Articles | Volume 15, issue 17
https://doi.org/10.5194/gmd-15-6747-2022
https://doi.org/10.5194/gmd-15-6747-2022
Model evaluation paper
 | 
06 Sep 2022
Model evaluation paper |  | 06 Sep 2022

Downscaling multi-model climate projection ensembles with deep learning (DeepESD): contribution to CORDEX EUR-44

Jorge Baño-Medina, Rodrigo Manzanas, Ezequiel Cimadevilla, Jesús Fernández, Jose González-Abad, Antonio S. Cofiño, and José Manuel Gutiérrez

Related authors

Refining Remote Sensing precipitation Datasets in the South Pacific: An Adaptive Multi-Method Approach for Calibrating the TRMM Product
Óscar Mirones, Joaquín Bedia, Sixto Herrera, Maialen Iturbide, and Jorge Baño Medina
EGUsphere, https://doi.org/10.5194/egusphere-2023-1402,https://doi.org/10.5194/egusphere-2023-1402, 2023
Short summary
Configuration and intercomparison of deep learning neural models for statistical downscaling
Jorge Baño-Medina, Rodrigo Manzanas, and José Manuel Gutiérrez
Geosci. Model Dev., 13, 2109–2124, https://doi.org/10.5194/gmd-13-2109-2020,https://doi.org/10.5194/gmd-13-2109-2020, 2020
Short summary
Statistical downscaling with the downscaleR package (v3.1.0): contribution to the VALUE intercomparison experiment
Joaquín Bedia, Jorge Baño-Medina, Mikel N. Legasa, Maialen Iturbide, Rodrigo Manzanas, Sixto Herrera, Ana Casanueva, Daniel San-Martín, Antonio S. Cofiño, and José Manuel Gutiérrez
Geosci. Model Dev., 13, 1711–1735, https://doi.org/10.5194/gmd-13-1711-2020,https://doi.org/10.5194/gmd-13-1711-2020, 2020
Short summary

Related subject area

Climate and Earth system modeling
Modelling the terrestrial nitrogen and phosphorus cycle in the UVic ESCM
Makcim L. De Sisto, Andrew H. MacDougall, Nadine Mengis, and Sophia Antoniello
Geosci. Model Dev., 16, 4113–4136, https://doi.org/10.5194/gmd-16-4113-2023,https://doi.org/10.5194/gmd-16-4113-2023, 2023
Short summary
Modeling river water temperature with limiting forcing data: Air2stream v1.0.0, machine learning and multiple regression
Manuel C. Almeida and Pedro S. Coelho
Geosci. Model Dev., 16, 4083–4112, https://doi.org/10.5194/gmd-16-4083-2023,https://doi.org/10.5194/gmd-16-4083-2023, 2023
Short summary
A machine learning approach targeting parameter estimation for plant functional type coexistence modeling using ELM-FATES (v2.0)
Lingcheng Li, Yilin Fang, Zhonghua Zheng, Mingjie Shi, Marcos Longo, Charles D. Koven, Jennifer A. Holm, Rosie A. Fisher, Nate G. McDowell, Jeffrey Chambers, and L. Ruby Leung
Geosci. Model Dev., 16, 4017–4040, https://doi.org/10.5194/gmd-16-4017-2023,https://doi.org/10.5194/gmd-16-4017-2023, 2023
Short summary
The fully coupled regionally refined model of E3SM version 2: overview of the atmosphere, land, and river results
Qi Tang, Jean-Christophe Golaz, Luke P. Van Roekel, Mark A. Taylor, Wuyin Lin, Benjamin R. Hillman, Paul A. Ullrich, Andrew M. Bradley, Oksana Guba, Jonathan D. Wolfe, Tian Zhou, Kai Zhang, Xue Zheng, Yunyan Zhang, Meng Zhang, Mingxuan Wu, Hailong Wang, Cheng Tao, Balwinder Singh, Alan M. Rhoades, Yi Qin, Hong-Yi Li, Yan Feng, Yuying Zhang, Chengzhu Zhang, Charles S. Zender, Shaocheng Xie, Erika L. Roesler, Andrew F. Roberts, Azamat Mametjanov, Mathew E. Maltrud, Noel D. Keen, Robert L. Jacob, Christiane Jablonowski, Owen K. Hughes, Ryan M. Forsyth, Alan V. Di Vittorio, Peter M. Caldwell, Gautam Bisht, Renata B. McCoy, L. Ruby Leung, and David C. Bader
Geosci. Model Dev., 16, 3953–3995, https://doi.org/10.5194/gmd-16-3953-2023,https://doi.org/10.5194/gmd-16-3953-2023, 2023
Short summary
The mixed-layer depth in the Ocean Model Intercomparison Project (OMIP): impact of resolving mesoscale eddies
Anne Marie Treguier, Clement de Boyer Montégut, Alexandra Bozec, Eric P. Chassignet, Baylor Fox-Kemper, Andy McC. Hogg, Doroteaciro Iovino, Andrew E. Kiss, Julien Le Sommer, Yiwen Li, Pengfei Lin, Camille Lique, Hailong Liu, Guillaume Serazin, Dmitry Sidorenko, Qiang Wang, Xiaobio Xu, and Steve Yeager
Geosci. Model Dev., 16, 3849–3872, https://doi.org/10.5194/gmd-16-3849-2023,https://doi.org/10.5194/gmd-16-3849-2023, 2023
Short summary

Cited articles

Bandhauer, M., Isotta, F., Lakatos, M., Lussana, C., Båserud, L., Izsák, B., Szentes, O., Tveito, O. E., and Frei, C.: Evaluation of daily precipitation analyses in E-OBS (v19. 0e) and ERA5 by comparison to regional high-resolution datasets in European regions, Int. J. Climatol., 42, 727–747, 2022. a
Baño-Medina, J.: Understanding Deep Learning Decisions in Statistical Downscaling Models, in: Proceedings of the 10th International Conference on Climate Informatics, 79–85, 2020. a
Baño-Medina, J., Manzanas, R., and Gutiérrez, J. M.: Configuration and intercomparison of deep learning neural models for statistical downscaling, Geosci. Model Dev., 13, 2109–2124, https://doi.org/10.5194/gmd-13-2109-2020, 2020. a, b, c, d, e, f, g, h, i, j
Baño-Medina, J., Manzanas, R., and Gutiérrez, J. M.: On the suitability of deep convolutional neural networks for continental-wide downscaling of climate change projections, Clim. Dynam., 57, 1–11, 2021. a, b, c, d, e, f, g
Baño-Medina, J., Manzanas, R., Cimadevilla, E., Fernández, J., González-Abad, J., Cofiño, A. S., and Gutiérrez, J. M.: 2022_Bano_DeepESD_GMD_data (1.0.0), Zenodo [data set], https://doi.org/10.5281/zenodo.6823422, 2022a. a
Download
Short summary
Deep neural networks are used to produce downscaled regional climate change projections over Europe for temperature and precipitation for the first time. The resulting dataset, DeepESD, is analyzed against state-of-the-art downscaling methodologies, reproducing more accurately the observed climate in the historical period and showing plausible future climate change signals with low computational requirements.