Articles | Volume 15, issue 17
Model evaluation paper
06 Sep 2022
Model evaluation paper |  | 06 Sep 2022

Downscaling multi-model climate projection ensembles with deep learning (DeepESD): contribution to CORDEX EUR-44

Jorge Baño-Medina, Rodrigo Manzanas, Ezequiel Cimadevilla, Jesús Fernández, Jose González-Abad, Antonio S. Cofiño, and José Manuel Gutiérrez

Related authors

Refining Remote Sensing precipitation Datasets in the South Pacific: An Adaptive Multi-Method Approach for Calibrating the TRMM Product
Óscar Mirones, Joaquín Bedia, Sixto Herrera, Maialen Iturbide, and Jorge Baño Medina
EGUsphere,,, 2023
Short summary
Configuration and intercomparison of deep learning neural models for statistical downscaling
Jorge Baño-Medina, Rodrigo Manzanas, and José Manuel Gutiérrez
Geosci. Model Dev., 13, 2109–2124,,, 2020
Short summary
Statistical downscaling with the downscaleR package (v3.1.0): contribution to the VALUE intercomparison experiment
Joaquín Bedia, Jorge Baño-Medina, Mikel N. Legasa, Maialen Iturbide, Rodrigo Manzanas, Sixto Herrera, Ana Casanueva, Daniel San-Martín, Antonio S. Cofiño, and José Manuel Gutiérrez
Geosci. Model Dev., 13, 1711–1735,,, 2020
Short summary

Related subject area

Climate and Earth system modeling
The computational and energy cost of simulation and storage for climate science: lessons from CMIP6
Mario C. Acosta, Sergi Palomas, Stella V. Paronuzzi Ticco, Gladys Utrera, Joachim Biercamp, Pierre-Antoine Bretonniere, Reinhard Budich, Miguel Castrillo, Arnaud Caubel, Francisco Doblas-Reyes, Italo Epicoco, Uwe Fladrich, Sylvie Joussaume, Alok Kumar Gupta, Bryan Lawrence, Philippe Le Sager, Grenville Lister, Marie-Pierre Moine, Jean-Christophe Rioual, Sophie Valcke, Niki Zadeh, and Venkatramani Balaji
Geosci. Model Dev., 17, 3081–3098,,, 2024
Short summary
Subgrid-scale variability of cloud ice in the ICON-AES 1.3.00
Sabine Doktorowski, Jan Kretzschmar, Johannes Quaas, Marc Salzmann, and Odran Sourdeval
Geosci. Model Dev., 17, 3099–3110,,, 2024
Short summary
INFERNO-peat v1.0.0: a representation of northern high-latitude peat fires in the JULES-INFERNO global fire model
Katie R. Blackford, Matthew Kasoar, Chantelle Burton, Eleanor Burke, Iain Colin Prentice, and Apostolos Voulgarakis
Geosci. Model Dev., 17, 3063–3079,,, 2024
Short summary
The 4DEnVar-based weakly coupled land data assimilation system for E3SM version 2
Pengfei Shi, L. Ruby Leung, Bin Wang, Kai Zhang, Samson M. Hagos, and Shixuan Zhang
Geosci. Model Dev., 17, 3025–3040,,, 2024
Short summary
Continental-scale bias-corrected climate and hydrological projections for Australia
Justin Peter, Elisabeth Vogel, Wendy Sharples, Ulrike Bende-Michl, Louise Wilson, Pandora Hope, Andrew Dowdy, Greg Kociuba, Sri Srikanthan, Vi Co Duong, Jake Roussis, Vjekoslav Matic, Zaved Khan, Alison Oke, Margot Turner, Stuart Baron-Hay, Fiona Johnson, Raj Mehrotra, Ashish Sharma, Marcus Thatcher, Ali Azarvinand, Steven Thomas, Ghyslaine Boschat, Chantal Donnelly, and Robert Argent
Geosci. Model Dev., 17, 2755–2781,,, 2024
Short summary

Cited articles

Bandhauer, M., Isotta, F., Lakatos, M., Lussana, C., Båserud, L., Izsák, B., Szentes, O., Tveito, O. E., and Frei, C.: Evaluation of daily precipitation analyses in E-OBS (v19. 0e) and ERA5 by comparison to regional high-resolution datasets in European regions, Int. J. Climatol., 42, 727–747, 2022. a
Baño-Medina, J.: Understanding Deep Learning Decisions in Statistical Downscaling Models, in: Proceedings of the 10th International Conference on Climate Informatics, 79–85, 2020. a
Baño-Medina, J., Manzanas, R., and Gutiérrez, J. M.: Configuration and intercomparison of deep learning neural models for statistical downscaling, Geosci. Model Dev., 13, 2109–2124,, 2020. a, b, c, d, e, f, g, h, i, j
Baño-Medina, J., Manzanas, R., and Gutiérrez, J. M.: On the suitability of deep convolutional neural networks for continental-wide downscaling of climate change projections, Clim. Dynam., 57, 1–11, 2021. a, b, c, d, e, f, g
Baño-Medina, J., Manzanas, R., Cimadevilla, E., Fernández, J., González-Abad, J., Cofiño, A. S., and Gutiérrez, J. M.: 2022_Bano_DeepESD_GMD_data (1.0.0), Zenodo [data set],, 2022a. a
Short summary
Deep neural networks are used to produce downscaled regional climate change projections over Europe for temperature and precipitation for the first time. The resulting dataset, DeepESD, is analyzed against state-of-the-art downscaling methodologies, reproducing more accurately the observed climate in the historical period and showing plausible future climate change signals with low computational requirements.