Articles | Volume 15, issue 22
https://doi.org/10.5194/gmd-15-8153-2022
https://doi.org/10.5194/gmd-15-8153-2022
Model description paper
 | 
14 Nov 2022
Model description paper |  | 14 Nov 2022

Modeling demographic-driven vegetation dynamics and ecosystem biogeochemical cycling in NASA GISS's Earth system model (ModelE-BiomeE v.1.0)

Ensheng Weng, Igor Aleinov, Ram Singh, Michael J. Puma, Sonali S. McDermid, Nancy Y. Kiang, Maxwell Kelley, Kevin Wilcox, Ray Dybzinski, Caroline E. Farrior, Stephen W. Pacala, and Benjamin I. Cook

Related authors

TECO-CNP Sv1.0: A coupled carbon-nitrogen-phosphorus model with data assimilation for subtropical forests
Fangxiu Wan, Chenyu Bian, Ensheng Weng, Yiqi Luo, and Jianyang Xia
EGUsphere, https://doi.org/10.5194/egusphere-2025-1243,https://doi.org/10.5194/egusphere-2025-1243, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
A model-independent data assimilation (MIDA) module and its applications in ecology
Xin Huang, Dan Lu, Daniel M. Ricciuto, Paul J. Hanson, Andrew D. Richardson, Xuehe Lu, Ensheng Weng, Sheng Nie, Lifen Jiang, Enqing Hou, Igor F. Steinmacher, and Yiqi Luo
Geosci. Model Dev., 14, 5217–5238, https://doi.org/10.5194/gmd-14-5217-2021,https://doi.org/10.5194/gmd-14-5217-2021, 2021
Short summary
Competition alters predicted forest carbon cycle responses to nitrogen availability and elevated CO2: simulations using an explicitly competitive, game-theoretic vegetation demographic model
Ensheng Weng, Ray Dybzinski, Caroline E. Farrior, and Stephen W. Pacala
Biogeosciences, 16, 4577–4599, https://doi.org/10.5194/bg-16-4577-2019,https://doi.org/10.5194/bg-16-4577-2019, 2019
Short summary
Carbon–nitrogen coupling under three schemes of model representation: a traceability analysis
Zhenggang Du, Ensheng Weng, Lifen Jiang, Yiqi Luo, Jianyang Xia, and Xuhui Zhou
Geosci. Model Dev., 11, 4399–4416, https://doi.org/10.5194/gmd-11-4399-2018,https://doi.org/10.5194/gmd-11-4399-2018, 2018
Short summary
Scaling from individual trees to forests in an Earth system modeling framework using a mathematically tractable model of height-structured competition
E. S. Weng, S. Malyshev, J. W. Lichstein, C. E. Farrior, R. Dybzinski, T. Zhang, E. Shevliakova, and S. W. Pacala
Biogeosciences, 12, 2655–2694, https://doi.org/10.5194/bg-12-2655-2015,https://doi.org/10.5194/bg-12-2655-2015, 2015
Short summary

Related subject area

Biogeosciences
Alquimia v1.0: a generic interface to biogeochemical codes – a tool for interoperable development, prototyping and benchmarking for multiphysics simulators
Sergi Molins, Benjamin J. Andre, Jeffrey N. Johnson, Glenn E. Hammond, Benjamin N. Sulman, Konstantin Lipnikov, Marcus S. Day, James J. Beisman, Daniil Svyatsky, Hang Deng, Peter C. Lichtner, Carl I. Steefel, and J. David Moulton
Geosci. Model Dev., 18, 3241–3263, https://doi.org/10.5194/gmd-18-3241-2025,https://doi.org/10.5194/gmd-18-3241-2025, 2025
Short summary
Soil nitrous oxide emissions from global land ecosystems and their drivers within the LPJ-GUESS model (v4.1)
Jianyong Ma, Almut Arneth, Benjamin Smith, Peter Anthoni, Xu-Ri, Peter Eliasson, David Wårlind, Martin Wittenbrink, and Stefan Olin
Geosci. Model Dev., 18, 3131–3155, https://doi.org/10.5194/gmd-18-3131-2025,https://doi.org/10.5194/gmd-18-3131-2025, 2025
Short summary
Parameterization toolbox for a physical–biogeochemical model compatible with FABM – a case study: the coupled 1D GOTM–ECOSMO E2E for the Sylt–Rømø Bight, North Sea
Hoa Nguyen, Ute Daewel, Neil Banas, and Corinna Schrum
Geosci. Model Dev., 18, 2961–2982, https://doi.org/10.5194/gmd-18-2961-2025,https://doi.org/10.5194/gmd-18-2961-2025, 2025
Short summary
H2MV (v1.0): global physically constrained deep learning water cycle model with vegetation
Zavud Baghirov, Martin Jung, Markus Reichstein, Marco Körner, and Basil Kraft
Geosci. Model Dev., 18, 2921–2943, https://doi.org/10.5194/gmd-18-2921-2025,https://doi.org/10.5194/gmd-18-2921-2025, 2025
Short summary
NN-TOC v1: global prediction of total organic carbon in marine sediments using deep neural networks
Naveenkumar Parameswaran, Everardo González, Ewa Burwicz-Galerne, Malte Braack, and Klaus Wallmann
Geosci. Model Dev., 18, 2521–2544, https://doi.org/10.5194/gmd-18-2521-2025,https://doi.org/10.5194/gmd-18-2521-2025, 2025
Short summary

Cited articles

Aakala, T., Fraver, S., Palik, B. J., and D'Amato, A. W.: Spatially random mortality in old-growth red pine forests of northern Minnesota, Can. J. Forest Res., 42, 899–907, https://doi.org/10.1139/x2012-044, 2012. 
Abramoff, R. Z. and Finzi, A. C.: Are above- and below-ground phenology in sync?, New Phytol., 205, 1054–1061, https://doi.org/10.1111/nph.13111, 2015. 
Aerts, R.: The advantages of being evergreen, Trends Ecol. Evol., 10, 402–407, https://doi.org/10.1016/S0169-5347(00)89156-9, 1995. 
Ainsworth, E. A. and Long, S. P.: What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2: Tansley review, New Phytol., 165, 351–372, https://doi.org/10.1111/j.1469-8137.2004.01224.x, 2004. 
Aleixo, I., Norris, D., Hemerik, L., Barbosa, A., Prata, E., Costa, F., and Poorter, L.: Amazonian rainforest tree mortality driven by climate and functional traits, Nat. Clim. Change, 9, 384–388, https://doi.org/10.1038/s41558-019-0458-0, 2019. 
Download
Short summary
We develop a demographic vegetation model to improve the representation of terrestrial vegetation dynamics and ecosystem biogeochemical cycles in the Goddard Institute for Space Studies ModelE. The individual-based competition for light and soil resources makes the modeling of eco-evolutionary optimality possible. This model will enable ModelE to simulate long-term biogeophysical and biogeochemical feedbacks between the climate system and land ecosystems at decadal to centurial temporal scales.
Share