire
carbon emissions are strongly impacted by small fires undetected
by coarse resolution satellite data, P. Natl. Acad. Sci. USA, 118,
e2011160118, https://doi.org/10.1073/pnas.2011160118, 2021.

Randerson, J. T., Chen, Y., van der Werf, G. R., Rogers, B. M., and
Morton, D. C.: Global burned area and biomass burning emis-
sions from small fires, J. Geophys. Res.-Biogeo., 117, G04012,
https://doi.org/10.1029/2012JG002128, 2012.

Rogers, B. M., Soja, A. J., Goulden, M. L., and Randerson, J.
T.: Influence of tree species on continental differences in bo-
real fires and climate feedbacks, Nat. Geosci., 8, 228–234,
https://doi.org/10.1038/ngeo2352, 2015.

Roy, D. P., Huang, H., Boschetti, L., Giglio, L., Yan, L.,
Zhang, H. H., and Li, Z.: Landsat-8 and Sentinel-2 burned
area mapping – A combined sensor multi-temporal change
detection approach, Remote Sens. Environ., 231, 111254,
https://doi.org/10.1016/J.RSE.2019.111254, 2019.

Running, S. and Zhao, M.: MOD17A2HGF MODIS/Terra Gross
Primary Productivity Gap-Filled 8-Day L4 Global 500 m SIN
Grid V006, NASA EOSDIS L. Process. DAAC [data set],
https://doi.org/10.5067/MODIS/MOD17A2HGF.006, 2019a.

Running, S. and Zhao, M.: MOD17A3HGF MODIS/Terra Net
Primary Production Gap-Filled Yearly L4 Global 500 m SIN
Grid V006, NASA EOSDIS L. Process. DAAC [data set],
https://doi.org/10.5067/MODIS/MOD17A3HGF.006, 2019b.

Russell-Smith, J., Yates, C., Evans, J., and Desailly, M.: Developing
a savanna burning emissions abatement methodology for tussock
grasslands in high rainfall regions of northern Australia, Trop.
Grasslands, 2, 175–187, https://doi.org/10.17138/tgft(2)175-
187, 2014.

Russell-Smith, J., Yates, C., Vernooij, R., Eames, T., van der
Werf, G. R., Ribeiro, N., Edwards, A., Beatty, R., Lekoko,
O., Mafoko, J., Monagle, C., and Johnston, S.: Opportu-
nities and challenges for savanna burning emissions abate-
ment in southern Africa, J. Environ. Manage., 288, 112414,
https://doi.org/10.1016/j.jenvman.2021.112414, 2021.

Saharjo, B. H. and Nurhayati, A. D.: Domination and Com-
position Structure Change at Hemic Peat Natural Regen-
eration Following Burning; A Case Study in Pelalawan,
Riau Province, Biodiversitas, J. Biol. Divers., 7, 154–158,
https://doi.org/10.13057/biodiv/d070213, 2006.

Schmidt, I. B., Fidelis, A., Miranda, H. S., and Ticktin, T.: How
do the wets burn? Fire behavior and intensity in wet grass-
lands in the Brazilian savanna, Brazilian J. Bot., 40, 167–175,
https://doi.org/10.1007/s40415-016-0330-7, 2017.

Seiler, W. and Crutzen, P. J.: Estimates of gross and net
fluxes of carbon between the biosphere and the atmo-
sphere from biomass burning, Clim. Change, 2, 207–247,
https://doi.org/10.1007/BF00137988, 1980.

Simpson, J. E., Wooster, M. J., Smith, T. E. L., Trivedi, M., Vernim-
men, R. R. E., Dedi, R., Shakti, M., and Dinata, Y.: Tropical Peat-
land Burn Depth and Combustion Heterogeneity Assessed Using
UAV Photogrammetry and Airborne LiDAR, Remote Sens., 8,
1000, https://doi.org/10.3390/rs8121000, 2016.

Sparks, A. M., Smith, A. M. S., Talhelm, A. F., Kolden, C. A.,
Yedinak, K. M., and Johnson, D. M.: Impacts of fire radia-

https://doi.org/10.5194/gmd-15-8411-2022 Geosci. Model Dev., 15, 8411–8437, 2022

https://doi.org/10.3390/f10050363
https://doi.org/10.1016/j.rse.2017.12.016
https://doi.org/10.1016/j.firesaf.2017.03.076
https://doi.org/10.24381/cds.68d2bb30
https://doi.org/10.5067/MODIS/MCD15A2H.006
https://doi.org/10.1007/s10457-017-0182-6
https://doi.org/10.1016/j.earscirev.2019.04.023
https://doi.org/10.1071/WF15092
https://doi.org/10.1098/rstb.2015.0176
https://doi.org/10.1038/nature01131
https://doi.org/10.1111/j.1365-2486.2010.02279.x
https://doi.org/10.1111/j.1469-8137.2011.03952.x
https://doi.org/10.1111/j.1469-8137.2011.03952.x
https://doi.org/10.1029/93GB02725
https://doi.org/10.1073/pnas.2011160118
https://doi.org/10.1029/2012JG002128
https://doi.org/10.1038/ngeo2352
https://doi.org/10.1016/J.RSE.2019.111254
https://doi.org/10.5067/MODIS/MOD17A2HGF.006
https://doi.org/10.5067/MODIS/MOD17A3HGF.006
https://doi.org/10.17138/tgft(2)175-187
https://doi.org/10.17138/tgft(2)175-187
https://doi.org/10.1016/j.jenvman.2021.112414
https://doi.org/10.13057/biodiv/d070213
https://doi.org/10.1007/s40415-016-0330-7
https://doi.org/10.1007/BF00137988
https://doi.org/10.3390/rs8121000


8436 D. van Wees et al.: Global biomass burning fuel consumption and emissions at 500 m spatial resolution

tive flux on mature Pinus ponderosa growth and vulnerability
to secondary mortality agents, Int. J. Wildl. Fire, 26, 95–106,
https://doi.org/10.1071/WF16139, 2017.

Spawn, S. A., Sullivan, C. C., Lark, T. J., and Gibbs, H.
K.: Harmonized global maps of above and belowground
biomass carbon density in the year 2010, Sci. Data, 7, 112,
https://doi.org/10.1038/s41597-020-0444-4, 2020.

Stockwell, C. E., Jayarathne, T., Cochrane, M. A., Ryan, K. C., Pu-
tra, E. I., Saharjo, B. H., Nurhayati, A. D., Albar, I., Blake, D. R.,
Simpson, I. J., Stone, E. A., and Yokelson, R. J.: Field measure-
ments of trace gases and aerosols emitted by peat fires in Central
Kalimantan, Indonesia, during the 2015 El Niño, Atmos. Chem.
Phys., 16, 11711–11732, https://doi.org/10.5194/acp-16-11711-
2016, 2016.

Thomas, J. C., Mueller, E. V, Santamaria, S., Gallagher, M., El
Houssami, M., Filkov, A., Clark, K., Skowronski, N., Hadden,
R. M., Mell, W., and Simeoni, A.: Investigation of firebrand
generation from an experimental fire: Development of a reli-
able data collection methodology, Fire Saf. J., 91, 864–871,
https://doi.org/10.1016/j.firesaf.2017.04.002, 2017.

Turcios, M. M., Jaramillo, M. M. A., do Vale Jr, J. F., Fearnside, P.
M., and Barbosa, R. I.: Soil charcoal as long-term pyrogenic car-
bon storage in Amazonian seasonal forests, Glob. Chang. Biol.,
22, 190–197, https://doi.org/10.1111/gcb.13049, 2016.

Usup, A., Hashimoto, Y., Takahashi, H., and Hayasaka, H.: Com-
bustion and thermal characteristics of peat fire in tropical
peatland in Central Kalimantan, Indonesia, Tropics, 14, 1–19,
https://doi.org/10.3759/tropics.14.1, 2004.

van der Werf, G. R., Morton, D. C., DeFries, R. S., Giglio, L., Ran-
derson, J. T., Collatz, G. J., and Kasibhatla, P. S.: Estimates of
fire emissions from an active deforestation region in the south-
ern Amazon based on satellite data and biogeochemical mod-
elling, Biogeosciences, 6, 235–249, https://doi.org/10.5194/bg-
6-235-2009, 2009.

van der Werf, G. R., Randerson, J. T., Giglio, L., van Leeuwen, T.
T., Chen, Y., Rogers, B. M., Mu, M., van Marle, M. J. E., Morton,
D. C., Collatz, G. J., Yokelson, R. J., and Kasibhatla, P. S.: Global
fire emissions estimates during 1997–2016, Earth Syst. Sci. Data,
9, 697–720, https://doi.org/10.5194/essd-9-697-2017, 2017.

van Leeuwen, T. T., van der Werf, G. R., Hoffmann, A. A., Det-
mers, R. G., Rücker, G., French, N. H. F., Archibald, S., Car-
valho Jr., J. A., Cook, G. D., de Groot, W. J., Hély, C., Kasischke,
E. S., Kloster, S., McCarty, J. L., Pettinari, M. L., Savadogo,
P., Alvarado, E. C., Boschetti, L., Manuri, S., Meyer, C. P.,
Siegert, F., Trollope, L. A., and Trollope, W. S. W.: Biomass
burning fuel consumption rates: a field measurement database,
Biogeosciences, 11, 7305–7329, https://doi.org/10.5194/bg-11-
7305-2014, 2014.

van Marle, M. J. E., van Wees, D., Houghton, R. A., Field, R.
D., Verbesselt, J., and van der Werf, G. R.: New land-use-
change emissions indicate a declining CO2 airborne fraction, Na-
ture, 603, 450–454, https://doi.org/10.1038/s41586-021-04376-
4, 2022.

van Wees, D. and van der Werf, G. R.: Modelling biomass
burning emissions and the effect of spatial resolution: a
case study for Africa based on the Global Fire Emis-
sions Database (GFED), Geosci. Model Dev., 12, 4681–4703,
https://doi.org/10.5194/gmd-12-4681-2019, 2019.

van Wees, D., van der Werf, G. R., Randerson, J. T., An-
dela, N., Chen, Y., and Morton, D. C.: The role of fire in
global forest loss dynamics, Glob. Chang. Biol., 27, 2377–2391,
https://doi.org/10.1111/gcb.15591, 2021.

van Wees, D., van der Werf, G. R., Randerson, J. T., Rogers,
B. M., Chen, Y., Veraverbeke, S., Giglio, L., and Morton, D.
C.: Model data for “Global biomass burning fuel consump-
tion and emissions at 500-m spatial resolution based on the
Global Fire Emissions Database (GFED)”, Zenodo [data set],
https://doi.org/10.5281/zenodo.7229674, 2022a.

van Wees, D., van der Werf, G. R., Randerson, J. T., Rogers, B.
M., Chen, Y., Veraverbeke, S., Giglio, L., and Morton, D. C.:
Field data synthesis accompanying “Global biomass burning fuel
consumption and emissions at 500-m spatial resolution based on
the Global Fire Emissions Database (GFED)”, Zenodo [data set],
https://doi.org/10.5281/zenodo.6670869, 2022b.

van Wees, D., van der Werf, G. R., Randerson, J. T., Rogers,
B. M., Chen, Y., Veraverbeke, S., Giglio, L., and Morton,
D. C.: Model code for “Global biomass burning fuel con-
sumption and emissions at 500-m spatial resolution based on
the Global Fire Emissions Database (GFED)”, Zenodo [code],
https://doi.org/10.5281/zenodo.7229039, 2022c.

Veraverbeke, S., Rogers, B. M., and Randerson, J. T.: Daily burned
area and carbon emissions from boreal fires in Alaska, Biogeo-
sciences, 12, 3579–3601, https://doi.org/10.5194/bg-12-3579-
2015, 2015.

Veraverbeke, S., Delcourt, C. J. F., Kukavskaya, E., Mack, M.,
Walker, X., Hessilt, T., Rogers, B. M., and Scholten, R. C.: Di-
rect and longer-term carbon emissions from arctic-boreal fires: A
short review of recent advances, Curr. Opin. Environ. Sci. Heal.,
23, 100277, https://doi.org/10.1016/j.coesh.2021.100277, 2021.

Vernooij, R., Giongo, M., Borges, M. A., Costa, M. M., Bar-
radas, A. C. S., and van der Werf, G. R.: Intraseasonal vari-
ability of greenhouse gas emission factors from biomass burn-
ing in the Brazilian Cerrado, Biogeosciences, 18, 1375–1393,
https://doi.org/10.5194/bg-18-1375-2021, 2021.

Virkkula, A., Levula, J., Pohja, T., Aalto, P. P., Keronen, P.,
Schobesberger, S., Clements, C. B., Pirjola, L., Kieloaho, A.-J.,
Kulmala, L., Aaltonen, H., Patokoski, J., Pumpanen, J., Rinne, J.,
Ruuskanen, T., Pihlatie, M., Manninen, H. E., Aaltonen, V., Jun-
ninen, H., Petäjä, T., Backman, J., Dal Maso, M., Nieminen, T.,
Olsson, T., Grönholm, T., Aalto, J., Virtanen, T. H., Kajos, M.,
Kerminen, V.-M., Schultz, D. M., Kukkonen, J., Sofiev, M., De
Leeuw, G., Bäck, J., Hari, P., and Kulmala, M.: Prescribed burn-
ing of logging slash in the boreal forest of Finland: emissions
and effects on meteorological quantities and soil properties, At-
mos. Chem. Phys., 14, 4473–4502, https://doi.org/10.5194/acp-
14-4473-2014, 2014.

Walker, X. J., Rogers, B. M., Baltzer, J. L., Cumming, S. G., Day,
N. J., Goetz, S. J., Johnstone, J. F., Schuur, E. A. G., Turetsky, M.
R., and Mack, M. C.: Cross-scale controls on carbon emissions
from boreal forest megafires, Glob. Chang. Biol., 24, 4251–4265,
https://doi.org/10.1111/gcb.14287, 2018.

Walker, X. J., Baltzer, J. L., Cumming, S. G., Day, N. J., Ebert, C.,
Goetz, S., Johnstone, J. F., Potter, S., Rogers, B. M., Schuur, E.
A. G., Turetsky, M. R., and Mack, M. C.: Increasing wildfires
threaten historic carbon sink of boreal forest soils, Nature, 572,
520–523, https://doi.org/10.1038/s41586-019-1474-y, 2019.

Geosci. Model Dev., 15, 8411–8437, 2022 https://doi.org/10.5194/gmd-15-8411-2022

https://doi.org/10.1071/WF16139
https://doi.org/10.1038/s41597-020-0444-4
https://doi.org/10.5194/acp-16-11711-2016
https://doi.org/10.5194/acp-16-11711-2016
https://doi.org/10.1016/j.firesaf.2017.04.002
https://doi.org/10.1111/gcb.13049
https://doi.org/10.3759/tropics.14.1
https://doi.org/10.5194/bg-6-235-2009
https://doi.org/10.5194/bg-6-235-2009
https://doi.org/10.5194/essd-9-697-2017
https://doi.org/10.5194/bg-11-7305-2014
https://doi.org/10.5194/bg-11-7305-2014
https://doi.org/10.1038/s41586-021-04376-4
https://doi.org/10.1038/s41586-021-04376-4
https://doi.org/10.5194/gmd-12-4681-2019
https://doi.org/10.1111/gcb.15591
https://doi.org/10.5281/zenodo.7229674
https://doi.org/10.5281/zenodo.6670869
https://doi.org/10.5281/zenodo.7229039
https://doi.org/10.5194/bg-12-3579-2015
https://doi.org/10.5194/bg-12-3579-2015
https://doi.org/10.1016/j.coesh.2021.100277
https://doi.org/10.5194/bg-18-1375-2021
https://doi.org/10.5194/acp-14-4473-2014
https://doi.org/10.5194/acp-14-4473-2014
https://doi.org/10.1111/gcb.14287
https://doi.org/10.1038/s41586-019-1474-y


D. van Wees et al.: Global biomass burning fuel consumption and emissions at 500 m spatial resolution 8437

Walker, X. J., Rogers, B. M., Veraverbeke, S., Johnstone, J. F.,
Baltzer, J. L., Barrett, K., Bourgeau-Chavez, L., Day, N. J.,
de Groot, W. J., Dieleman, C. M., Goetz, S., Hoy, E., Jenk-
ins, L. K., Kane, E. S., Parisien, M.-A., Potter, S., Schuur,
E. A. G., Turetsky, M., Whitman, E., and Mack, M. C.: Fuel
availability not fire weather controls boreal wildfire sever-
ity and carbon emissions, Nat. Clim. Chang., 10, 1130–1136,
https://doi.org/10.1038/s41558-020-00920-8, 2020.

Wang, J. A., Baccini, A., Farina, M., Randerson, J., and Friedl, M.
A.: Disturbance suppresses the aboveground biomass carbon sink
in North American boreal forests, Nat. Clim. Chang., 11, 435–
441, https://doi.org/10.1038/s41558-021-01027-4, 2021.

Williams, A. P., Abatzoglou, J. T., Gershunov, A., Guzman-
Morales, J., Bishop, D. A., Balch, J. K., and Letten-
maier, D. P.: Observed Impacts of Anthropogenic Climate
Change on Wildfire in California, Earth’s Futur., 7, 892–910,
https://doi.org/10.1029/2019EF001210, 2019.

Xu, L., Saatchi, S. S., Yang, Y., Yu, Y., Pongratz, J., Bloom, A. A.,
Bowman, K., Worden, J., Liu, J., Yin, Y., Domke, G., McRoberts,
R. E., Woodall, C., Nabuurs, G.-J., De-Miguel, S., Keller, M.,
Harris, N., Maxwell, S., and Schimel, D.: Changes in global ter-
restrial live biomass over the 21st century, Sci. Adv., 7, eabe9829,
https://doi.org/10.1126/sciadv.abe9829, 2022.

Zheng, B., Ciais, P., Chevallier, F., Chuvieco, E., Chen, Y.,
and Yang, H.: Increasing forest fire emissions despite the
decline in global burned area, Sci. Adv., 7, eabh2646,
https://doi.org/10.1126/sciadv.abh2646, 2021.

Zhu, W., Pan, Y., He, H., Yu, D., and Hu, H.: Simula-
tion of maximum light use efficiency for some typical veg-
etation types in China, Chinese Sci. Bull., 51, 457–463,
https://doi.org/10.1007/s11434-006-0457-1, 2006.

https://doi.org/10.5194/gmd-15-8411-2022 Geosci. Model Dev., 15, 8411–8437, 2022

https://doi.org/10.1038/s41558-020-00920-8
https://doi.org/10.1038/s41558-021-01027-4
https://doi.org/10.1029/2019EF001210
https://doi.org/10.1126/sciadv.abe9829
https://doi.org/10.1126/sciadv.abh2646
https://doi.org/10.1007/s11434-006-0457-1

	Abstract
	Introduction
	Methods
	Model description
	Biomass production and decomposition
	Fire-related forest loss module
	Fire emissions from belowground pools

	Input datasets
	Model calibration
	Calibration of NPP
	Calibration of above- and belowground biomass
	Calibration of fuel load and consumption

	Simulations

	Results
	Model optimization
	Fuel consumption and emissions

	Discussion
	Comparison to field measurements
	Comparison to GFED4(s)
	Fire-related forest loss
	Estimating emissions from higher-resolution burned area

	Code and data availability
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

