Articles | Volume 15, issue 15
https://doi.org/10.5194/gmd-15-6243-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-6243-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Checkerboard patterns in E3SMv2 and E3SM-MMFv2
Walter Hannah
CORRESPONDING AUTHOR
Lawrence Livermore National Laboratory, Livermore, CA, USA
Kyle Pressel
Pacific Northwest National Laboratory, Richland, WA, USA
Mikhail Ovchinnikov
Pacific Northwest National Laboratory, Richland, WA, USA
Gregory Elsaesser
Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, USA
NASA Goddard Institute for Space Studies, New York, NY, USA
Related authors
Naser Mahfouz, Hassan Beydoun, Johannes Mülmenstädt, Noel Keen, Adam C. Varble, Luca Bertagna, Peter Bogenschutz, Andrew Bradley, Matthew W. Christensen, T. Conrad Clevenger, Aaron Donahue, Jerome Fast, James Foucar, Jean-Christophe Golaz, Oksana Guba, Walter Hannah, Benjamin Hillman, Robert Jacob, Wuyin Lin, Po-Lun Ma, Yun Qian, Balwinder Singh, Christopher Terai, Hailong Wang, Mingxuan Wu, Kai Zhang, Andrew Gettelman, Mark Taylor, L. Ruby Leung, Peter Caldwell, and Susannah Burrows
EGUsphere, https://doi.org/10.5194/egusphere-2025-1868, https://doi.org/10.5194/egusphere-2025-1868, 2025
Short summary
Short summary
Our study assesses the aerosol effective radiative forcing in a global cloud-resolving atmosphere model at ultra-high resolution. We demonstrate that global ERFaer signal can be robustly reproduced across resolutions when aerosol activation processes are carefully parameterized. Further, we argue that simplified prescribed aerosol schemes will open the door for further process/mechanism studies under controlled conditions.
Katherine M. Smith, Alice M. Barthel, LeAnn M. Conlon, Luke P. Van Roekel, Anthony Bartoletti, Jean-Christophe Golaz, Chengzhu Zhang, Carolyn Branecky Begeman, James J. Benedict, Gautam Bisht, Yan Feng, Walter Hannah, Bryce E. Harrop, Nicole Jeffery, Wuyin Lin, Po-Lun Ma, Mathew E. Maltrud, Mark R. Petersen, Balwinder Singh, Qi Tang, Teklu Tesfa, Jonathan D. Wolfe, Shaocheng Xie, Xue Zheng, Karthik Balaguru, Oluwayemi Garuba, Peter Gleckler, Aixue Hu, Jiwoo Lee, Ben Moore-Maley, and Ana C. Ordoñez
Geosci. Model Dev., 18, 1613–1633, https://doi.org/10.5194/gmd-18-1613-2025, https://doi.org/10.5194/gmd-18-1613-2025, 2025
Short summary
Short summary
Version 2.1 of the U.S. Department of Energy's Energy Exascale Earth System Model (E3SM) adds the Fox-Kemper et al. (2011) mixed-layer eddy parameterization, which restratifies the ocean surface layer through an overturning streamfunction. Results include surface layer bias reduction in temperature, salinity, and sea ice extent in the North Atlantic; a small strengthening of the Atlantic meridional overturning circulation; and improvements to many atmospheric climatological variables.
Jungmin Lee, Walter M. Hannah, and David C. Bader
Geosci. Model Dev., 16, 7275–7287, https://doi.org/10.5194/gmd-16-7275-2023, https://doi.org/10.5194/gmd-16-7275-2023, 2023
Short summary
Short summary
Representing accurate land–atmosphere interaction processes is overlooked in weather and climate models. In this study, we propose three methods to represent land–atmosphere coupling in the Energy Exascale Earth System Model (E3SM) with the Multi-scale Modeling Framework (MMF) approach. In this study, we introduce spatially homogeneous and heterogeneous land–atmosphere interaction processes within the cloud-resolving model domain. Our 5-year simulations reveal only small differences.
Walter Hannah and Kyle Pressel
Geosci. Model Dev., 15, 8999–9013, https://doi.org/10.5194/gmd-15-8999-2022, https://doi.org/10.5194/gmd-15-8999-2022, 2022
Short summary
Short summary
A multiscale modeling framework couples two models of the atmosphere that each cover different scale ranges. Traditionally, fluctuations in the small-scale model are not transported by the flow on the large-scale model grid, but this is hypothesized to be responsible for a persistent, unphysical checkerboard pattern. A method is presented to facilitate the transport of these small-scale fluctuations, analogous to how small-scale clouds and turbulence are transported in the real atmosphere.
Marco A. Giorgetta, William Sawyer, Xavier Lapillonne, Panagiotis Adamidis, Dmitry Alexeev, Valentin Clément, Remo Dietlicher, Jan Frederik Engels, Monika Esch, Henning Franke, Claudia Frauen, Walter M. Hannah, Benjamin R. Hillman, Luis Kornblueh, Philippe Marti, Matthew R. Norman, Robert Pincus, Sebastian Rast, Daniel Reinert, Reiner Schnur, Uwe Schulzweida, and Bjorn Stevens
Geosci. Model Dev., 15, 6985–7016, https://doi.org/10.5194/gmd-15-6985-2022, https://doi.org/10.5194/gmd-15-6985-2022, 2022
Short summary
Short summary
This work presents a first version of the ICON atmosphere model that works not only on CPUs, but also on GPUs. This GPU-enabled ICON version is benchmarked on two GPU machines and a CPU machine. While the weak scaling is very good on CPUs and GPUs, the strong scaling is poor on GPUs. But the high performance of GPU machines allowed for first simulations of a short period of the quasi-biennial oscillation at very high resolution with explicit convection and gravity wave forcing.
Naser Mahfouz, Hassan Beydoun, Johannes Mülmenstädt, Noel Keen, Adam C. Varble, Luca Bertagna, Peter Bogenschutz, Andrew Bradley, Matthew W. Christensen, T. Conrad Clevenger, Aaron Donahue, Jerome Fast, James Foucar, Jean-Christophe Golaz, Oksana Guba, Walter Hannah, Benjamin Hillman, Robert Jacob, Wuyin Lin, Po-Lun Ma, Yun Qian, Balwinder Singh, Christopher Terai, Hailong Wang, Mingxuan Wu, Kai Zhang, Andrew Gettelman, Mark Taylor, L. Ruby Leung, Peter Caldwell, and Susannah Burrows
EGUsphere, https://doi.org/10.5194/egusphere-2025-1868, https://doi.org/10.5194/egusphere-2025-1868, 2025
Short summary
Short summary
Our study assesses the aerosol effective radiative forcing in a global cloud-resolving atmosphere model at ultra-high resolution. We demonstrate that global ERFaer signal can be robustly reproduced across resolutions when aerosol activation processes are carefully parameterized. Further, we argue that simplified prescribed aerosol schemes will open the door for further process/mechanism studies under controlled conditions.
Fan Yang, Hamed Fahandezh Sadi, Raymond A. Shaw, Fabian Hoffmann, Pei Hou, Aaron Wang, and Mikhail Ovchinnikov
Atmos. Chem. Phys., 25, 3785–3806, https://doi.org/10.5194/acp-25-3785-2025, https://doi.org/10.5194/acp-25-3785-2025, 2025
Short summary
Short summary
Large-eddy simulations of a convection cloud chamber show two new microphysics regimes, cloud oscillation and cloud collapse, due to haze–cloud interactions. Our results suggest that haze particles and their interactions with cloud droplets should be considered especially in polluted conditions. To properly simulate haze–cloud interactions, we need to resolve droplet activation and deactivation processes, instead of using Twomey-type activation parameterization.
Katherine M. Smith, Alice M. Barthel, LeAnn M. Conlon, Luke P. Van Roekel, Anthony Bartoletti, Jean-Christophe Golaz, Chengzhu Zhang, Carolyn Branecky Begeman, James J. Benedict, Gautam Bisht, Yan Feng, Walter Hannah, Bryce E. Harrop, Nicole Jeffery, Wuyin Lin, Po-Lun Ma, Mathew E. Maltrud, Mark R. Petersen, Balwinder Singh, Qi Tang, Teklu Tesfa, Jonathan D. Wolfe, Shaocheng Xie, Xue Zheng, Karthik Balaguru, Oluwayemi Garuba, Peter Gleckler, Aixue Hu, Jiwoo Lee, Ben Moore-Maley, and Ana C. Ordoñez
Geosci. Model Dev., 18, 1613–1633, https://doi.org/10.5194/gmd-18-1613-2025, https://doi.org/10.5194/gmd-18-1613-2025, 2025
Short summary
Short summary
Version 2.1 of the U.S. Department of Energy's Energy Exascale Earth System Model (E3SM) adds the Fox-Kemper et al. (2011) mixed-layer eddy parameterization, which restratifies the ocean surface layer through an overturning streamfunction. Results include surface layer bias reduction in temperature, salinity, and sea ice extent in the North Atlantic; a small strengthening of the Atlantic meridional overturning circulation; and improvements to many atmospheric climatological variables.
Trude Eidhammer, Andrew Gettelman, Katherine Thayer-Calder, Duncan Watson-Parris, Gregory Elsaesser, Hugh Morrison, Marcus van Lier-Walqui, Ci Song, and Daniel McCoy
Geosci. Model Dev., 17, 7835–7853, https://doi.org/10.5194/gmd-17-7835-2024, https://doi.org/10.5194/gmd-17-7835-2024, 2024
Short summary
Short summary
We describe a dataset where 45 parameters related to cloud processes in the Community Earth System Model version 2 (CESM2) Community Atmosphere Model version 6 (CAM6) are perturbed. Three sets of perturbed parameter ensembles (263 members) were created: current climate, preindustrial aerosol loading and future climate with sea surface temperature increased by 4 K.
Aaron Wang, Steve Krueger, Sisi Chen, Mikhail Ovchinnikov, Will Cantrell, and Raymond A. Shaw
Atmos. Chem. Phys., 24, 10245–10260, https://doi.org/10.5194/acp-24-10245-2024, https://doi.org/10.5194/acp-24-10245-2024, 2024
Short summary
Short summary
We employ two methods to examine a laboratory experiment on clouds with both ice and liquid phases. The first assumes well-mixed properties; the second resolves the spatial distribution of turbulence and cloud particles. Results show that while the trends in mean properties generally align, when turbulence is resolved, liquid droplets are not fully depleted by ice due to incomplete mixing. This underscores the threshold of ice mass fraction in distinguishing mixed-phase clouds from ice clouds.
Ming Luo, Helen M. Worden, Robert D. Field, Kostas Tsigaridis, and Gregory S. Elsaesser
Atmos. Meas. Tech., 17, 2611–2624, https://doi.org/10.5194/amt-17-2611-2024, https://doi.org/10.5194/amt-17-2611-2024, 2024
Short summary
Short summary
The TROPESS CrIS single-pixel CO profile retrievals are compared to the MOPITT CO products in steps of adjusting them to the common a priori assumptions. The two data sets are found to agree within 5 %. We also demonstrated and analyzed the proper steps in evaluating GISS ModelE CO simulations using satellite CO retrieval products for the western US wildfire events in September 2020.
Yu Yao, Po-Lun Ma, Yi Qin, Matthew W. Christensen, Hui Wan, Kai Zhang, Balwinder Singh, Meng Huang, and Mikhail Ovchinnikov
EGUsphere, https://doi.org/10.5194/egusphere-2024-523, https://doi.org/10.5194/egusphere-2024-523, 2024
Preprint withdrawn
Short summary
Short summary
Giant aerosols have substantial effects on warm rain formation. However, it remains challenging to quantify the impact of giant particles at global scale. In this work, we applied earth system model to investigate its impacts by implementing new giant aerosol treatments to consider its physical process. We found this approach substantially affect liquid cloud and improved model's precipitation response to aerosols. Our findings demonstrate the significant impact of giant aerosols on climate.
Jungmin Lee, Walter M. Hannah, and David C. Bader
Geosci. Model Dev., 16, 7275–7287, https://doi.org/10.5194/gmd-16-7275-2023, https://doi.org/10.5194/gmd-16-7275-2023, 2023
Short summary
Short summary
Representing accurate land–atmosphere interaction processes is overlooked in weather and climate models. In this study, we propose three methods to represent land–atmosphere coupling in the Energy Exascale Earth System Model (E3SM) with the Multi-scale Modeling Framework (MMF) approach. In this study, we introduce spatially homogeneous and heterogeneous land–atmosphere interaction processes within the cloud-resolving model domain. Our 5-year simulations reveal only small differences.
Walter Hannah and Kyle Pressel
Geosci. Model Dev., 15, 8999–9013, https://doi.org/10.5194/gmd-15-8999-2022, https://doi.org/10.5194/gmd-15-8999-2022, 2022
Short summary
Short summary
A multiscale modeling framework couples two models of the atmosphere that each cover different scale ranges. Traditionally, fluctuations in the small-scale model are not transported by the flow on the large-scale model grid, but this is hypothesized to be responsible for a persistent, unphysical checkerboard pattern. A method is presented to facilitate the transport of these small-scale fluctuations, analogous to how small-scale clouds and turbulence are transported in the real atmosphere.
Marco A. Giorgetta, William Sawyer, Xavier Lapillonne, Panagiotis Adamidis, Dmitry Alexeev, Valentin Clément, Remo Dietlicher, Jan Frederik Engels, Monika Esch, Henning Franke, Claudia Frauen, Walter M. Hannah, Benjamin R. Hillman, Luis Kornblueh, Philippe Marti, Matthew R. Norman, Robert Pincus, Sebastian Rast, Daniel Reinert, Reiner Schnur, Uwe Schulzweida, and Bjorn Stevens
Geosci. Model Dev., 15, 6985–7016, https://doi.org/10.5194/gmd-15-6985-2022, https://doi.org/10.5194/gmd-15-6985-2022, 2022
Short summary
Short summary
This work presents a first version of the ICON atmosphere model that works not only on CPUs, but also on GPUs. This GPU-enabled ICON version is benchmarked on two GPU machines and a CPU machine. While the weak scaling is very good on CPUs and GPUs, the strong scaling is poor on GPUs. But the high performance of GPU machines allowed for first simulations of a short period of the quasi-biennial oscillation at very high resolution with explicit convection and gravity wave forcing.
Cited articles
Anjum, M. N., Ding, Y., Shangguan, D., Ahmad, I., Ijaz, M. W., Farid, H. U.,
Yagoub, Y. E., Zaman, M., and Adnan, M.: Performance evaluation of latest
integrated multi-satellite retrievals for Global Precipitation Measurement
(IMERG) over the northern highlands of Pakistan, Atmos. Res., 205, 134–146, https://doi.org/10.1016/J.ATMOSRES.2018.02.010, 2018. a
Benedict, J. J. and Randall, D.: Structure of the Madden-Julian oscillation in
the superparameterized CAM, J. Atmos. Sci., 66, 3277–3296,
https://doi.org/10.1175/2009JAS3030.1, 2009. a
E3SM Project: Energy Exascale Earth System Model (E3SM) [software], https://doi.org/10.11578/E3SM/dc.20210927.1, 2021. a
Elsaesser, G. S., O'Dell, C. W., Lebsock, M. D., Bennartz, R., Greenwald,
T. J., and Wentz, F. J.: The Multisensor Advanced Climatology of Liquid
Water Path (MAC-LWP), J. Climate, 30, 10193–10210,
https://doi.org/10.1175/JCLI-D-16-0902.1, 2017. a, b
Golaz, J., Caldwell, P. M., Van Roekel, L. P., Petersen, M. R., Tang, Q.,
Wolfe, J. D., Abeshu, G., Anantharaj, V., Asay‐Davis, X. S., Bader, D. C.,
Baldwin, S. A., Bisht, G., Bogenschutz, P. A., Branstetter, M., Brunke,
M. A., Brus, S. R., Burrows, S. M., Cameron‐Smith, P. J., Donahue, A. S.,
Deakin, M., Easter, R. C., Evans, K. J., Feng, Y., Flanner, M., Foucar,
J. G., Fyke, J. G., Griffin, B. M., Hannay, C., Harrop, B. E., Hunke, E. C.,
Jacob, R. L., Jacobsen, D. W., Jeffery, N., Jones, P. W., Keen, N. D., Klein,
S. A., Larson, V. E., Leung, L. R., Li, H., Lin, W., Lipscomb, W. H., Ma, P.,
Mahajan, S., Maltrud, M. E., Mametjanov, A., McClean, J. L., McCoy, R. B.,
Neale, R. B., Price, S. F., Qian, Y., Rasch, P. J., Reeves Eyre, J. J.,
Riley, W. J., Ringler, T. D., Roberts, A. F., Roesler, E. L., Salinger,
A. G., Shaheen, Z., Shi, X., Singh, B., Tang, J., Taylor, M. A., Thornton,
P. E., Turner, A. K., Veneziani, M., Wan, H., Wang, H., Wang, S., Williams,
D. N., Wolfram, P. J., Worley, P. H., Xie, S., Yang, Y., Yoon, J., Zelinka,
M. D., Zender, C. S., Zeng, X., Zhang, C., Zhang, K., Zhang, Y., Zheng, X.,
Zhou, T., and Zhu, Q.: The DOE E3SM coupled model version 1: Overview and
evaluation at standard resolution, J. Adv. Model. Earth
Sy., 11, 2018MS001603, https://doi.org/10.1029/2018MS001603, 2019. a
Grabowski, W. W.: Coupling Cloud Processes with the Large-Scale Dynamics Using
the Cloud-Resolving Convection Parameterization (CRCP), J. Atmos. Sci., 58, 978–997,
https://doi.org/10.1175/1520-0469(2001)058<0978:CCPWTL>2.0.CO;2, 2001. a
Grabowski, W. W. and Smolarkiewicz, P. K.: CRCP: a Cloud Resolving Convection
Parameterization for modeling the tropical convecting atmosphere, Physica D, 133, 171–178, https://doi.org/10.1016/S0167-2789(99)00104-9,
1999. a
Hannah, 2021: E3SM checkerboard detection data and analysis code [code and data set], https://g-c5233.fd635.8443.data.globus.org/publications/Hannah_GMD_2022_chx_detection.tar.gz (last access: 8 August 2022), 2021. a
Hannah, W.: E3SMv2 branch used for checkerboard signal analysis, Zenodo [code], https://doi.org/10.5281/zenodo.6407199, 2022. a
Hannah, W. and Pressel, K.: Transporting CRM Variance in a Multiscale Modelling Framework, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2022-397, 2022. a
Hannah, W. M., Jones, C. R., Hillman, B. R., Norman, M. R., Bader, D. C.,
Taylor, M. A., Leung, L. R., Pritchard, M. S., Branson, M. D., Lin, G.,
Pressel, K. G., and Lee, J. M.: Initial Results From the
Super‐Parameterized E3SM, J. Adv. Model. Earth Sy.,
12, 1–19, https://doi.org/10.1029/2019MS001863, 2020. a, b, c, d
Hannah, W. M., Bradley, A. M., Guba, O., Tang, Q., Golaz, J.-C., and Wolfe, J.:
Separating Physics and Dynamics Grids for Improved Computational Efficiency
in Spectral Element Earth System Models, J. Adv. Model. Earth Sy., 13, e2020MS002419, https://doi.org/10.1029/2020MS002419, 2021. a, b
Herrington, A. R., Lauritzen, P. H., Reed, K. A., Goldhaber, S., and Eaton,
B. E.: Exploring a lower resolution physics grid in CAM‐SE‐CSLAM,
J. Adv. Model. Earth Sy., 11, 2019MS001684,
https://doi.org/10.1029/2019MS001684, 2019a. a
Herrington, A. R., Lauritzen, P. H., Taylor, M. A., Goldhaber, S., Eaton,
B. E., Bacmeister, J. T., Reed, K. A., and Ullrich, P. A.:
Physics–Dynamics Coupling with Element-Based High-Order Galerkin Methods:
Quasi-Equal-Area Physics Grid, Mon. Weather Rev., 147, 69–84,
https://doi.org/10.1175/MWR-D-18-0136.1, 2019b. a
Hou, A. Y., Kakar, R. K., Neeck, S., Azarbarzin, A. A., Kummerow, C. D.,
Kojima, M., Oki, R., Nakamura, K., and Iguchi, T.: The Global Precipitation
Measurement Mission, Bull. Am. Meteor. Soc., 95,
701–722, https://doi.org/10.1175/BAMS-D-13-00164.1, 2014. a
Hurrell, J. W., Holland, M. M., Gent, P. R., Ghan, S., Kay, J. E., Kushner,
P. J., Lamarque, J.-F., Large, W. G., Lawrence, D., Lindsay, K., Lipscomb,
W. H., Long, M. C., Mahowald, N., Marsh, D. R., Neale, R. B., Rasch, P.,
Vavrus, S., Vertenstein, M., Bader, D., Collins, W. D., Hack, J. J., Kiehl,
J., Marshall, S., Hurrell, J. W., Holland, M. M., Gent, P. R., Ghan, S., Kay,
J. E., Kushner, P. J., Lamarque, J.-F., Large, W. G., Lawrence, D., Lindsay,
K., Lipscomb, W. H., Long, M. C., Mahowald, N., Marsh, D. R., Neale, R. B.,
Rasch, P., Vavrus, S., Vertenstein, M., Bader, D., Collins, W. D., Hack,
J. J., Kiehl, J., and Marshall, S.: The Community Earth System Model: A
Framework for Collaborative Research, Bull. Am. Meteor. Soc., 94, 1339–1360, https://doi.org/10.1175/BAMS-D-12-00121.1, 2013. a
Jones, T. R., Randall, D. A., and Branson, M. D.: Multiple-Instance
Superparameterization: 2. The Effects of Stochastic Convection on the
Simulated Climate, J. Adv. Model. Earth Sy., 11,
3521–3544, https://doi.org/10.1029/2019MS001611, 2019. a
Khairoutdinov, M. and Randall, D.: Cloud resolving modeling of the ARM summer
1997 IOP: Model formulation, results, uncertainties, and sensitivities,
J. Atmos. Sci., 60, 607–625,
https://doi.org/10.1175/1520-0469(2003)060<0607:CRMOTA>2.0.CO;2,
2003. a
Khairoutdinov, M. F., Randall, D. A., and DeMott, C. A.: Simulations of the
atmospheric general circulation using a cloud-resolving model as a
superparameterization of physical processes, J. Atmos. Sci., 62, 2136–2154, https://doi.org/10.1175/JAS3453.1, 2005. a, b, c
Kim, K., Park, J., Baik, J., and Choi, M.: Evaluation of topographical and
seasonal feature using GPM IMERG and TRMM 3B42 over Far-East Asia,
Atmos. Res., 187, 95–105, https://doi.org/10.1016/J.ATMOSRES.2016.12.007,
2017. a
McCoy, D. T., Field, P., Bodas-Salcedo, A., Elsaesser, G. S., and Zelinka,
M. D.: A Regime-Oriented Approach to Observationally Constraining
Extratropical Shortwave Cloud Feedbacks, J. Climate, 33, 9967–9983,
https://doi.org/10.1175/JCLI-D-19-0987.1, 2020. a
Pritchard, M. S., Moncrieff, M. W., and Somerville, R. C. J.: Orogenic
Propagating Precipitation Systems over the United States in a Global Climate
Model with Embedded Explicit Convection, J. Atmos. Sci., 68, 1821–1840, https://doi.org/10.1175/2011JAS3699.1, 2011. a
Randall, D. a., Khairoutdinov, M., Arakawa, A., and Grabowski, W.: Breaking
the Cloud Parameterization Deadlock, Bull. Am. Meteor. Soc., 84, 1547–1564, https://doi.org/10.1175/BAMS-84-11-1547, 2003. a
Ronchi, C., Iacono, R., and Paolucci, P.: The “Cubed Sphere”: A New Method
for the Solution of Partial Differential Equations in Spherical Geometry,
J. Comput. Phys., 124, 93–114, https://doi.org/10.1006/JCPH.1996.0047, 1996. a
Taylor, K. E., Williamson, D., and Zwiers, F.: The sea surface temperature and
sea-ice concentration boundary conditions for AMIP II simulations, PCMDI
Report, 60, 25, https://pcmdi.llnl.gov/report/ab60.html (last access: 8 August 2022), 2000. a
Taylor, M. A., Edwards, J., Thomas, S., and Nair, R.: A mass and energy
conserving spectral element atmospheric dynamical core on the cubed-sphere
grid, J. Phys. Conf. Ser., 78, 012074,
https://doi.org/10.1088/1742-6596/78/1/012074, 2007. a
Xie, S., Lin, W., Rasch, P. J., Ma, P.-L., Neale, R., Larson, V. E., Qian, Y.,
Bogenschutz, P. A., Caldwell, P., Cameron-Smith, P., Golaz, J.-C., Mahajan,
S., Singh, B., Tang, Q., Wang, H., Yoon, J.-H., Zhang, K., and Zhang, Y.:
Understanding Cloud and Convective Characteristics in Version 1 of the E3SM
Atmosphere Model, J. Adv. Model. Earth Sy., 10,
2618–2644, https://doi.org/10.1029/2018MS001350, 2018. a
Xie, S., Wang, Y., Lin, W., Ma, H., Tang, Q., Tang, S., Zheng, X., Golaz, J.,
Zhang, G. J., and Zhang, M.: Improved Diurnal Cycle of Precipitation in E3SM
With a Revised Convective Triggering Function, J. Adv. Model. Earth Sy., 11, 2290–2310, https://doi.org/10.1029/2019MS001702, 2019. a
Short summary
An unphysical checkerboard signal is identified in two configurations of the atmospheric component of E3SM. The signal is very persistent and visible after averaging years of data. The signal is very difficult to study because it is often mixed with realistic weather. A method is presented to detect checkerboard patterns and compare the model with satellite observations. The causes of the signal are identified, and a solution for one configuration is discussed.
An unphysical checkerboard signal is identified in two configurations of the atmospheric...