Model description paper
09 Nov 2022
Model description paper
| 09 Nov 2022
SURFER v2.0: a flexible and simple model linking anthropogenic CO2 emissions and solar radiation modification to ocean acidification and sea level rise
Marina Martínez Montero et al.
Related authors
No articles found.
Jonas Van Breedam, Philippe Huybrechts, and Michel Crucifix
Geosci. Model Dev., 14, 6373–6401, https://doi.org/10.5194/gmd-14-6373-2021, https://doi.org/10.5194/gmd-14-6373-2021, 2021
Short summary
Short summary
Ice sheets are an important component of the climate system and interact with the atmosphere through albedo variations and changes in the surface height. On very long timescales, it is impossible to directly couple ice sheet models with climate models and other techniques have to be used. Here we present a novel coupling method between ice sheets and the atmosphere by making use of an emulator to simulate ice sheet–climate interactions for several million years.
Mikhail Y. Verbitsky and Michel Crucifix
Earth Syst. Dynam., 12, 63–67, https://doi.org/10.5194/esd-12-63-2021, https://doi.org/10.5194/esd-12-63-2021, 2021
Short summary
Short summary
We demonstrate here that a single physical phenomenon, specifically, a naturally changing balance between intensities of temperature advection and diffusion in the viscous ice media, may influence the entire spectrum of the Pleistocene variability from orbital to millennial timescales.
Mikhail Y. Verbitsky and Michel Crucifix
Earth Syst. Dynam., 11, 281–289, https://doi.org/10.5194/esd-11-281-2020, https://doi.org/10.5194/esd-11-281-2020, 2020
Short summary
Short summary
Using the central theorem of dimensional analysis, the π theorem, we show that the relationship between the amplitude and duration of glacial cycles is governed by a property of scale invariance that does not depend on the physical nature of the underlying positive and negative feedbacks incorporated by the system. It thus turns out to be one of the most fundamental properties of the Pleistocene climate.
Mikhail Y. Verbitsky, Michel Crucifix, and Dmitry M. Volobuev
Earth Syst. Dynam., 10, 257–260, https://doi.org/10.5194/esd-10-257-2019, https://doi.org/10.5194/esd-10-257-2019, 2019
Short summary
Short summary
We demonstrate here that nonlinear character of ice sheet dynamics, which was derived naturally from the conservation laws, is an effective means for propagating high-frequency forcing upscale.
Mikhail Y. Verbitsky, Michel Crucifix, and Dmitry M. Volobuev
Earth Syst. Dynam., 9, 1025–1043, https://doi.org/10.5194/esd-9-1025-2018, https://doi.org/10.5194/esd-9-1025-2018, 2018
Short summary
Short summary
Using a dynamical climate model purely reduced from the conservation laws of ice-moving media, we show that ice-sheet physics coupled with a linear climate temperature feedback conceal enough dynamics to satisfactorily explain the system response over the full Pleistocene. There is no need, a priori, to call for a nonlinear response of, for example, the carbon cycle.
Nicola Botta, Patrik Jansson, and Cezar Ionescu
Earth Syst. Dynam., 9, 525–542, https://doi.org/10.5194/esd-9-525-2018, https://doi.org/10.5194/esd-9-525-2018, 2018
Short summary
Short summary
We study the impact of uncertainty on optimal greenhouse gas (GHG) emission policies for a stylized emission problem. The results suggest that uncertainties about the implementability of decisions on emission reductions (or increases) call for more precautionary policies. In contrast, uncertainties about the implications of exceeding critical cumulated emission thresholds tend to make early emission reductions less rewarding.
Masa Kageyama, Pascale Braconnot, Sandy P. Harrison, Alan M. Haywood, Johann H. Jungclaus, Bette L. Otto-Bliesner, Jean-Yves Peterschmitt, Ayako Abe-Ouchi, Samuel Albani, Patrick J. Bartlein, Chris Brierley, Michel Crucifix, Aisling Dolan, Laura Fernandez-Donado, Hubertus Fischer, Peter O. Hopcroft, Ruza F. Ivanovic, Fabrice Lambert, Daniel J. Lunt, Natalie M. Mahowald, W. Richard Peltier, Steven J. Phipps, Didier M. Roche, Gavin A. Schmidt, Lev Tarasov, Paul J. Valdes, Qiong Zhang, and Tianjun Zhou
Geosci. Model Dev., 11, 1033–1057, https://doi.org/10.5194/gmd-11-1033-2018, https://doi.org/10.5194/gmd-11-1033-2018, 2018
Short summary
Short summary
The Paleoclimate Modelling Intercomparison Project (PMIP) takes advantage of the existence of past climate states radically different from the recent past to test climate models used for climate projections and to better understand these climates. This paper describes the PMIP contribution to CMIP6 (Coupled Model Intercomparison Project, 6th phase) and possible analyses based on PMIP results, as well as on other CMIP6 projects.
Guillaume Lenoir and Michel Crucifix
Nonlin. Processes Geophys., 25, 145–173, https://doi.org/10.5194/npg-25-145-2018, https://doi.org/10.5194/npg-25-145-2018, 2018
Short summary
Short summary
We develop a general framework for the frequency analysis of irregularly sampled time series. We also design a test of significance against a general background noise which encompasses the Gaussian white or red noise. Our results generalize and unify methods developed in the fields of geosciences, engineering, astronomy and astrophysics. All the analysis tools presented in this paper are available to the reader in the Python package WAVEPAL.
Guillaume Lenoir and Michel Crucifix
Nonlin. Processes Geophys., 25, 175–200, https://doi.org/10.5194/npg-25-175-2018, https://doi.org/10.5194/npg-25-175-2018, 2018
Short summary
Short summary
There is so far no general framework for handling the continuous wavelet transform when the time sampling is irregular. Here we provide such a framework with the Morlet wavelet, based on the results of part I of this study. We also design a test of significance against a general background noise which encompasses the Gaussian white or red noise. All the analysis tools presented in this article are available to the reader in the Python package WAVEPAL.
Natalie S. Lord, Michel Crucifix, Dan J. Lunt, Mike C. Thorne, Nabila Bounceur, Harry Dowsett, Charlotte L. O'Brien, and Andy Ridgwell
Clim. Past, 13, 1539–1571, https://doi.org/10.5194/cp-13-1539-2017, https://doi.org/10.5194/cp-13-1539-2017, 2017
Short summary
Short summary
We present projections of long-term changes in climate, produced using a statistical emulator based on climate data from a state-of-the-art climate model. We use the emulator to model changes in temperature and precipitation over the late Pliocene (3.3–2.8 million years before present) and the next 200 thousand years. The impact of the Earth's orbit and the atmospheric carbon dioxide concentration on climate is assessed, and the data for the late Pliocene are compared to proxy temperature data.
Paul J. Valdes, Edward Armstrong, Marcus P. S. Badger, Catherine D. Bradshaw, Fran Bragg, Michel Crucifix, Taraka Davies-Barnard, Jonathan J. Day, Alex Farnsworth, Chris Gordon, Peter O. Hopcroft, Alan T. Kennedy, Natalie S. Lord, Dan J. Lunt, Alice Marzocchi, Louise M. Parry, Vicky Pope, William H. G. Roberts, Emma J. Stone, Gregory J. L. Tourte, and Jonny H. T. Williams
Geosci. Model Dev., 10, 3715–3743, https://doi.org/10.5194/gmd-10-3715-2017, https://doi.org/10.5194/gmd-10-3715-2017, 2017
Short summary
Short summary
In this paper we describe the family of climate models used by the BRIDGE research group at the University of Bristol as well as by various other institutions. These models are based on the UK Met Office HadCM3 models and here we describe the various modifications which have been made as well as the key features of a number of configurations in use.
N. Bounceur, M. Crucifix, and R. D. Wilkinson
Earth Syst. Dynam., 6, 205–224, https://doi.org/10.5194/esd-6-205-2015, https://doi.org/10.5194/esd-6-205-2015, 2015
P. A. Araya-Melo, M. Crucifix, and N. Bounceur
Clim. Past, 11, 45–61, https://doi.org/10.5194/cp-11-45-2015, https://doi.org/10.5194/cp-11-45-2015, 2015
Short summary
Short summary
By using a statistical tool termed emulator, we study the sensitivity of the Indian monsoon during the the Pleistocene. The originality of the present work is to consider, as inputs, several elements of the climate forcing that have varied in the past, and then use the emulator as a method to quantify the link between forcing variability and climate variability. The methodology described here may naturally be applied to other regions of interest.
Q. Z. Yin, U. K. Singh, A. Berger, Z. T. Guo, and M. Crucifix
Clim. Past, 10, 1645–1657, https://doi.org/10.5194/cp-10-1645-2014, https://doi.org/10.5194/cp-10-1645-2014, 2014
M. N. A. Maris, B. de Boer, S. R. M. Ligtenberg, M. Crucifix, W. J. van de Berg, and J. Oerlemans
The Cryosphere, 8, 1347–1360, https://doi.org/10.5194/tc-8-1347-2014, https://doi.org/10.5194/tc-8-1347-2014, 2014
M. Crucifix
Clim. Past, 9, 2253–2267, https://doi.org/10.5194/cp-9-2253-2013, https://doi.org/10.5194/cp-9-2253-2013, 2013
Related subject area
Climate and Earth system modeling
A new bootstrap technique to quantify uncertainty in estimates of ground surface temperature and ground heat flux histories from geothermal data
Modeling the topographic influence on aboveground biomass using a coupled model of hillslope hydrology and ecosystem dynamics
Impacts of the ice-particle size distribution shape parameter on climate simulations with the Community Atmosphere Model Version 6 (CAM6)
A modeling framework to understand historical and projected ocean climate change in large coupled ensembles
TriCCo v1.1.0 – a cubulation-based method for computing connected components on triangular grids
Estimation of missing building height in OpenStreetMap data: a French case study using GeoClimate 0.0.1
The Moist Quasi-Geostrophic Coupled Model: MQ-GCM 2.0
Transport parameterization of the Polar SWIFT model (version 2)
Analog data assimilation for the selection of suitable general circulation models
Uncertainty and sensitivity analysis for probabilistic weather and climate-risk modelling: an implementation in CLIMADA v.3.1.0
Grid refinement in ICON v2.6.4
Classification of tropical cyclone containing images using a convolutional neural network: performance and sensitivity to the learning dataset
The ICON-A model for direct QBO simulations on GPUs (version icon-cscs:baf28a514)
Further improvement and evaluation of nudging in the E3SM Atmosphere Model version 1 (EAMv1): simulations of the mean climate, weather events, and anthropogenic aerosol effects
HORAYZON v1.2: an efficient and flexible ray-tracing algorithm to compute horizon and sky view factor
LPJ-GUESS/LSMv1.0: a next-generation land surface model with high ecological realism
Downscaling multi-model climate projection ensembles with deep learning (DeepESD): contribution to CORDEX EUR-44
Intercomparison of four algorithms for detecting tropical cyclones using ERA5
Inland lake temperature initialization via coupled cycling with atmospheric data assimilation
wavetrisk-2.1: an adaptive dynamical core for ocean modelling
Representing surface heterogeneity in land–atmosphere coupling in E3SMv1 single-column model over ARM SGP during summertime
AWI-CM3 coupled climate model: description and evaluation experiments for a prototype post-CMIP6 model
The Seasonal-to-Multiyear Large Ensemble (SMYLE) prediction system using the Community Earth System Model version 2
Comparison and evaluation of updates to WRF-Chem (v3.9) biogenic emissions using MEGAN
Checkerboard patterns in E3SMv2 and E3SM-MMFv2
MIdASv0.2.1 – MultI-scale bias AdjuStment
FOCI-MOPS v1 – integration of marine biogeochemistry within the Flexible Ocean and Climate Infrastructure version 1 (FOCI 1) Earth system model
Assessment of the Paris urban heat island in ERA5 and offline SURFEX-TEB (v8.1) simulations using the METEOSAT land surface temperature product
The Earth system model CLIMBER-X v1.0 – Part 1: Climate model description and validation
Cloud-based framework for inter-comparing submesoscale-permitting realistic ocean models
swNEMO_v4.0: an ocean model based on NEMO4 for the new-generation Sunway supercomputer
Embedding a one-column ocean model in the Community Atmosphere Model 5.3 to improve Madden–Julian Oscillation simulation in boreal winter
Introducing new lightning schemes into the CHASER (MIROC) chemistry–climate model
Improving Madden–Julian oscillation simulation in atmospheric general circulation models by coupling with a one-dimensional snow–ice–thermocline ocean model
Inclusion of a cold hardening scheme to represent frost tolerance is essential to model realistic plant hydraulics in the Arctic-Boreal Zone in CLM5.0-FATES-Hydro
Atmospheric river representation in the Energy Exascale Earth System Model (E3SM) version 1.0
Root-mean-square error (RMSE) or mean absolute error (MAE): when to use them or not
Spatial heterogeneity effects on land surface modeling of water and energy partitioning
Computation of longwave radiative flux and vertical heating rate with 4A-Flux v1.0 as an integral part of the radiative transfer code 4A/OP v1.5
Evaluating wind profiles in a numerical weather prediction model with Doppler lidar
Using a surrogate-assisted Bayesian framework to calibrate the runoff-generation scheme in the Energy Exascale Earth System Model (E3SM) v1
Description and evaluation of the tropospheric aerosol scheme in the Integrated Forecasting System (IFS-AER, cycle 47R1) of ECMWF
Tree migration in the dynamic, global vegetation model LPJ-GM 1.1: efficient uncertainty assessment and improved dispersal kernels of European trees
An online ensemble coupled data assimilation capability for the Community Earth System Model: system design and evaluation
loopUI-0.1: indicators to support needs and practices in 3D geological modelling uncertainty quantification
Advancing Precipitation Prediction Using a New Generation Storm-resolving Model Framework – SIMA-MPAS (V1.0): a Case Study over the Western United States
Transient climate simulations of the Holocene (version 1) – experimental design and boundary conditions
Ocean biogeochemistry in the Canadian Earth System Model version 5.0.3: CanESM5 and CanESM5-CanOE
Climate projections over the Great Lakes Region: using two-way coupling of a regional climate model with a 3-D lake model
Formulation of a new explicit tidal scheme in revised LICOM2.0
Francisco José Cuesta-Valero, Hugo Beltrami, Stephan Gruber, Almudena García-García, and J. Fidel González-Rouco
Geosci. Model Dev., 15, 7913–7932, https://doi.org/10.5194/gmd-15-7913-2022, https://doi.org/10.5194/gmd-15-7913-2022, 2022
Short summary
Short summary
Inversions of subsurface temperature profiles provide past long-term estimates of ground surface temperature histories and ground heat flux histories at timescales of decades to millennia. Theses estimates complement high-frequency proxy temperature reconstructions and are the basis for studying continental heat storage. We develop and release a new bootstrap method to derive meaningful confidence intervals for the average surface temperature and heat flux histories from any number of profiles.
Yilin Fang, L. Ruby Leung, Charles D. Koven, Gautam Bisht, Matteo Detto, Yanyan Cheng, Nate McDowell, Helene Muller-Landau, S. Joseph Wright, and Jeffrey Q. Chambers
Geosci. Model Dev., 15, 7879–7901, https://doi.org/10.5194/gmd-15-7879-2022, https://doi.org/10.5194/gmd-15-7879-2022, 2022
Short summary
Short summary
We develop a model that integrates an Earth system model with a three-dimensional hydrology model to explicitly resolve hillslope topography and water flow underneath the land surface to understand how local-scale hydrologic processes modulate vegetation along water availability gradients. Our coupled model can be used to improve the understanding of the diverse impact of local heterogeneity and water flux on nutrient availability and plant communities.
Wentao Zhang, Xiangjun Shi, and Chunsong Lu
Geosci. Model Dev., 15, 7751–7766, https://doi.org/10.5194/gmd-15-7751-2022, https://doi.org/10.5194/gmd-15-7751-2022, 2022
Short summary
Short summary
The two-moment bulk cloud microphysics scheme used in CAM6 was modified to consider the impacts of the ice-crystal size distribution shape parameter (μi). After that, how the μi impacts cloud microphysical processes and then climate simulations is clearly illustrated by offline tests and CAM6 model experiments. Our results and findings are useful for the further development of μi-related parameterizations.
Yona Silvy, Clément Rousset, Eric Guilyardi, Jean-Baptiste Sallée, Juliette Mignot, Christian Ethé, and Gurvan Madec
Geosci. Model Dev., 15, 7683–7713, https://doi.org/10.5194/gmd-15-7683-2022, https://doi.org/10.5194/gmd-15-7683-2022, 2022
Short summary
Short summary
A modeling framework is introduced to understand and decompose the mechanisms causing the ocean temperature, salinity and circulation to change since the pre-industrial period and into 21st century scenarios of global warming. This framework aims to look at the response to changes in the winds and in heat and freshwater exchanges at the ocean interface in global climate models, throughout the 1850–2100 period, to unravel their individual effects on the changing physical structure of the ocean.
Aiko Voigt, Petra Schwer, Noam von Rotberg, and Nicole Knopf
Geosci. Model Dev., 15, 7489–7504, https://doi.org/10.5194/gmd-15-7489-2022, https://doi.org/10.5194/gmd-15-7489-2022, 2022
Short summary
Short summary
In climate science, it is helpful to identify coherent objects, for example, those formed by clouds. However, many models now use unstructured grids, which makes it harder to identify coherent objects. We present a new method that solves this problem by moving model data from an unstructured triangular grid to a structured cubical grid. We implement the method in an open-source Python package and show that the method is ready to be applied to climate model data.
Jérémy Bernard, Erwan Bocher, Elisabeth Le Saux Wiederhold, François Leconte, and Valéry Masson
Geosci. Model Dev., 15, 7505–7532, https://doi.org/10.5194/gmd-15-7505-2022, https://doi.org/10.5194/gmd-15-7505-2022, 2022
Short summary
Short summary
OpenStreetMap is a collaborative project aimed at creaing a free dataset containing topographical information. Since these data are available worldwide, they can be used as standard data for geoscience studies. However, most buildings miss the height information that constitutes key data for numerous fields (urban climate, noise propagation, air pollution). In this work, the building height is estimated using statistical modeling using indicators that characterize the building's environment.
Sergey Kravtsov, Ilijana Mastilovic, Andrew McC. Hogg, William K. Dewar, and Jeffrey R. Blundell
Geosci. Model Dev., 15, 7449–7469, https://doi.org/10.5194/gmd-15-7449-2022, https://doi.org/10.5194/gmd-15-7449-2022, 2022
Short summary
Short summary
Climate is a complex system whose behavior is shaped by multitudes of processes operating on widely different spatial scales and timescales. In hierarchical modeling, one goes back and forth between highly idealized process models and state-of-the-art models coupling the entire range of climate subsystems to identify specific phenomena and understand their dynamics. The present contribution highlights an intermediate climate model focussing on midlatitude ocean–atmosphere interactions.
Ingo Wohltmann, Daniel Kreyling, and Ralph Lehmann
Geosci. Model Dev., 15, 7243–7255, https://doi.org/10.5194/gmd-15-7243-2022, https://doi.org/10.5194/gmd-15-7243-2022, 2022
Short summary
Short summary
The study evaluates the performance of the Data Assimilation Research Testbed (DART), equipped with the recently added forward operator Radiative Transfer for TOVS (RTTOV), in assimilating FY-4A visible images into the Weather Research and Forecasting (WRF) model. The ability of the WRF-DART/RTTOV system to improve the forecasting skills for a tropical storm over East Asia and the Western Pacific is demonstrated in an Observing System Simulation Experiment framework.
Juan Ruiz, Pierre Ailliot, Thi Tuyet Trang Chau, Pierre Le Bras, Valérie Monbet, Florian Sévellec, and Pierre Tandeo
Geosci. Model Dev., 15, 7203–7220, https://doi.org/10.5194/gmd-15-7203-2022, https://doi.org/10.5194/gmd-15-7203-2022, 2022
Short summary
Short summary
We present a new approach to validate numerical simulations of the current climate. The method can take advantage of existing climate simulations produced by different centers combining an analog forecasting approach with data assimilation to quantify how well a particular model reproduces a sequence of observed values. The method can be applied with different observations types and is implemented locally in space and time significantly reducing the associated computational cost.
Chahan M. Kropf, Alessio Ciullo, Laura Otth, Simona Meiler, Arun Rana, Emanuel Schmid, Jamie W. McCaughey, and David N. Bresch
Geosci. Model Dev., 15, 7177–7201, https://doi.org/10.5194/gmd-15-7177-2022, https://doi.org/10.5194/gmd-15-7177-2022, 2022
Short summary
Short summary
Mathematical models are approximations, and modellers need to understand and ideally quantify the arising uncertainties. Here, we describe and showcase the first, simple-to-use, uncertainty and sensitivity analysis module of the open-source and open-access climate-risk modelling platform CLIMADA. This may help to enhance transparency and intercomparison of studies among climate-risk modellers, help focus future research, and lead to better-informed decisions on climate adaptation.
Günther Zängl, Daniel Reinert, and Florian Prill
Geosci. Model Dev., 15, 7153–7176, https://doi.org/10.5194/gmd-15-7153-2022, https://doi.org/10.5194/gmd-15-7153-2022, 2022
Short summary
Short summary
This article describes the implementation of grid refinement in the ICOsahedral Nonhydrostatic (ICON) model, which has been jointly developed at several German institutions and constitutes a unified modeling system for global and regional numerical weather prediction and climate applications. The grid refinement allows using a higher resolution in regional domains and transferring the information back to the global domain by means of a feedback mechanism.
Sébastien Gardoll and Olivier Boucher
Geosci. Model Dev., 15, 7051–7073, https://doi.org/10.5194/gmd-15-7051-2022, https://doi.org/10.5194/gmd-15-7051-2022, 2022
Short summary
Short summary
Tropical cyclones (TCs) are one of the most devastating natural disasters, which justifies monitoring and prediction in the context of a changing climate. In this study, we have adapted and tested a convolutional neural network (CNN) for the classification of reanalysis outputs (ERA5 and MERRA-2 labeled by HURDAT2) according to the presence or absence of TCs. We tested the impact of interpolation and of "mixing and matching" the training and test sets on the performance of the CNN.
Marco A. Giorgetta, William Sawyer, Xavier Lapillonne, Panagiotis Adamidis, Dmitry Alexeev, Valentin Clément, Remo Dietlicher, Jan Frederik Engels, Monika Esch, Henning Franke, Claudia Frauen, Walter M. Hannah, Benjamin R. Hillman, Luis Kornblueh, Philippe Marti, Matthew R. Norman, Robert Pincus, Sebastian Rast, Daniel Reinert, Reiner Schnur, Uwe Schulzweida, and Bjorn Stevens
Geosci. Model Dev., 15, 6985–7016, https://doi.org/10.5194/gmd-15-6985-2022, https://doi.org/10.5194/gmd-15-6985-2022, 2022
Short summary
Short summary
This work presents a first version of the ICON atmosphere model that works not only on CPUs, but also on GPUs. This GPU-enabled ICON version is benchmarked on two GPU machines and a CPU machine. While the weak scaling is very good on CPUs and GPUs, the strong scaling is poor on GPUs. But the high performance of GPU machines allowed for first simulations of a short period of the quasi-biennial oscillation at very high resolution with explicit convection and gravity wave forcing.
Shixuan Zhang, Kai Zhang, Hui Wan, and Jian Sun
Geosci. Model Dev., 15, 6787–6816, https://doi.org/10.5194/gmd-15-6787-2022, https://doi.org/10.5194/gmd-15-6787-2022, 2022
Short summary
Short summary
This study investigates the nudging implementation in the EAMv1 model. We find that (1) revising the sequence of calculations and using higher-frequency constraining data to improve the performance of a simulation nudged to EAMv1’s own meteorology, (2) using the relocated nudging tendency and 3-hourly ERA5 reanalysis to obtain a better agreement between nudged simulations and observations, and (3) using wind-only nudging are recommended for the estimates of global mean aerosol effects.
Christian R. Steger, Benjamin Steger, and Christoph Schär
Geosci. Model Dev., 15, 6817–6840, https://doi.org/10.5194/gmd-15-6817-2022, https://doi.org/10.5194/gmd-15-6817-2022, 2022
Short summary
Short summary
Terrain horizon and sky view factor are crucial quantities for many geoscientific applications; e.g. they are used to account for effects of terrain on surface radiation in climate and land surface models. Because typical terrain horizon algorithms are inefficient for high-resolution (< 30 m) elevation data, we developed a new algorithm based on a ray-tracing library. A comparison with two conventional methods revealed both its high performance and its accuracy for complex terrain.
David Martín Belda, Peter Anthoni, David Wårlind, Stefan Olin, Guy Schurgers, Jing Tang, Benjamin Smith, and Almut Arneth
Geosci. Model Dev., 15, 6709–6745, https://doi.org/10.5194/gmd-15-6709-2022, https://doi.org/10.5194/gmd-15-6709-2022, 2022
Short summary
Short summary
We present a number of augmentations to the ecosystem model LPJ-GUESS, which will allow us to use it in studies of the interactions between the land biosphere and the climate. The new module enables calculation of fluxes of energy and water into the atmosphere that are consistent with the modelled vegetation processes. The modelled fluxes are in fair agreement with observations across 21 sites from the FLUXNET network.
Jorge Baño-Medina, Rodrigo Manzanas, Ezequiel Cimadevilla, Jesús Fernández, Jose González-Abad, Antonio S. Cofiño, and José Manuel Gutiérrez
Geosci. Model Dev., 15, 6747–6758, https://doi.org/10.5194/gmd-15-6747-2022, https://doi.org/10.5194/gmd-15-6747-2022, 2022
Short summary
Short summary
Deep neural networks are used to produce downscaled regional climate change projections over Europe for temperature and precipitation for the first time. The resulting dataset, DeepESD, is analyzed against state-of-the-art downscaling methodologies, reproducing more accurately the observed climate in the historical period and showing plausible future climate change signals with low computational requirements.
Stella Bourdin, Sébastien Fromang, William Dulac, Julien Cattiaux, and Fabrice Chauvin
Geosci. Model Dev., 15, 6759–6786, https://doi.org/10.5194/gmd-15-6759-2022, https://doi.org/10.5194/gmd-15-6759-2022, 2022
Short summary
Short summary
When studying tropical cyclones in a large dataset, one needs objective and automatic procedures to detect their specific pattern. Applying four different such algorithms to a reconstruction of the climate, we show that the choice of the algorithm is crucial to the climatology obtained. Mainly, the algorithms differ in their sensitivity to weak storms so that they provide different frequencies and durations. We review the different options to consider for the choice of the tracking methodology.
Stanley G. Benjamin, Tatiana G. Smirnova, Eric P. James, Eric J. Anderson, Ayumi Fujisaki-Manome, John G. W. Kelley, Greg E. Mann, Andrew D. Gronewold, Philip Chu, and Sean G. T. Kelley
Geosci. Model Dev., 15, 6659–6676, https://doi.org/10.5194/gmd-15-6659-2022, https://doi.org/10.5194/gmd-15-6659-2022, 2022
Short summary
Short summary
Application of 1-D lake models coupled within earth-system prediction models will improve accuracy but requires accurate initialization of lake temperatures. Here, we describe a lake initialization method by cycling within a weather prediction model to constrain lake temperature evolution. We compared these lake temperature values with other estimates and found much reduced errors (down to 1-2 K). The lake cycling initialization is now applied to two operational US NOAA weather models.
Nicholas K.-R. Kevlahan and Florian Lemarié
Geosci. Model Dev., 15, 6521–6539, https://doi.org/10.5194/gmd-15-6521-2022, https://doi.org/10.5194/gmd-15-6521-2022, 2022
Short summary
Short summary
WAVETRISK-2.1 is an innovative climate model for the world's oceans. It uses state-of-the-art techniques to change the model's resolution locally, from O(100 km) to O(5 km), as the ocean changes. This dynamic adaptivity makes optimal use of available supercomputer resources, and allows two-dimensional global scales and three-dimensional submesoscales to be captured in the same simulation. WAVETRISK-2.1 is designed to be coupled its companion global atmosphere model, WAVETRISK-1.x.
Meng Huang, Po-Lun Ma, Nathaniel W. Chaney, Dalei Hao, Gautam Bisht, Megan D. Fowler, Vincent E. Larson, and L. Ruby Leung
Geosci. Model Dev., 15, 6371–6384, https://doi.org/10.5194/gmd-15-6371-2022, https://doi.org/10.5194/gmd-15-6371-2022, 2022
Short summary
Short summary
The land surface in one grid cell may be diverse in character. This study uses an explicit way to account for that subgrid diversity in a state-of-the-art Earth system model (ESM) and explores its implications for the overlying atmosphere. We find that the shallow clouds are increased significantly with the land surface diversity. Our work highlights the importance of accurately representing the land surface and its interaction with the atmosphere in next-generation ESMs.
Jan Streffing, Dmitry Sidorenko, Tido Semmler, Lorenzo Zampieri, Patrick Scholz, Miguel Andrés-Martínez, Nikolay Koldunov, Thomas Rackow, Joakim Kjellsson, Helge Goessling, Marylou Athanase, Qiang Wang, Jan Hegewald, Dmitry V. Sein, Longjiang Mu, Uwe Fladrich, Dirk Barbi, Paul Gierz, Sergey Danilov, Stephan Juricke, Gerrit Lohmann, and Thomas Jung
Geosci. Model Dev., 15, 6399–6427, https://doi.org/10.5194/gmd-15-6399-2022, https://doi.org/10.5194/gmd-15-6399-2022, 2022
Short summary
Short summary
We developed a new atmosphere–ocean coupled climate model, AWI-CM3. Our model is significantly more computationally efficient than its predecessors AWI-CM1 and AWI-CM2. We show that the model, although cheaper to run, provides results of similar quality when modeling the historic period from 1850 to 2014. We identify the remaining weaknesses to outline future work. Finally we preview an improved simulation where the reduction in computational cost has to be invested in higher model resolution.
Stephen G. Yeager, Nan Rosenbloom, Anne A. Glanville, Xian Wu, Isla Simpson, Hui Li, Maria J. Molina, Kristen Krumhardt, Samuel Mogen, Keith Lindsay, Danica Lombardozzi, Will Wieder, Who M. Kim, Jadwiga H. Richter, Matthew Long, Gokhan Danabasoglu, David Bailey, Marika Holland, Nicole Lovenduski, Warren G. Strand, and Teagan King
Geosci. Model Dev., 15, 6451–6493, https://doi.org/10.5194/gmd-15-6451-2022, https://doi.org/10.5194/gmd-15-6451-2022, 2022
Short summary
Short summary
The Earth system changes over a range of time and space scales, and some of these changes are predictable in advance. Short-term weather forecasts are most familiar, but recent work has shown that it is possible to generate useful predictions several seasons or even a decade in advance. This study focuses on predictions over intermediate timescales (up to 24 months in advance) and shows that there is promising potential to forecast a variety of changes in the natural environment.
Mauro Morichetti, Sasha Madronich, Giorgio Passerini, Umberto Rizza, Enrico Mancinelli, Simone Virgili, and Mary Barth
Geosci. Model Dev., 15, 6311–6339, https://doi.org/10.5194/gmd-15-6311-2022, https://doi.org/10.5194/gmd-15-6311-2022, 2022
Short summary
Short summary
In the present study, we explore the effect of making simple changes to the existing WRF-Chem MEGAN v2.04 emissions to provide MEGAN updates that can be used independently of the land surface model chosen. The changes made to the MEGAN algorithm implemented in WRF-Chem were the following: (i) update of the emission activity factors, (ii) update of emission factor values for each plant functional type (PFT), and (iii) the assignment of the emission factor by PFT to isoprene.
Walter Hannah, Kyle Pressel, Mikhail Ovchinnikov, and Gregory Elsaesser
Geosci. Model Dev., 15, 6243–6257, https://doi.org/10.5194/gmd-15-6243-2022, https://doi.org/10.5194/gmd-15-6243-2022, 2022
Short summary
Short summary
An unphysical checkerboard signal is identified in two configurations of the atmospheric component of E3SM. The signal is very persistent and visible after averaging years of data. The signal is very difficult to study because it is often mixed with realistic weather. A method is presented to detect checkerboard patterns and compare the model with satellite observations. The causes of the signal are identified, and a solution for one configuration is discussed.
Peter Berg, Thomas Bosshard, Wei Yang, and Klaus Zimmermann
Geosci. Model Dev., 15, 6165–6180, https://doi.org/10.5194/gmd-15-6165-2022, https://doi.org/10.5194/gmd-15-6165-2022, 2022
Short summary
Short summary
When performing impact analyses with climate models, one is often confronted with the issue that the models have significant bias. Commonly, the modelled climatological temperature deviates from the observed climate by a few degrees or it rains excessively in the model. MIdAS employs a novel statistical model to translate the model climatology toward that observed using novel methodologies and modern tools. The coding platform allows opportunities to develop methods for high-resolution models.
Chia-Te Chien, Jonathan V. Durgadoo, Dana Ehlert, Ivy Frenger, David P. Keller, Wolfgang Koeve, Iris Kriest, Angela Landolfi, Lavinia Patara, Sebastian Wahl, and Andreas Oschlies
Geosci. Model Dev., 15, 5987–6024, https://doi.org/10.5194/gmd-15-5987-2022, https://doi.org/10.5194/gmd-15-5987-2022, 2022
Short summary
Short summary
We present the implementation and evaluation of a marine biogeochemical model, Model of Oceanic Pelagic Stoichiometry (MOPS) in the Flexible Ocean and Climate Infrastructure (FOCI) climate model. FOCI-MOPS enables the simulation of marine biological processes, the marine carbon, nitrogen and oxygen cycles, and air–sea gas exchange of CO2 and O2. As shown by our evaluation, FOCI-MOPS shows an overall adequate performance that makes it an appropriate tool for Earth climate system simulations.
Miguel Nogueira, Alexandra Hurduc, Sofia Ermida, Daniela C. A. Lima, Pedro M. M. Soares, Frederico Johannsen, and Emanuel Dutra
Geosci. Model Dev., 15, 5949–5965, https://doi.org/10.5194/gmd-15-5949-2022, https://doi.org/10.5194/gmd-15-5949-2022, 2022
Short summary
Short summary
We evaluated the quality of the ERA5 reanalysis representation of the urban heat island (UHI) over the city of Paris and performed a set of offline runs using the SURFEX land surface model. They were compared with observations (satellite and in situ). The SURFEX-TEB runs showed the best performance in representing the UHI, reducing its bias significantly. We demonstrate the ability of the SURFEX-TEB framework to simulate urban climate, which is crucial for studying climate change in cities.
Matteo Willeit, Andrey Ganopolski, Alexander Robinson, and Neil R. Edwards
Geosci. Model Dev., 15, 5905–5948, https://doi.org/10.5194/gmd-15-5905-2022, https://doi.org/10.5194/gmd-15-5905-2022, 2022
Short summary
Short summary
In this paper we present the climate component of the newly developed fast Earth system model CLIMBER-X. It has a horizontal resolution of 5°x5° and is designed to simulate the evolution of the Earth system on temporal scales ranging from decades to >100 000 years. CLIMBER-X is available as open-source code and is expected to be a useful tool for studying past climate changes and for the investigation of the long-term future evolution of the climate.
Takaya Uchida, Julien Le Sommer, Charles Stern, Ryan P. Abernathey, Chris Holdgraf, Aurélie Albert, Laurent Brodeau, Eric P. Chassignet, Xiaobiao Xu, Jonathan Gula, Guillaume Roullet, Nikolay Koldunov, Sergey Danilov, Qiang Wang, Dimitris Menemenlis, Clément Bricaud, Brian K. Arbic, Jay F. Shriver, Fangli Qiao, Bin Xiao, Arne Biastoch, René Schubert, Baylor Fox-Kemper, William K. Dewar, and Alan Wallcraft
Geosci. Model Dev., 15, 5829–5856, https://doi.org/10.5194/gmd-15-5829-2022, https://doi.org/10.5194/gmd-15-5829-2022, 2022
Short summary
Short summary
Ocean and climate scientists have used numerical simulations as a tool to examine the ocean and climate system since the 1970s. Since then, owing to the continuous increase in computational power and advances in numerical methods, we have been able to simulate increasing complex phenomena. However, the fidelity of the simulations in representing the phenomena remains a core issue in the ocean science community. Here we propose a cloud-based framework to inter-compare and assess such simulations.
Yuejin Ye, Zhenya Song, Shengchang Zhou, Yao Liu, Qi Shu, Bingzhuo Wang, Weiguo Liu, Fangli Qiao, and Lanning Wang
Geosci. Model Dev., 15, 5739–5756, https://doi.org/10.5194/gmd-15-5739-2022, https://doi.org/10.5194/gmd-15-5739-2022, 2022
Short summary
Short summary
The swNEMO_v4.0 is developed with ultrahigh scalability through the concepts of hardware–software co-design based on the characteristics of the new Sunway supercomputer and NEMO4. Three breakthroughs, including an adaptive four-level parallelization design, many-core optimization and mixed-precision optimization, are designed. The simulations achieve 71.48 %, 83.40 % and 99.29 % parallel efficiency with resolutions of 2 km, 1 km and 500 m using 27 988 480 cores, respectively.
Yung-Yao Lan, Huang-Hsiung Hsu, Wan-Ling Tseng, and Li-Chiang Jiang
Geosci. Model Dev., 15, 5689–5712, https://doi.org/10.5194/gmd-15-5689-2022, https://doi.org/10.5194/gmd-15-5689-2022, 2022
Short summary
Short summary
This study has shown that coupling a high-resolution 1-D ocean model (SIT 1.06) with the Community Atmosphere Model 5.3 (CAM5.3) significantly improves the simulation of the Madden–Julian Oscillation (MJO) over the standalone CAM5.3. Systematic sensitivity experiments resulted in more realistic simulations of the tropical MJO because they had better upper-ocean resolution, adequate upper-ocean thickness, coupling regions including the eastern Pacific and southern tropics, and a diurnal cycle.
Yanfeng He, Hossain Mohammed Syedul Hoque, and Kengo Sudo
Geosci. Model Dev., 15, 5627–5650, https://doi.org/10.5194/gmd-15-5627-2022, https://doi.org/10.5194/gmd-15-5627-2022, 2022
Short summary
Short summary
Lightning-produced NOx (LNOx) is a major source of NOx. Hence, it is crucial to improve the prediction accuracy of lightning and LNOx in chemical climate models. By modifying existing lightning schemes and testing them in the chemical climate model CHASER, we improved the prediction accuracy of lightning in CHASER. Different lightning schemes respond very differently under global warming, which indicates further research is needed considering the reproducibility of long-term trends of lightning.
Wan-Ling Tseng, Huang-Hsiung Hsu, Yung-Yao Lan, Wei-Liang Lee, Chia-Ying Tu, Pei-Hsuan Kuo, Ben-Jei Tsuang, and Hsin-Chien Liang
Geosci. Model Dev., 15, 5529–5546, https://doi.org/10.5194/gmd-15-5529-2022, https://doi.org/10.5194/gmd-15-5529-2022, 2022
Short summary
Short summary
We show that coupling a high-resolution one-column ocean model to three atmospheric general circulation models dramatically improves Madden–Julian oscillation (MJO) simulations. It suggests two major improvements to the coupling process in the preconditioning phase and strongest convection phase over the Maritime Continent. Our results demonstrate a simple but effective way to significantly improve MJO simulations and potentially seasonal to subseasonal prediction.
Marius S. A. Lambert, Hui Tang, Kjetil S. Aas, Frode Stordal, Rosie A. Fisher, Yilin Fang, Junyan Ding, and Frans-Jan W. Parmentier
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-136, https://doi.org/10.5194/gmd-2022-136, 2022
Revised manuscript accepted for GMD
Short summary
Short summary
In this study, we implemented a hardening mortality scheme into CTSM5.0-FATES-Hydro, and evaluate how it impacts plant hydraulics and vegetation growth. Our work shows that the hydraulic modifications prescribed by the hardening scheme are necessary to model realistic vegetation growth in cold climates, in contrast to the default model that simulates almost nonexistent and declining vegetation due to abnormally large water loss through the roots.
Sol Kim, L. Ruby Leung, Bin Guan, and John C. H. Chiang
Geosci. Model Dev., 15, 5461–5480, https://doi.org/10.5194/gmd-15-5461-2022, https://doi.org/10.5194/gmd-15-5461-2022, 2022
Short summary
Short summary
The Energy Exascale Earth System Model (E3SM) project is a state-of-the-science Earth system model developed by the US Department of Energy (DOE). Understanding how the water cycle behaves in this model is of particular importance to the DOE’s mission. Atmospheric rivers (ARs) – which are crucial to the global water cycle – move vast amounts of water vapor through the sky and produce rain and snow. We find that this model reliably represents atmospheric rivers around the world.
Timothy O. Hodson
Geosci. Model Dev., 15, 5481–5487, https://doi.org/10.5194/gmd-15-5481-2022, https://doi.org/10.5194/gmd-15-5481-2022, 2022
Short summary
Short summary
The task of evaluating competing models is fundamental to science. Models are evaluated based on an objective function, the choice of which ultimately influences what scientists learn from their observations. The mean absolute error (MAE) and root-mean-squared error (RMSE) are two such functions. Both are widely used, yet there remains enduring confusion over their use. This article reviews the theoretical justification behind their usage, as well as alternatives for when they are not suitable.
Lingcheng Li, Gautam Bisht, and L. Ruby Leung
Geosci. Model Dev., 15, 5489–5510, https://doi.org/10.5194/gmd-15-5489-2022, https://doi.org/10.5194/gmd-15-5489-2022, 2022
Short summary
Short summary
Land surface heterogeneity plays a critical role in the terrestrial water, energy, and biogeochemical cycles. Our study systematically quantified the effects of four dominant heterogeneity sources on water and energy partitioning via Sobol' indices. We found that atmospheric forcing and land use land cover are the most dominant heterogeneity sources in determining spatial variability of water and energy partitioning. Our findings can help prioritize the future development of land surface models.
Yoann Tellier, Cyril Crevoisier, Raymond Armante, Jean-Louis Dufresne, and Nicolas Meilhac
Geosci. Model Dev., 15, 5211–5231, https://doi.org/10.5194/gmd-15-5211-2022, https://doi.org/10.5194/gmd-15-5211-2022, 2022
Short summary
Short summary
Accurate radiative transfer models (RTMs) are required to improve climate model simulations. We describe the module named 4A-Flux, which is implemented into 4A/OP RTM, aimed at calculating spectral longwave radiative fluxes given a description of the surface, atmosphere, and spectroscopy. In Pincus et al. (2020), 4A-Flux has shown good agreement with state-of-the-art RTMs. Here, it is applied to perform sensitivity studies and will be used to improve the understanding of radiative flux modeling.
Pyry Samuel Sebastian Pentikäinen, Ewan James O'Connor, and Pablo Ortiz-Amezcua
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-150, https://doi.org/10.5194/gmd-2022-150, 2022
Revised manuscript accepted for GMD
Short summary
Short summary
We used Doppler lidar to evaluate the wind profiles generated by a weather forecast model. We first compared the Doppler lidar observations with collocated radiosonde profiles and they agree well. The model performs best over marine and coastal locations. Larger errors were seen in locations where the surface was more complex, especially in the wind direction. Our results show that Doppler lidar is a suitable instrument for evaluating the boundary layer wind profiles in atmospheric models.
Donghui Xu, Gautam Bisht, Khachik Sargsyan, Chang Liao, and L. Ruby Leung
Geosci. Model Dev., 15, 5021–5043, https://doi.org/10.5194/gmd-15-5021-2022, https://doi.org/10.5194/gmd-15-5021-2022, 2022
Short summary
Short summary
The runoff outputs in Earth system model simulations involve high uncertainty, which needs to be constrained by parameter calibration. In this work, we used a surrogate-assisted Bayesian framework to efficiently calibrate the runoff-generation processes in the Energy Exascale Earth System Model v1 at a global scale. The model performance was improved compared to the default parameter after calibration, and the associated parametric uncertainty was significantly constrained.
Samuel Rémy, Zak Kipling, Vincent Huijnen, Johannes Flemming, Pierre Nabat, Martine Michou, Melanie Ades, Richard Engelen, and Vincent-Henri Peuch
Geosci. Model Dev., 15, 4881–4912, https://doi.org/10.5194/gmd-15-4881-2022, https://doi.org/10.5194/gmd-15-4881-2022, 2022
Short summary
Short summary
This article describes a new version of IFS-AER, the tropospheric aerosol scheme used to provide global aerosol products within the Copernicus Atmosphere Monitoring Service (CAMS) cycle. Several components of the model have been updated, such as the dynamical dust and sea salt aerosol emission schemes. New deposition schemes have also been incorporated but are not yet used operationally. This new version of IFS-AER has been evaluated and shown to have a greater skill than previous versions.
Deborah Zani, Veiko Lehsten, and Heike Lischke
Geosci. Model Dev., 15, 4913–4940, https://doi.org/10.5194/gmd-15-4913-2022, https://doi.org/10.5194/gmd-15-4913-2022, 2022
Short summary
Short summary
The prediction of species migration under rapid climate change remains uncertain. In this paper, we evaluate the importance of the mechanisms underlying plant migration and increase the performance in the dynamic global vegetation model LPJ-GM 1.0. The improved model will allow us to understand past vegetation dynamics and predict the future redistribution of species in a context of global change.
Jingzhe Sun, Yingjing Jiang, Shaoqing Zhang, Weimin Zhang, Lv Lu, Guangliang Liu, Yuhu Chen, Xiang Xing, Xiaopei Lin, and Lixin Wu
Geosci. Model Dev., 15, 4805–4830, https://doi.org/10.5194/gmd-15-4805-2022, https://doi.org/10.5194/gmd-15-4805-2022, 2022
Short summary
Short summary
An online ensemble coupled data assimilation system with the Community Earth System Model is designed and evaluated. This system uses the memory-based information transfer approach which avoids frequent I/O operations. The observations of surface pressure, sea surface temperature, and in situ temperature and salinity profiles can be effectively assimilated into the coupled model. That will facilitate a long-term high-resolution climate reanalysis once the algorithm efficiency is much improved.
Guillaume Pirot, Ranee Joshi, Jérémie Giraud, Mark Douglas Lindsay, and Mark Walter Jessell
Geosci. Model Dev., 15, 4689–4708, https://doi.org/10.5194/gmd-15-4689-2022, https://doi.org/10.5194/gmd-15-4689-2022, 2022
Short summary
Short summary
Results of a survey launched among practitioners in the mineral industry show that despite recognising the importance of uncertainty quantification it is not very well performed due to lack of data, time requirements, poor tracking of interpretations and relative complexity of uncertainty quantification. To alleviate the latter, we provide an open-source set of local and global indicators to measure geological uncertainty among an ensemble of geological models.
Xingying Huang, Andrew Gettelman, William C. Skamarock, Peter Hjort Lauritzen, Miles Curry, Adam Herrington, John T. Truesdale, and Michael Duda
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-111, https://doi.org/10.5194/gmd-2022-111, 2022
Revised manuscript accepted for GMD
Short summary
Short summary
We focus on the recent development of a state-of-art storm-resolving global climate model and investigate how this next-generation model performs for precipitation prediction over the Western United States. Results show realistic representations of precipitation with significantly enhanced snowpack over complex terrains. The model evaluation advances the unified modeling of large-scale forcing constraints and realistic fine-scale features to advance multi-scale climate predictions and changes.
Zhiping Tian, Dabang Jiang, Ran Zhang, and Baohuang Su
Geosci. Model Dev., 15, 4469–4487, https://doi.org/10.5194/gmd-15-4469-2022, https://doi.org/10.5194/gmd-15-4469-2022, 2022
Short summary
Short summary
We present an experimental design for a new set of transient experiments for the Holocene from 11.5 ka to the preindustrial period (1850) with a relatively high-resolution Earth system model. Model boundary conditions include time-varying full and single forcing of orbital parameters, greenhouse gases, and ice sheets. The simulations will help to study the mean climate trend and abrupt climate changes through the Holocene in response to both full and single external forcings.
James R. Christian, Kenneth L. Denman, Hakase Hayashida, Amber M. Holdsworth, Warren G. Lee, Olivier G. J. Riche, Andrew E. Shao, Nadja Steiner, and Neil C. Swart
Geosci. Model Dev., 15, 4393–4424, https://doi.org/10.5194/gmd-15-4393-2022, https://doi.org/10.5194/gmd-15-4393-2022, 2022
Short summary
Short summary
The ocean chemistry and biology modules of the latest version of the Canadian Earth System Model (CanESM5) are described in detail and evaluated against observations and other Earth system models. In the basic CanESM5 model, ocean biogeochemistry is similar to CanESM2 but embedded in a new ocean circulation model. In addition, an entirely new model, the Canadian Ocean Ecosystem model (CanESM5-CanOE), was developed. The most significant difference is that CanOE explicitly includes iron.
Pengfei Xue, Xinyu Ye, Jeremy S. Pal, Philip Y. Chu, Miraj B. Kayastha, and Chenfu Huang
Geosci. Model Dev., 15, 4425–4446, https://doi.org/10.5194/gmd-15-4425-2022, https://doi.org/10.5194/gmd-15-4425-2022, 2022
Short summary
Short summary
The Great Lakes are the world's largest freshwater system. They are a key element in regional climate influencing local weather patterns and climate processes. Many of these complex processes are regulated by interactions of the atmosphere, lake, ice, and surrounding land areas. This study presents a Great Lakes climate change projection that employed the two-way coupling of a regional climate model with a 3-D lake model (GLARM) to resolve 3-D hydrodynamics essential for large lakes.
Jiangbo Jin, Run Guo, Minghua Zhang, Guangqing Zhou, and Qingcun Zeng
Geosci. Model Dev., 15, 4259–4273, https://doi.org/10.5194/gmd-15-4259-2022, https://doi.org/10.5194/gmd-15-4259-2022, 2022
Short summary
Short summary
In this paper, the inclusion of tides in a global model via the explicit calculation of the tide-generating force based on the positions of the sun and moon is proposed, rather than the traditional method of including about eight tidal constituents with empirical amplitudes and frequencies. The new scheme can better simulate the diurnal and spatial characteristics of the tidal potential of spring and neap tides as well as the spatial patterns and magnitudes of major tidal constituents.
Cited articles
Archer, D.: Fate of fossil fuel CO2 in geologic time, J. Geophys.
Res., 110, C09S05, https://doi.org/10.1029/2004JC002625, 2005. a
Archer, D., Eby, M., Brovkin, V., Ridgwell, A., Cao, L., Mikolajewicz, U.,
Caldeira, K., Matsumoto, K., Munhoven, G., Montenegro, A., and Tokos, K.:
Atmospheric Lifetime of Fossil Fuel Carbon Dioxide, Annu. Rev. Earth
Pl. Sc., 37, 117–134,
https://doi.org/10.1146/annurev.earth.031208.100206, 2009. a, b, c
Arias, P.A., Bellouin, N., Coppola, E., Jones, R., Krinner, G., Marotzke, J.,
Naik, V., Palmer, M., Plattner, G.-K., Rogelj, J., Rojas, M., Sillmann, J.,
Storelvmo, T., Thorne, P., Trewin, B., Rao, K. A., Adhikary, B., Allan, R.,
Armour, K., Bala, G., Barimalala, R., Berger, S., Canadell, J., Cassou, C.,
Cherchi, A., Collins, W., Collins, W., Connors, S., Corti, S., Cruz, F.,
Dentener, F., Dereczynski, C., Luca, A. D., Niang, A. D., Doblas-Reyes, F.,
Dosio, A., Douville, H., Engelbrecht, F., Eyring, V., Fischer, E., Forster,
P., Fox-Kemper, B., Fuglestvedt, J., Fyfe, J., Gillett, N., Goldfarb, L.,
Gorodetskaya, I., Gutierrez, J., Hamdi, R., Hawkins, E., Hewitt, H., Hope,
P., Islam, A., Jones, C., Kaufman, D., Kopp, R., Kosaka, Y., Kossin, J.,
Krakovska, S., Lee, J.-Y., Li, J., Mauritsen, T., Maycock, T., Meinshausen,
M., Min, S.-K., Monteiro, P., Ngo-Duc, T., Otto, F., Pinto, I., Pirani, A.,
Raghavan, K., Ranasinghe, R., Ruane, A., Ruiz, L., Sallée, J.-B., Samset,
B., Sathyendranath, S., Seneviratne, S., Sörensson, A., Szopa, S., Takayabu,
I., Tréguier, A.-M., van den Hurk, B., Vautard, R., von Schuckmann, K.,
Zaehle, S., Zhang, X., and Zickfeld, K.: 2021: Technical Summary. In Climate
Change 2021: The Physical Science Basis. Contribution of Working Group I to
the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, in press, 2021. a, b
Bakker, A. M. R., Wong, T. E., Ruckert, K. L., and Keller, K.:
Sea-level projections representing the deeply uncertain contribution of the West Antarctic ice sheet, Scientific Reports,
7, 3880, https://doi.org/10.1038/s41598-017-04134-5, 2017. a
Bakker, A. M. R., Wong, T. E., Ruckert, K. L., and Keller, K.:
BRICK, The Pennsylvania State University [data set], https://download.clima.psu.edu/Wong_etal_BRICK/, last access:
27 October 2022. a
Bezanson, J., Edelman, A., Karpinski, S., and Shah, V. B.: Julia: A Fresh
Approach to Numerical Computing, SIAM Rev., 59, 65–98,
https://doi.org/10.1137/141000671, 2017. a
Bolin, B. and Eriksson, E.: Distribution of matter in the sea and atmosphere: Changes in the Carbon Dioxide Content of the Atmosphere and Sea due to Fossil Fuel Combustion, in: The atmosphere and the sea in motion, The Rockefeller Institute Press, 130–142, ISBN 978-0-87470-033-6,
https://books.rupress.org/catalog/book/atmosphere-and-sea-motion (last access: 27 October 2022), 1959. a, b, c, d
Botta, N., Jansson, P., and Ionescu, C.: The impact of uncertainty on optimal emission policies, Earth Syst. Dynam., 9, 525–542, https://doi.org/10.5194/esd-9-525-2018, 2018. a, b
Botta, N., Brede, N., Crucifix, M., Ionescu, C., Jansson, P., Li, Z.,
Martínez-Montero, M., and Richter, T.: Responsibility Under Uncertainty:
Which Climate Decisions Matter Most?, Environ. Model.
Assess., accepted, https://doi.org/10.21203/rs.3.rs-1103231/v1, 2021. a, b, c
Burke, E. J., Ekici, A., Huang, Y., Chadburn, S. E., Huntingford, C., Ciais, P., Friedlingstein, P., Peng, S., and Krinner, G.: Quantifying uncertainties of permafrost carbon–climate feedbacks, Biogeosciences, 14, 3051–3066, https://doi.org/10.5194/bg-14-3051-2017, 2017. a, b
Burke, E. J., Zhang, Y., and Krinner, G.: Evaluating permafrost physics in the Coupled Model Intercomparison Project 6 (CMIP6) models and their sensitivity to climate change, The Cryosphere, 14, 3155–3174, https://doi.org/10.5194/tc-14-3155-2020, 2020. a, b
Canadell, J.G., Monteiro, P. M. S., Costa, M. H., Cotrim da Cunha, L., Cox,
P. M., Eliseev, A. V., Henson, S., Ishii, M., Jaccard, S., Koven, C., Lohila,
A., Patra, P. K., Piao, S., Rogelj, J., Syampungani, S., Zaehle, S., and
Zickfeld, K.: 2021: Global Carbon and other Biogeochemical Cycles and
Feedbacks. In Climate Change 2021: The Physical Science Basis. Contribution
of Working Group I to the Sixth Assessment Report of the Intergovernmental
Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B.,
Cambridge University Press, in
press, 2021. a
Cao, L. and Jiang, J.: Simulated Effect of Carbon Cycle Feedback on Climate
Response to Solar Geoengineering, Geophys. Res. Lett., 44,
12484–12491, https://doi.org/10.1002/2017GL076546, 2017. a, b
Carlino, A., Giuliani, M., Tavoni, M., and Castelletti, A.: Multi-objective
optimal control of a simple stochastic climate-economy model,
IFAC-PapersOnLine, 53, 16593–16598, https://doi.org/10.1016/j.ifacol.2020.12.786,
2020. a, b
Chadburn, S. E., Burke, E. J., Cox, P. M., Friedlingstein, P., Hugelius, G.,
and Westermann, S.: An observation-based constraint on permafrost loss as a
function of global warming, Nat. Clim. Change, 7, 340–344,
https://doi.org/10.1038/nclimate3262, 2017. a, b
Clark, P. U., Shakun, J. D., Marcott, S. A., Mix, A. C., Eby, M., Kulp, S.,
Levermann, A., Milne, G. A., Pfister, P. L., Santer, B. D., Schrag, D. P.,
Solomon, S., Stocker, T. F., Strauss, B. H., Weaver, A. J., Winkelmann, R.,
Archer, D., Bard, E., Goldner, A., Lambeck, K., Pierrehumbert, R. T., and
Plattner, G. K.: Consequences of twenty-first-century policy for
multi-millennial climate and sea-level change, Nat. Clim. Change, 6,
360–369, https://doi.org/10.1038/nclimate2923, 2016. a, b
Farinotti, D., Huss, M., Fürst, J. J., Landmann, J., Machguth, H.,
Maussion, F., and Pandit, A.: A consensus estimate for the ice thickness
distribution of all glaciers on Earth, Nat. Geosci., 12, 168–173,
https://doi.org/10.1038/s41561-019-0300-3, 2019. a
Fox-Kemper, B., Hewitt, H., Xiao, C., Aðalgeirsdóttir, G., Drijfhout, S.,
Edwards, T., Golledge, N., Hemer, M., Kopp, R., Krinner, G., Mix, A., Notz,
D., Nowicki, S., Nurhati, I., Ruiz, L., Sallée, J.-B., Slangen, A., and Yu,
Y.: Ocean, Cryosphere and Sea Level Change. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge
University Press, Cambridge, United Kingdom and New York, NY, USA, 1211–1362,
https://www.ipcc.ch/report/ar6/wg1/chapter/chapter-9/ (last access: 27 October 2022), 2021. a, b
Frederikse, T., Landerer, F., Caron, L., Adhikari, S., Parkes, D., Humphrey, V. W., Dangendorf, S., Hogarth, P., Zanna, L., Cheng, L., and Wu, Y.-H.: data supplement of “The causes of sea-level rise since 1900”, Zenodo [data set], https://doi.org/10.5281/zenodo.3862995, 2020b. a
Gardiner, S. M.: Is “Arming the Future” with Geoengineering Really the Lesser Evil?: Some Doubts about the Ethics of Intentionally Manipulating the Climate System, in: Climate Ethics: Essential Readings, Oxford University Press, ISBN 978-0-19-539962-2, 978-0-19-756284-0,
https://doi.org/10.1093/oso/9780195399622.001.0001, 2010. a
Gregory, J. M.: Vertical heat transports in the ocean and their effect on
time-dependent climate change, Clim. Dynam., 16, 501–515,
https://doi.org/10.1007/s003820000059, 2000. a, b, c
Gregory, J. M., George, S. E., and Smith, R. S.: Large and irreversible future decline of the Greenland ice sheet, The Cryosphere, 14, 4299–4322, https://doi.org/10.5194/tc-14-4299-2020, 2020. a
Gutiérrez, J. M., Jones, R. G., Narisma, G. T., Alves, L. M., Amjad, M., Gorodetskaya,
I. V., Grose, M., Klutse, N. A. B., Krakovska, S., Li, J., Martínez-Castro, D.,
Mearns, L. O., Mernild, S. H., Ngo-Duc, T., van den Hurk, B., , and Yoon, J.-H.:
2021: Atlas. In Climate Change 2021: The Physical Science Basis. Contribution
of Working Group I to the Sixth Assessment Report of the Intergovernmental
Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, in press, http://interactive-atlas.ipcc.ch/ (last access: 27 October 2022), 2021. a
Heitzig, J., Kittel, T., Donges, J. F., and Molkenthin, N.: Topology of sustainable management of dynamical systems with desirable states: from defining planetary boundaries to safe operating spaces in the Earth system, Earth Syst. Dynam., 7, 21–50, https://doi.org/10.5194/esd-7-21-2016, 2016. a
Held, I. M., Winton, M., Takahashi, K., Delworth, T., Zeng, F., and Vallis,
G. K.: Probing the fast and slow components of global warming by returning
abruptly to preindustrial forcing, J. Climate, 23, 2418–2427,
https://doi.org/10.1175/2009JCLI3466.1, 2010. a, b
Helwegen, K. G., Wieners, C. E., Frank, J. E., and Dijkstra, H. A.: Complementing CO2 emission reduction by solar radiation management might strongly enhance future welfare, Earth Syst. Dynam., 10, 453–472, https://doi.org/10.5194/esd-10-453-2019, 2019. a, b, c, d
Huybrechts, P.: Glaciological Modelling of the Late Cenozoic East Antarctic
Ice Sheet: Stability or Dynamism?, Geogr. Ann. A, 75, 221–238, https://doi.org/10.1080/04353676.1993.11880395, 1993. a
Jones, C. D., Frölicher, T. L., Koven, C., MacDougall, A. H., Matthews, H. D., Zickfeld, K., Rogelj, J., Tokarska, K. B., Gillett, N. P., Ilyina, T., Meinshausen, M., Mengis, N., Séférian, R., Eby, M., and Burger, F. A.: The Zero Emissions Commitment Model Intercomparison Project (ZECMIP) contribution to C4MIP: quantifying committed climate changes following zero carbon emissions, Geosci. Model Dev., 12, 4375–4385, https://doi.org/10.5194/gmd-12-4375-2019, 2019. a, b, c, d
Kravitz, B., Robock, A., Tilmes, S., Boucher, O., English, J. M., Irvine, P. J., Jones, A., Lawrence, M. G., MacCracken, M., Muri, H., Moore, J. C., Niemeier, U., Phipps, S. J., Sillmann, J., Storelvmo, T., Wang, H., and Watanabe, S.: The Geoengineering Model Intercomparison Project Phase 6 (GeoMIP6): simulation design and preliminary results, Geosci. Model Dev., 8, 3379–3392, https://doi.org/10.5194/gmd-8-3379-2015, 2015. a
Kwiatkowski, L., Torres, O., Bopp, L., Aumont, O., Chamberlain, M., Christian, J. R., Dunne, J. P., Gehlen, M., Ilyina, T., John, J. G., Lenton, A., Li, H., Lovenduski, N. S., Orr, J. C., Palmieri, J., Santana-Falcón, Y., Schwinger, J., Séférian, R., Stock, C. A., Tagliabue, A., Takano, Y., Tjiputra, J., Toyama, K., Tsujino, H., Watanabe, M., Yamamoto, A., Yool, A., and Ziehn, T.: Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections, Biogeosciences, 17, 3439–3470, https://doi.org/10.5194/bg-17-3439-2020, 2020. a
Lawrence, M. G., Schäfer, S., Muri, H., Scott, V., Oschlies, A., Vaughan,
N. E., Boucher, O., Schmidt, H., Haywood, J., and Scheffran, J.: Evaluating
climate geoengineering proposals in the context of the Paris Agreement
temperature goals, Nat. Commun., 9, 2041–1723,
https://doi.org/10.1038/s41467-018-05938-3, 2018. a
Lenton, T. M. and Ciscar, J. C.: Integrating tipping points into climate
impact assessments, Climatic Change, 117, 585–597,
https://doi.org/10.1007/s10584-012-0572-8, 2013. a
Lenton, T. M., Held, H., Kriegler, E., Hall, J. W., Lucht, W., Rahmstorf, S.,
and Schellnhuber, H. J.: Tipping elements in the Earth's climate system,
P. Natl. Acad. Sci. USA, 105, 1786–1793,
https://doi.org/10.1073/pnas.0705414105, 2008. a
Letreguilly, A., Huybrechts, P., and Reeh, N.: Steady-state characteristics of
the Greenland ice sheet under different climates, J. Glaciol., 37,
149–157, https://doi.org/10.1017/S0022143000042908, 1991. a, b, c
Levermann, A., Clark, P. U., Marzeion, B., Milne, G. A., Pollard, D., Radic,
V., and Robinson, A.: The multimillennial sea-level commitment of global
warming, P. Natl. Acad. Sci. USA, 110, 13745–13750, https://doi.org/10.1073/pnas.1219414110,
2013. a, b, c, d
MacDougall, A. and Eby, M.: ZECMIP, School of Earth and Ocean Sciences
University of Victoria [data set], http://terra.seos.uvic.ca/ZEC/index.html, last access: 27 October 2022. a
MacDougall, A. H. and Knutti, R.: Projecting the release of carbon from permafrost soils using a perturbed parameter ensemble modelling approach, Biogeosciences, 13, 2123–2136, https://doi.org/10.5194/bg-13-2123-2016, 2016. a, b
MacDougall, A. H., Frölicher, T. L., Jones, C. D., Rogelj, J., Matthews, H. D., Zickfeld, K., Arora, V. K., Barrett, N. J., Brovkin, V., Burger, F. A., Eby, M., Eliseev, A. V., Hajima, T., Holden, P. B., Jeltsch-Thömmes, A., Koven, C., Mengis, N., Menviel, L., Michou, M., Mokhov, I. I., Oka, A., Schwinger, J., Séférian, R., Shaffer, G., Sokolov, A., Tachiiri, K., Tjiputra , J., Wiltshire, A., and Ziehn, T.: Is there warming in the pipeline? A multi-model analysis of the Zero Emissions Commitment from CO2, Biogeosciences, 17, 2987–3016, https://doi.org/10.5194/bg-17-2987-2020, 2020. a, b, c, d
Martinez Montero, M., Crucifix, M., Botta, N., and Brede, N.: Commitment as Lost Opportunities, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-5928, https://doi.org/10.5194/egusphere-egu22-5928, 2022a. a
Martínez Montero, M., Crucifix, M., Couplet, V., Brede, N., and Botta, N.:
SURFER v2.0.0, Zenodo [code], https://doi.org/10.5281/zenodo.6938017, 2022b. a
Meinshausen, M., Smith, S. J., Calvin, K., Daniel, J. S., Kainuma, M. L.,
Lamarque, J., Matsumoto, K., Montzka, S. A., Raper, S. C., Riahi, K.,
Thomson, A., Velders, G. J., and van Vuuren, D. P.: The RCP greenhouse gas
concentrations and their extensions from 1765 to 2300, Climatic Change, 109,
213–241, https://doi.org/10.1007/s10584-011-0156-z, 2011. a, b
Meinshausen, M., Nicholls, Z. R. J., Lewis, J., Gidden, M. J., Vogel, E., Freund, M., Beyerle, U., Gessner, C., Nauels, A., Bauer, N., Canadell, J. G., Daniel, J. S., John, A., Krummel, P. B., Luderer, G., Meinshausen, N., Montzka, S. A., Rayner, P. J., Reimann, S., Smith, S. J., van den Berg, M., Velders, G. J. M., Vollmer, M. K., and Wang, R. H. J.: The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500, Geosci. Model Dev., 13, 3571–3605, https://doi.org/10.5194/gmd-13-3571-2020, 2020. a, b, c, d
Mengel, M., Levermann, A., Frieler, K., Robinson, A., Marzeion, B., and
Winkelmann, R.: Future sea level rise constrained by observations and
long-term commitment, P. Natl. Acad. Sci.
USA, 113, 2597–2602, https://doi.org/10.1073/pnas.1500515113,
2016. a, b
Mengel, M., Nauels, A., Rogelj, J., and Schleussner, C. F.: Committed
sea-level rise under the Paris Agreement and the legacy of delayed mitigation
action, Nat. Commun., 9, 601, https://doi.org/10.1038/s41467-018-02985-8,
2018. a
Moreno-Cruz, J. B. and Keith, D. W.: Climate policy under uncertainty: A case
for solar geoengineering, Climatic Change, 121, 431–444,
https://doi.org/10.1007/s10584-012-0487-4, 2013. a, b
Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K., Van
Vuuren, D. P., Carter, T. R., Emori, S., Kainuma, M., Kram, T., Meehl,
G. A., Mitchell, J. F., Nakicenovic, N., Riahi, K., Smith, S. J., Stouffer,
R. J., Thomson, A. M., Weyant, J. P., and Wilbanks, T. J.: The next
generation of scenarios for climate change research and assessment, Nature,
463, 747–756, https://doi.org/10.1038/nature08823, 2010. a
Nauels, A., Meinshausen, M., Mengel, M., Lorbacher, K., and Wigley, T. M. L.: Synthesizing long-term sea level rise projections – the MAGICC sea level model v2.0, Geosci. Model Dev., 10, 2495–2524, https://doi.org/10.5194/gmd-10-2495-2017, 2017. a, b
Nauels, A., Gütschow, J., Mengel, M., Meinshausen, M., Clark, P. U., and
Schleussner, C. F.: Attributing long-term sea-level rise to Paris Agreement
emission pledges, P. Natl. Acad. Sci.
USA, 116, 23487–23492,
https://doi.org/10.1073/pnas.1907461116, 2019. a
Niemeier, U. and Timmreck, C.: What is the limit of climate engineering by stratospheric injection of SO2?, Atmos. Chem. Phys., 15, 9129–9141, https://doi.org/10.5194/acp-15-9129-2015, 2015. a, b, c
Nordhaus, W. D.: Cowles Foundation Discussion Paper 1009: The “DICE”' Model: Background and Structure of a Dynamic Integrated Climate-Economy Model of the Economics of Global Warming,
https://cowles.yale.edu/publications/cfdp/cfdp-1009 (last access: 26 October 2022), 1992. a
Palmer, M. D., Gregory, J. M., Bagge, M., Calvert, D., Hagedoorn, J. M.,
Howard, T., Klemann, V., Lowe, J. A., Roberts, C. D., Slangen, A. B., and
Spada, G.: Exploring the Drivers of Global and Local Sea‐Level Change Over the 21st Century and Beyond, Earth's Future, 8, 2328–4277, https://doi.org/10.1029/2019EF001413,
2020. a, b, c
Pattyn, F.: GRANTISM: An Excel™ model for Greenland and Antarctic ice-sheet
response to climate changes, Computers and Geosciences, 32, 316–325,
https://doi.org/10.1016/j.cageo.2005.06.020, 2006. a, b, c, d
Ridley, J., Gregory, J. M., Huybrechts, P., and Lowe, J.: Thresholds for
irreversible decline of the Greenland ice sheet, Clim. Dynam., 35,
1065–1073, https://doi.org/10.1007/s00382-009-0646-0, 2010. a
Robock, A.: Albedo enhancement by stratospheric sulfur injections: More
research needed, Earth's Future, 4, 644–648, https://doi.org/10.1002/2016EF000407,
2016. a, b
Rockström, J., Steffen, W., Noone, K., Persson, Å., Chapin, F. S.,
Lambin, E. F., Lenton, T. M., Scheffer, M., Folke, C., Schellnhuber, H. J.,
Nykvist, B., de Wit, C. A., Hughes, T., van der Leeuw, S., Rodhe, H.,
Sörlin, S., Snyder, P. K., Costanza, R., Svedin, U., Falkenmark, M.,
Karlberg, L., Corell, R. W., Fabry, V. J., Hansen, J., Walker, B., Liverman,
D., Richardson, K., Crutzen, P., and Foley, J. A.: A safe operating space
for humanity, Nature, 461, 472–475, https://doi.org/10.1038/461472a, 2009. a, b, c, d
Shepherd, T. G.: Storyline approach to the construction of regional climate
change information, P. Roy. Soc. A-Math.,
Phy., 475, 20190013, https://doi.org/10.1098/rspa.2019.0013, 2019. a
Shepherd, T. G., Boyd, E., Calel, R. A., Chapman, S. C., Dessai, S., Dima-West,
I. M., Fowler, H. J., James, R., Maraun, D., Martius, O., Senior, C. A.,
Sobel, A. H., Stainforth, D. A., Tett, S. F., Trenberth, K. E., van den Hurk,
B. J., Watkins, N. W., Wilby, R. L., and Zenghelis, D. A.: Storylines: an
alternative approach to representing uncertainty in physical aspects of
climate change, Climatic Change, 151, 555–571,
https://doi.org/10.1007/s10584-018-2317-9, 2018. a
Steffen, W., Richardson, K., Rockstrom, J., Cornell, S. E., Fetzer, I.,
Bennett, E. M., Biggs, R., Carpenter, S. R., de Vries, W., de Wit, C. A.,
Folke, C., Gerten, D., Heinke, J., Mace, G. M., Persson, L. M., Ramanathan,
V., Reyers, B., and Sorlin, S.: Planetary boundaries: Guiding human
development on a changing planet, Science, 347, 1259855,
https://doi.org/10.1126/science.1259855, 2015. a, b, c
Tjiputra, J. F., Grini, A., and Lee, H.: Impact of idealized future
stratospheric aerosol injection on the large-scale ocean and land carbon
cycles, J. Geophys. Res.-Biogeo., 121, 2–27,
https://doi.org/10.1002/2015JG003045, 2016. a, b
Turetsky, M. R., Abbott, B. W., Jones, M. C., Anthony, K. W., Olefeldt, D.,
Schuur, E. A., Grosse, G., Kuhry, P., Hugelius, G., Koven, C., Lawrence,
D. M., Gibson, C., Sannel, A. B. K., and McGuire, A. D.: Carbon release
through abrupt permafrost thaw, Nat. Geosci., 13, 138–143,
https://doi.org/10.1038/s41561-019-0526-0, 2020. a
Visioni, D., MacMartin, D. G., Kravitz, B., Boucher, O., Jones, A., Lurton, T., Martine, M., Mills, M. J., Nabat, P., Niemeier, U., Séférian, R., and Tilmes, S.: Identifying the sources of uncertainty in climate model simulations of solar radiation modification with the G6sulfur and G6solar Geoengineering Model Intercomparison Project (GeoMIP) simulations, Atmos. Chem. Phys., 21, 10039–10063, https://doi.org/10.5194/acp-21-10039-2021, 2021.
a, b, c, d, e
Williams, R. G., Goodwin, P., Ridgwell, A., and Woodworth, P. L.: How warming
and steric sea level rise relate to cumulative carbon emissions, Geophys.
Res. Lett., 39, 4–9, https://doi.org/10.1029/2012GL052771, 2012. a, b
Winkelmann, R., Levermann, A., Ridgwell, A., and Caldeira, K.: Combustion of
available fossil fuel resources sufficient to eliminate the Antarctic Ice
Sheet, Science Advances, 1, 1–6, https://doi.org/10.1126/sciadv.1500589, 2015. a, b
Wong, T. E., Bakker, A. M. R., Ruckert, K., Applegate, P., Slangen, A. B. A., and Keller, K.: BRICK v0.2, a simple, accessible, and transparent model framework for climate and regional sea-level projections, Geosci. Model Dev., 10, 2741–2760, https://doi.org/10.5194/gmd-10-2741-2017, 2017. a, b
Wunderling, N., Willeit, M., Donges, J. F., and Winkelmann, R.: Global warming
due to loss of large ice masses and Arctic summer sea ice, Nat.
Commun., 11, 5177, https://doi.org/10.1038/s41467-020-18934-3, 2020. a
Zarnetske, P. L., Gurevitch, J., Franklin, J., Groffman, P. M., Harrison,
C. S., Hellmann, J. J., Hoffman, F. M., Kothari, S., Robock, A., Tilmes, S.,
Visioni, D., Wu, J., Xia, L., and Yang, C. E.: Potential ecological impacts
of climate intervention by reflecting sunlight to cool Earth, P.
Natl. Acad. Sci. USA, 118, e1921854118,
https://doi.org/10.1073/pnas.1921854118, 2021. a, b, c
Short summary
We present SURFER, a lightweight model that links CO2 emissions and geoengineering to ocean acidification and sea level rise from glaciers, ocean thermal expansion and Greenland and Antarctic ice sheets. The ice sheet module adequately describes the tipping points of both Greenland and Antarctica. SURFER is understandable, fast, accurate up to several thousands of years, capable of emulating results obtained by state of the art models and well suited for policy analyses.
We present SURFER, a lightweight model that links CO2 emissions and geoengineering to ocean...