Articles | Volume 15, issue 14
https://doi.org/10.5194/gmd-15-5593-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-5593-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
SurEau-Ecos v2.0: a trait-based plant hydraulics model for simulations of plant water status and drought-induced mortality at the ecosystem level
Julien Ruffault
INRAE, URFM, 84000 Avignon, France
François Pimont
INRAE, URFM, 84000 Avignon, France
Hervé Cochard
Université Clermont Auvergne, INRAE, PIAF, 63000
Clermont-Ferrand, France
Jean-Luc Dupuy
INRAE, URFM, 84000 Avignon, France
Nicolas Martin-StPaul
CORRESPONDING AUTHOR
INRAE, URFM, 84000 Avignon, France
Related authors
No articles found.
Kaiyan Hu, Bertille Loiseau, Simon D. Carrière, Nolwenn Lesparre, Cédric Champollion, Nicolas K. Martin-StPaul, Niklas Linde, and Damien Jougnot
Hydrol. Earth Syst. Sci., 29, 2997–3018, https://doi.org/10.5194/hess-29-2997-2025, https://doi.org/10.5194/hess-29-2997-2025, 2025
Short summary
Short summary
This study explores the potential of the electrical self-potential (SP) method, a passive geophysical technique, to provide additional insights into tree transpiration rates. We measured SP and sap velocity in three tree species over a year in a Mediterranean climate. Results indicate SP may characterize transpiration rates, especially during dry seasons. Additionally, the electrokinetic coupling coefficients of these trees align with values typically found in porous geological media.
Tanguy Postic, François de Coligny, Isabelle Chuine, Louis Devresse, Daniel Berveiller, Hervé Cochard, Matthias Cuntz, Nicolas Delpierre, Émilie Joetzjer, Jean-Marc Limousin, Jean-Marc Ourcival, François Pimont, Julien Ruffault, Guillaume Simioni, Nicolas K. Martin-StPaul, and Xavier Morin
EGUsphere, https://doi.org/10.5194/egusphere-2025-2110, https://doi.org/10.5194/egusphere-2025-2110, 2025
Short summary
Short summary
PHOREAU is a forest dynamic model that links plant traits with water use, growth, and climate responses to explore how species diversity affects productivity and resilience. Validated across European forests, PHOREAU simulates how tree communities function under drought and warming. Our findings support the use of trait-based modeling to guide forest adaptation strategies under future climate scenarios.
Arsène Druel, Julien Ruffault, Hendrik Davi, André Chanzy, Olivier Marloie, Miquel De Cáceres, Albert Olioso, Florent Mouillot, Christophe François, Kamel Soudani, and Nicolas K. Martin-StPaul
Biogeosciences, 22, 1–18, https://doi.org/10.5194/bg-22-1-2025, https://doi.org/10.5194/bg-22-1-2025, 2025
Short summary
Short summary
Accurate radiation data are essential for understanding ecosystem functions and dynamics. Traditional large-scale data lack the precision needed for complex terrain. This study introduces a new model, which accounts for sub-daily direct and diffuse radiation effects caused by terrain features, to enhance the radiation data resolution using elevation maps. Tested on a mountainous area, this method significantly improved radiation estimates, benefiting predictions of forest functions.
Marco M. Lehmann, Josie Geris, Ilja van Meerveld, Daniele Penna, Youri Rothfuss, Matteo Verdone, Pertti Ala-Aho, Matyas Arvai, Alise Babre, Philippe Balandier, Fabian Bernhard, Lukrecija Butorac, Simon Damien Carrière, Natalie C. Ceperley, Zuosinan Chen, Alicia Correa, Haoyu Diao, David Dubbert, Maren Dubbert, Fabio Ercoli, Marius G. Floriancic, Teresa E. Gimeno, Damien Gounelle, Frank Hagedorn, Christophe Hissler, Frédéric Huneau, Alberto Iraheta, Tamara Jakovljević, Nerantzis Kazakis, Zoltan Kern, Karl Knaebel, Johannes Kobler, Jiří Kocum, Charlotte Koeber, Gerbrand Koren, Angelika Kübert, Dawid Kupka, Samuel Le Gall, Aleksi Lehtonen, Thomas Leydier, Philippe Malagoli, Francesca Sofia Manca di Villahermosa, Chiara Marchina, Núria Martínez-Carreras, Nicolas Martin-StPaul, Hannu Marttila, Aline Meyer Oliveira, Gaël Monvoisin, Natalie Orlowski, Kadi Palmik-Das, Aurel Persoiu, Andrei Popa, Egor Prikaziuk, Cécile Quantin, Katja T. Rinne-Garmston, Clara Rohde, Martin Sanda, Matthias Saurer, Daniel Schulz, Michael Paul Stockinger, Christine Stumpp, Jean-Stéphane Venisse, Lukas Vlcek, Stylianos Voudouris, Björn Weeser, Mark E. Wilkinson, Giulia Zuecco, and Katrin Meusburger
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-409, https://doi.org/10.5194/essd-2024-409, 2024
Revised manuscript under review for ESSD
Short summary
Short summary
This study describes a unique large-scale isotope dataset to study water dynamics in European forests. Researchers collected data from 40 beech and spruce forest sites in spring and summer 2023, using a standardized method to ensure consistency. The results show that water sources for trees change between seasons and vary by tree species. This large dataset offers valuable information for understanding plant water use, improving ecohydrological models, and mapping water cycles across Europe.
Miquel De Cáceres, Roberto Molowny-Horas, Antoine Cabon, Jordi Martínez-Vilalta, Maurizio Mencuccini, Raúl García-Valdés, Daniel Nadal-Sala, Santiago Sabaté, Nicolas Martin-StPaul, Xavier Morin, Francesco D'Adamo, Enric Batllori, and Aitor Améztegui
Geosci. Model Dev., 16, 3165–3201, https://doi.org/10.5194/gmd-16-3165-2023, https://doi.org/10.5194/gmd-16-3165-2023, 2023
Short summary
Short summary
Regional-level applications of dynamic vegetation models are challenging because they need to accommodate the variation in plant functional diversity. This can be done by estimating parameters from available plant trait databases while adopting alternative solutions for missing data. Here we present the design, parameterization and evaluation of MEDFATE (version 2.9.3), a novel model of forest dynamics for its application over a region in the western Mediterranean Basin.
Cited articles
Abram, N. J., Henley, B. J., Sen Gupta, A., Lippmann, T. J. R., Clarke, H.,
Dowdy, A. J., Sharples, J. J., Nolan, R. H., Zhang, T., Wooster, M. J.,
Wurtzel, J. B., Meissner, K. J., Pitman, A. J., Ukkola, A. M., Murphy, B.
P., Tapper, N. J., and Boer, M. M.: Connections of climate change and
variability to large and extreme forest fires in southeast Australia,
Commun. Earth Environ., 2, 1–17, https://doi.org/10.1038/s43247-020-00065-8, 2021.
Adams, H. D., Zeppel, M. J. B., Anderegg, W. R. L., Hartmann, H.,
Landhäusser, S. M., Tissue, D. T., Huxman, T. E., Hudson, P. J., Franz,
T. E., Allen, C. D., Anderegg, L. D. L., Barron-Gafford, G. A., Beerling, D.
J., Breshears, D. D., Brodribb, T. J., Bugmann, H., Cobb, R. C., Collins, A.
D., Dickman, L. T., Duan, H., Ewers, B. E., Galiano, L., Galvez, D. A.,
Garcia-Forner, N., Gaylord, M. L., Germino, M. J., Gessler, A., Hacke, U.
G., Hakamada, R., Hector, A., Jenkins, M. W., Kane, J. M., Kolb, T. E., Law,
D. J., Lewis, J. D., Limousin, J.-M., Love, D. M., Macalady, A. K.,
Martínez-Vilalta, J., Mencuccini, M., Mitchell, P. J., Muss, J. D.,
O'Brien, M. J., O'Grady, A. P., Pangle, R. E., Pinkard, E. A., Piper, F. I.,
Plaut, J. A., Pockman, W. T., Quirk, J., Reinhardt, K., Ripullone, F., Ryan,
M. G., Sala, A., Sevanto, S., Sperry, J. S., Vargas, R., Vennetier, M., Way,
D. A., Xu, C., Yepez, E. A., and McDowell, N. G.: A multi-species synthesis
of physiological mechanisms in drought-induced tree mortality, Nat. Ecol.
Evol., 1, 1285–1291, https://doi.org/10.1038/s41559-017-0248-x, 2017.
Allen, C. D., Breshears, D. D., and McDowell, N. G.: On underestimation of
global vulnerability to tree mortality and forest die-off from hotter
drought in the Anthropocene, Ecosphere, 6, art129,
https://doi.org/10.1890/ES15-00203.1, 2015.
Arend, M., Link, R. M., Zahnd, C., Hoch, G., Schuldt, B., and Kahmen, A.:
Lack of hydraulic recovery as a cause of post-drought foliage reduction and
canopy decline in European beech, New Phytol., 234, 1195–1205,
https://doi.org/10.1111/nph.18065, 2022.
Bartlett, M. K., Scoffoni, C., and Sack, L.: The determinants of leaf turgor
loss point and prediction of drought tolerance of species and biomes: A
global meta-analysis, Ecol. Lett., 15, 393–405,
https://doi.org/10.1111/j.1461-0248.2012.01751.x, 2012.
Bartlett, M. K., Klein, T., Jansen, S., Choat, B., and Sack, L.: The
correlations and sequence of plant stomatal, hydraulic, and wilting
responses to drought, P. Natl. Acad. Sci. USA, 113, 13098–13103,
https://doi.org/10.1073/pnas.1604088113, 2016.
Billon, L. M., Blackman, C. J., Cochard, H., Badel, E., Hitmi, A.,
Cartailler, J., Souchal, R., and Torres-Ruiz, J. M.: The DroughtBox: A new
tool for phenotyping residual branch conductance and its temperature
dependence during drought, Plant Cell Environ., 43, 1584–1594,
https://doi.org/10.1111/pce.13750, 2020.
Brodribb, T. J., Powers, J., Cochard, H., and Choat, B.: Hanging by a
thread? Forests and drought, Science, 368, 261–266, https://doi.org/10.1126/science.aat7631, 2020.
Cheaib, A., Badeau, V., Boe, J., Chuine, I., Delire, C., Dufrêne, E.,
François, C., Gritti, E. S., Legay, M., Pagé, C., Thuiller, W.,
Viovy, N., and Leadley, P.: Climate change impacts on tree ranges: Model
intercomparison facilitates understanding and quantification of uncertainty,
Ecol. Lett., 15, 533–544, https://doi.org/10.1111/j.1461-0248.2012.01764.x,
2012.
Choat, B., Jansen, S., Brodribb, T. J., Cochard, H., Delzon, S., Bhaskar, R., Bucci, S. J., Feild, T.
S., Gleason, S. M., Hacke, U. G., Jacobsen, A. L., Lens, F., Maherali, H., Martínez-Vilalta, J.,
Mayr, S., Mencuccini, M., Mitchell, P. J., Nardini, A., Pittermann, J., Pratt, R. B., Sperry, J. S.,
Westoby, M., Wright, I. J., and Zanne, A. E.: Global convergence in the vulnerability of forests
to drought, Nature, 491, 4–8, https://doi.org/10.1038/nature11688, 2012.
Choat, B., Brodribb, T. J., Brodersen, C. R., Duursma, R. A., López, R., and Medlyn, B. E.:
Triggers of tree mortality under drought, Nature, 558, 531–539,
https://doi.org/10.1038/s41586-018-0240-x, 2018.
Christoffersen, B. O., Gloor, M., Fauset, S., Fyllas, N. M., Galbraith, D. R., Baker, T. R., Kruijt, B., Rowland, L., Fisher, R. A., Binks, O. J., Sevanto, S., Xu, C., Jansen, S., Choat, B., Mencuccini, M., McDowell, N. G., and Meir, P.: Linking hydraulic traits to tropical forest function in a size-structured and trait-driven model (TFS v.1-Hydro), Geosci. Model Dev., 9, 4227–4255, https://doi.org/10.5194/gmd-9-4227-2016, 2016.
Chuine, I. and Cour, P.: Climatic determinants of budburst seasonality in
four temperate-zone tree species, New Phytol., 143, 339–349, 1999.
Cochard, H.: A new mechanism for tree mortality due to drought and
heatwaves, Peer Community J., 1, e36, https://doi.org/10.24072/PCJOURNAL.45,
2021.
Cochard, H., Pimont, F., Ruffault, J., and Martin-StPaul, N.: SurEau: a
mechanistic model of plant water relations under extreme drought, Ann. For.
Sci., 78, 1–23, https://doi.org/10.1007/s13595-021-01067-y, 2021.
Couvreur, V., Ledder, G., Manzoni, S., Way, D. A., Muller, E. B., and Russo,
S. E.: Water transport through tall trees: A vertically explicit, analytical
model of xylem hydraulic conductance in stems, Plant Cell Environ., 41,
1821–1839, https://doi.org/10.1111/pce.13322, 2018.
Cruiziat, P., Cochard, H., and Améglio, T.: Hydraulic architecture of
trees: main concepts and results, Ann. For. Sci., 59, 723–752,
https://doi.org/10.1051/forest:2002060, 2002.
De Cáceres, M., Martínez-Vilalta, J., Coll, L., Llorens, P.,
Casals, P., Poyatos, R., Pausas, J. G., and Brotons, L.: Coupling a water
balance model with forest inventory data to predict drought stress: The role
of forest structural changes vs. climate changes, Agric. For. Meteorol.,
213, 77–90, https://doi.org/10.1016/j.agrformet.2015.06.012, 2015.
De Cáceres, M., Mencuccini, M., Martin-StPaul, N., Limousin, J. M.,
Coll, L., Poyatos, R., Cabon, A., Granda, V., Forner, A., Valladares, F.,
and Martínez-Vilalta, J.: Unravelling the effect of species mixing on
water use and drought stress in Mediterranean forests: A modelling approach,
Agric. For. Meteorol., 296, 108233, https://doi.org/10.1016/j.agrformet.2020.108233,
2021.
De Kauwe, M. G., Medlyn, B. E., Ukkola, A. M., Mu, M., Sabot, M. E. B.,
Pitman, A. J., Meir, P., Cernusak, L. A., Rifai, S. W., Choat, B., Tissue,
D. T., Blackman, C. J., Li, X., Roderick, M., and Briggs, P. R.: Identifying
areas at risk of drought-induced tree mortality across South-Eastern
Australia, Glob. Change Biol., 26, 5716–5733, https://doi.org/10.1111/gcb.15215,
2020.
Domec, J. C., Smith, D. D., and McCulloh, K. A.: A synthesis of the effects
of atmospheric carbon dioxide enrichment on plant hydraulics: implications
for whole-plant water use efficiency and resistance to drought, Plant Cell
Environ., 40, 921–937, https://doi.org/10.1111/pce.12843, 2017.
Dufour-Kowalski, S., Courbaud, B., Dreyfus, P., Meredieu, C., and De
Coligny, F.: Capsis: An open software framework and community for forest
growth modelling, Ann. Forest Sci., 221–233,
https://doi.org/10.1007/s13595-011-0140-9, 2012.
Dufrêne, E., Davi, H., François, C., Maire, G. le, Dantec, V. L.,
and Granier, A.: Modelling carbon and water cycles in a beech forest: Part
I: Model description and uncertainty analysis on modelled NEE, Ecol. Model.,
185, 407–436, https://doi.org/10.1016/j.ecolmodel.2005.01.004, 2005.
Dutykh, D.: How to overcome the Courant-Friedrichs-Lewy condition of
explicit discretizations?, Numer. Methods Diffus. Phenom. Build. Phys.,
103–120, https://doi.org/10.1007/978-3-030-31574-0_5, 2016.
Duursma, R. A., Blackman, C. J., Lopéz, R., Martin-StPaul, N. K.,
Cochard, H., and Medlyn, B. E.: On the minimum leaf conductance: its role in
models of plant water use, and ecological and environmental controls, New
Phytol., 221, 693–705, https://doi.org/10.1111/nph.15395, 2019.
Fargeon, H., Pimont, F., Martin-StPaul, N., De Caceres, M., Ruffault, J.,
Barbero, R., and Dupuy, J. L.: Projections of fire danger under climate
change over France: where do the greatest uncertainties lie?, Clim. Change,
160, 479–493, https://doi.org/10.1007/s10584-019-02629-w, 2020.
Fatichi, S., Pappas, C., and Ivanov, V. Y.: Modeling plant–water
interactions: an ecohydrological overview from the cell to the global scale,
Wiley Interdiscip. Rev. Water, 3, 327–368,
https://doi.org/10.1002/wat2.1125, 2016.
Feng, X., Ackerly, D. D., Dawson, T. E., Manzoni, S., Skelton, R. P., Vico,
G., and Thompson, S. E.: The ecohydrological context of drought and
classification of plant responses, Ecol. Lett., 21, 1723–1736,
https://doi.org/10.1111/ele.13139, 2018.
Fettig, C. J., Mortenson, L. A., Bulaon, B. M., and Foulk, P. B.: Tree
mortality following drought in the central and southern Sierra Nevada,
California, U.S., For. Ecol. Manag., 432, 164–178,
https://doi.org/10.1016/j.foreco.2018.09.006, 2019.
Granier, A., Bréda, N., Biron, P., and Villette, S.: A lumped water
balance model to evaluate duration and intensity of drought constraints in
forest stands, Ecol. Model., 116, 269–283,
https://doi.org/10.1016/S0304-3800(98)00205-1, 1999.
Guillemot, J., Martin-StPaul, N. K., Bulascoschi, L., Poorter, L., Morin,
X., Pinho, B. X., le Maire, G., R. L. Bittencourt, P., Oliveira, R. S.,
Bongers, F., Brouwer, R., Pereira, L., Gonzalez Melo, G. A., Boonman, C. C.
F., Brown, K. A., Cerabolini, B. E. L., Niinemets, Ü., Onoda, Y.,
Schneider, J. V., Sheremetiev, S., and Brancalion, P. H. S.: Small and slow
is safe: On the drought tolerance of tropical tree species, Glob. Change
Biol., 28, 2622–2638, https://doi.org/10.1111/gcb.16082, 2022.
Gupta, S., Hengl, T., Lehmann, P., Bonetti, S., and Or, D.: SoilKsatDB: global database of soil saturated hydraulic conductivity measurements for geoscience applications, Earth Syst. Sci. Data, 13, 1593–1612, https://doi.org/10.5194/essd-13-1593-2021, 2021.
Hengl, T., Jesus, J. M. de, Heuvelink, G. B. M., Gonzalez, M. R., Kilibarda,
M., Blagotiæ, A., Shangguan, W., Wright, M. N., Geng, X.,
Bauer-Marschallinger, B., Guevara, M. A., Vargas, R., MacMillan, R. A.,
Batjes, N. H., Leenaars, J. G. B., Ribeiro, E., Wheeler, I., Mantel, S., and
Kempen, B.: SoilGrids250m: Global gridded soil information based on machine
learning, PLOS ONE, 12, e0169748,
https://doi.org/10.1371/journal.pone.0169748, 2017.
Hoff, C. and Rambal, S.: An examination of the interaction between climate,
soil and leaf area index in a Quercus ilex ecosystem, Ann. For. Sci., 60,
153–161, https://doi.org/10.1051/forest:2003008, 2003.
Hölttä, T., Cochard, H., Nikinmaa, E., and Mencuccini, M.:
Capacitive effect of cavitation in xylem conduits: results from a dynamic
model, Plant Cell Environ., 32, 10–21, 2009.
Jackson, R. B., Canadell, J., Ehleringer, J. R., Mooney, H. A., Sala, O. E.,
and Schulze, E. D.: A global analysis of root distributions for terrestrial
biomes, Oecologia, 108, 389–411, https://doi.org/10.1007/BF00333714, 1996.
Jactel, H., Petit, J., Desprez-Loustau, M. L., Delzon, S., Piou, D.,
Battisti, A., and Koricheva, J.: Drought effects on damage by forest insects
and pathogens: A meta-analysis, Glob. Change Biol., 18, 267–276,
https://doi.org/10.1111/j.1365-2486.2011.02512.x, 2012.
Jarvis, P. G.: The interpretation of the variations in leaf water potential
and stomatal conductance found in canopies in the field, Philos. T. Roy.
Soc. Lond. B, 273, 593–610,
https://doi.org/10.1098/rstb.1976.0035, 1976.
Jones, H. G.: Plants and microclimate: A quantitative approach to
environmental plant physiology, Cambridge University Press,
https://doi.org/10.1017/CBO9780511845727, 2013.
Kennedy, D., Swenson, S., Oleson, K. W., Lawrence, D. M., Fisher, R., Lola
da Costa, A. C., and Gentine, P.: Implementing Plant Hydraulics in the
Community Land Model, Version 5, J. Adv. Model. Earth Syst., 11, 485–513,
https://doi.org/10.1029/2018MS001500, 2019.
Klein, T.: The variability of stomatal sensitivity to leaf water potential
across tree species indicates a continuum between isohydric and anisohydric
behaviours, Funct. Ecol., 28, 1313–1320,
https://doi.org/10.1111/1365-2435.12289, 2014.
Kotlarski, S., Keuler, K., Christensen, O. B., Colette, A., Déqué, M., Gobiet, A., Goergen, K., Jacob, D., Lüthi, D., van Meijgaard, E., Nikulin, G., Schär, C., Teichmann, C., Vautard, R., Warrach-Sagi, K., and Wulfmeyer, V.: Regional climate modeling on European scales: a joint standard evaluation of the EURO-CORDEX RCM ensemble, Geosci. Model Dev., 7, 1297–1333, https://doi.org/10.5194/gmd-7-1297-2014, 2014.
Lemaire, C., Blackman, C. J., Cochard, H., Menezes-Silva, P. E.,
Torres-Ruiz, J. M., and Herbette, S.: Acclimation of hydraulic and
morphological traits to water deficit delays hydraulic failure during
simulated drought in poplar, Tree Physiol., 41, 2008–2021, 2021.
Lens, F., Picon-Cochard, C., Delmas, C. E. L., Signarbieux, C., Buttler, A., Cochard, H., Jansen,
S., Chauvin, T., Doria, L. C., Del Arco, M., and Delzon, S.: Herbaceous angiosperms are not
more vulnerable to drought-induced embolism than angiosperm trees, Plant Physiol., 172,
661–667, https://doi.org/10.1104/PP.16.00829, 2016.
Li, L., Yang, Z., Matheny, A. M., Zheng, H., Swenson, S. C., Lawrence, D.
M., Barlage, M., Yan, B., McDowell, N. G., and Leung, L. R.: Representation
of Plant Hydraulics in the Noah-MP Land Surface Model: Model Development and
Multi-scale Evaluation, J. Adv. Model. Earth Syst., 13, e2020MS002214,
https://doi.org/10.1029/2020ms002214, 2021.
Lin, Y.-S., Medlyn, B. E., Duursma, R. A., Prentice, I. C., Wang, H., Baig,
S., Eamus, D., de Dios, V. R., Mitchell, P., Ellsworth, D. S., de Beeck, M.
O., Wallin, G., Uddling, J., Tarvainen, L., Linderson, M.-L., Cernusak, L.
A., Nippert, J. B., Ocheltree, T. W., Tissue, D. T., Martin-StPaul, N. K.,
Rogers, A., Warren, J. M., De Angelis, P., Hikosaka, K., Han, Q., Onoda, Y.,
Gimeno, T. E., Barton, C. V. M., Bennie, J., Bonal, D., Bosc, A., Löw,
M., Macinins-Ng, C., Rey, A., Rowland, L., Setterfield, S. A., Tausz-Posch,
S., Zaragoza-Castells, J., Broadmeadow, M. S. J., Drake, J. E., Freeman, M.,
Ghannoum, O., Hutley, L. B., Kelly, J. W., Kikuzawa, K., Kolari, P., Koyama,
K., Limousin, J.-M., Meir, P., Lola da Costa, A. C., Mikkelsen, T. N.,
Salinas, N., Sun, W., and Wingate, L.: Optimal stomatal behaviour around the
world, Nat. Clim. Change, 5, 459–464, https://doi.org/10.1038/nclimate2550,
2015.
López, R., Cano, F. J., Martin-StPaul, N. K., Cochard, H., and Choat,
B.: Coordination of stem and leaf traits define different strategies to
regulate water loss and tolerance ranges to aridity, New Phytol., 230,
497–509, 2021.
Mackay, D. S., Ahl, D. E., Ewers, B. E., Samanta, S., Gower, S. T., and
Burrows, S. N.: Physiological tradeoffs in the parameterization of a model
of canopy transpiration, Adv. Water Resour., 26, 179–194,
https://doi.org/10.1016/S0309-1708(02)00090-8, 2003.
Mantova, M., Menezes-Silva, P. E., Badel, E., Cochard, H., and Torres-Ruiz,
J. M.: The interplay of hydraulic failure and cell vitality explains tree
capacity to recover from drought, Physiol. Plant., 172, 13331,
https://doi.org/10.1111/ppl.13331, 2021.
Martinez-Vilalta, J., Anderegg, W. R. L., Sapes, G., and Sala, A.: Greater
focus on water pools may improve our ability to understand and anticipate
drought-induced mortality in plants, New Phytol., 223, 22–32,
https://doi.org/10.1111/nph.15644, 2019.
Martin-StPaul, N., Delzon, S., and Cochard, H.: Plant resistance to drought
depends on timely stomatal closure, Ecol. Lett., 20, 1437–1447,
https://doi.org/10.1111/ele.12851, 2017.
McDowell, N. G., Brodribb, T. J., and Nardini, A.: Hydraulics in the 21st
century, New Phytol., 224, 537–542, https://doi.org/10.1111/nph.16151,
2019.
McDowell, N. G., Sapes, G., Pivovaroff, A., Adams, H. D., Allen, C. D.,
Anderegg, W. R. L., Arend, M., Breshears, D. D., Brodribb, T., Choat, B.,
Cochard, H., De Cáceres, M., De Kauwe, M. G., Grossiord, C., Hammond, W.
M., Hartmann, H., Hoch, G., Kahmen, A., Klein, T., Mackay, D. S., Mantova,
M., Martínez-Vilalta, J., Medlyn, B. E., Mencuccini, M., Nardini, A.,
Oliveira, R. S., Sala, A., Tissue, D. T., Torres-Ruiz, J. M., Trowbridge, A.
M., Trugman, A. T., Wiley, E., and Xu, C.: Mechanisms of woody-plant
mortality under rising drought, CO2 and vapour pressure deficit, Nat. Rev.
Earth Environ., 3, 294–308, https://doi.org/10.1038/s43017-022-00272-1,
2022.
Meinzer, F. C., Woodruff, D. R., Domec, J.-C., Goldstein, G., Campanello, P.
I., Gatti, M. G., and Villalobos-Vega, R.: Coordination of leaf and stem
water transport properties in tropical forest trees, Oecologia, 156, 31–41,
https://doi.org/10.1007/s00442-008-0974-5, 2008.
Meir, P., Meir, P., Mencuccini, M., and Dewar, R. C.: Tansley insight
Drought-related tree mortality: addressing the gaps in understanding and
prediction, New Phytol., 207, 28–33, 2015.
Mencuccini, M., Manzoni, S., and Christoffersen, B.: Modelling water fluxes
in plants: from tissues to biosphere, New Phytol., 222, 1207–1222,
https://doi.org/10.1111/nph.15681, 2019.
Moreaux, V., Martel, S., Bosc, A., Picart, D., Achat, D., Moisy, C., Aussenac, R., Chipeaux, C., Bonnefond, J.-M., Figuères, S., Trichet, P., Vezy, R., Badeau, V., Longdoz, B., Granier, A., Roupsard, O., Nicolas, M., Pilegaard, K., Matteucci, G., Jolivet, C., Black, A. T., Picard, O., and Loustau, D.: Energy, water and carbon exchanges in managed forest ecosystems: description, sensitivity analysis and evaluation of the INRAE GO+ model, version 3.0, Geosci. Model Dev., 13, 5973–6009, https://doi.org/10.5194/gmd-13-5973-2020, 2020.
Morin, X., Bugmann, H., de Coligny, F., Martin-StPaul, N., Cailleret, M.,
Limousin, J.-M., Ourcival, J.-M., Prevosto, B., Simioni, G., Toigo, M.,
Vennetier, M., Catteau, E., and Guillemot, J.: Beyond forest succession: A
gap model to study ecosystem functioning and tree community composition
under climate change, Funct. Ecol., 35, 955–975,
https://doi.org/10.1111/1365-2435.13760, 2021.
Mouillot, F., Rambal, S., and Lavorel, S.: A generic process-based SImulator
for meditERRanean landscApes (SIERRA): design and validation exercises, For.
Ecol. Manag., 147, 75–97, 2001.
Nolan, R. H., Blackman, C. J., de Dios, V. R., Choat, B., Medlyn, B. E., Li,
X., Bradstock, R. A., and Boer, M. M.: Linking Forest Flammability and Plant
Vulnerability to Drought, Forests, 11, 779,
https://doi.org/10.3390/f11070779, 2020.
Pammenter, N. W. and Vander Willigen, C.: A mathematical and statistical
analysis of the curves illustrating vulnerability of xylem to cavitation,
Tree Physiol., 18, 589–593, 1998.
Pimont, F., Ruffault, J., Martin-StPaul, N. K., and Dupuy, J.-L.: Why is the effect of live fuel
moisture content on fire rate of spread underestimated in field experiments in shrublands?,
Int. J. Wildland Fire, 28, 127–137, https://doi.org/10.1071/WF18091, 2019.
Rambal, S.: The differential role of mechanisms for drought resistance in a
Mediterranean evergreen shrub: a simulation approach, Plant Cell Environ.,
16, 35–44, https://doi.org/10.1111/j.1365-3040.1993.tb00842.x, 1993.
R Core Team: R: A Language and Environment for Statistical Computing, R Foundation for
Statistical Computing, Vienna, Austria, 2020.
Riederer, M. and Schreiber, L.: Protecting against water loss: analysis of
the barrier properties of plant cuticles, J. Exp. Bot., 52, 2023–2032,
https://doi.org/10.1093/jexbot/52.363.2023, 2001.
Rowland, L., Martínez-Vilalta, J., and Mencuccini, M.: Hard times for
high expectations from hydraulics: predicting drought-induced forest
mortality at landscape scales remains a challenge, New Phytol., 230,
1685–1687, https://doi.org/10.1111/nph.17317, 2021.
Ruffault, J., Martin-StPaul, N. K. N., Rambal, S., and Mouillot, F.:
Differential regional responses in drought length, intensity and timing to
recent climate changes in a Mediterranean forested ecosystem, Clim. Change,
117, 103–117, https://doi.org/10.1007/s10584-012-0559-5, 2013.
Ruffault, J., Martin-StPaul, N. K., Duffet, C., Goge, F., and Mouillot, F.:
Projecting future drought in Mediterranean forests: Bias correction of
climate models matters!, Theor. Appl. Climatol., 117, 113–122,
https://doi.org/10.1007/s00704-013-0992-z, 2014.
Ruffault, J., Curt, T., Martin-StPaul, N. K., Moron, V., and Trigo, R. M.: Extreme wildfire events are linked to global-change-type droughts in the northern Mediterranean, Nat. Hazards Earth Syst. Sci., 18, 847–856, https://doi.org/10.5194/nhess-18-847-2018, 2018a.
Ruffault, J., Martin-StPaul, N., Pimont, F., and Dupuy, J.-L.: How well do
meteorological drought indices predict live fuel moisture content (LFMC)? An
assessment for wildfire research and operations in Mediterranean ecosystems,
Agric. For. Meteorol., 262, 391–401,
https://doi.org/10.1016/j.agrformet.2018.07.031, 2018b.
Ruffault, J., Curt, T., Moron, V., Trigo, R. M., Mouillot, F., Koutsias, N.,
Pimont, F., Martin-StPaul, N. K., Barbero, R., Dupuy, J. L., Russo, A., and
Belhadj-Kheder, C.: Increased likelihood of heat-induced large wildfires in
the Mediterranean Basin, Sci. Rep.-UK, 10, 13790,
https://doi.org/10.1101/2020.01.09.896878, 2020.
Ruffault, J., Martin-StPaul, N., and Pimont, F.: SurEau-Ecos v2.0.1 (v2.0.1), Zenodo [code], https://doi.org/10.5281/zenodo.5878978, 2022.
Schuldt, B., Buras, A., Arend, M., Vitasse, Y., Beierkuhnlein, C., Damm, A.,
Gharun, M., Grams, T. E. E., Hauck, M., Hajek, P., Hartmann, H.,
Hiltbrunner, E., Hoch, G., Holloway-Phillips, M., Körner, C., Larysch,
E., Lübbe, T., Nelson, D. B., Rammig, A., Rigling, A., Rose, L., Ruehr,
N. K., Schumann, K., Weiser, F., Werner, C., Wohlgemuth, T., Zang, C. S.,
and Kahmen, A.: A first assessment of the impact of the extreme 2018 summer
drought on Central European forests, Basic Appl. Ecol., 45, 86–103,
https://doi.org/10.1016/j.baae.2020.04.003, 2020.
Seidl, R., Schelhaas, M.-J., Rammer, W., and Verkerk, P. J.: Increasing
forest disturbances in Europe and their impact on carbon storage, Nat. Clim.
Change, 4, 806–810, 2014.
Sergent, A. S., Varela, S. A., Barigah, T. S., Badel, E., Cochard, H., Dalla-Salda, G., Delzon, S.,
Fernández, M. E., Guillemot, J., Gyenge, J., Lamarque, L. J., Martinez-Meier, A., Rozenberg,
P., Torres-Ruiz, J. M., and Martin-StPaul, N. K.: A comparison of five methods to assess
embolism resistance in trees, For. Ecol. Manag., 468, 118175,
https://doi.org/10.1016/j.foreco.2020.118175, 2020.
Sitch, S., Smith, B., Prentice, I. C., Arneth, A., Bondeau, A., Cramer, W.,
Kaplan, J. O., Levis, S., Lucht, W., and Sykes, M. T.: Evaluation of
ecosystem dynamics, plant geography and terrestrial carbon cycling in the
LPJ dynamic global vegetation model, Glob.
Change Biol., 9, 161–185, 2003.
Sobol, I. M.: Global sensitivity indices for nonlinear mathematical models
and their Monte Carlo estimates, Math. Comput. Simul., 55, 271–280, 2001.
Sperry, J. S., Adler, F. R., Campbell, G. S., and Comstock, J. P.:
Limitation of plant water use by rhizosphere and xylem conductance: results
from a model, Plant Cell Environ., 21, 347–359,
https://doi.org/10.1046/j.1365-3040.1998.00287.x, 1998.
Sperry, J. S., Venturas, M. D., Anderegg, W. R. L., Mencuccini, M., Mackay,
D. S., Wang, Y., and Love, D. M.: Predicting stomatal responses to the
environment from the optimization of photosynthetic gain and hydraulic cost,
Plant Cell Environ., 40, 816–830, 2017.
Sterck, F., Markesteijn, L., Schieving, F., and Poorter, L.: Functional
traits determine trade-offs and niches in a tropical forest community, P.
Natl. Acad. Sci. USA, 108, 20627–20632,
https://doi.org/10.1073/pnas.1106950108, 2011.
Tóth, B., Weynants, M., Pásztor, L., and Hengl, T.: 3D soil hydraulic database of Europe at
250 m resolution, Hydrol. Process., 31, 2662–2666, https://doi.org/10.1002/hyp.11203,
2017.
Trenberth, K. E., Dai, A., Van Der Schrier, G., Jones, P. D., Barichivich,
J., Briffa, K. R., and Sheffield, J.: Global warming and changes in drought,
Nat. Clim. Change, 4, 17–22, 2014.
Trugman, A. T., Anderegg, L. D. L., Anderegg, W. R. L., Das, A. J., and
Stephenson, N. L.: Why is Tree Drought Mortality so Hard to Predict?, Trends
Ecol. Evol., 36, 520–532, https://doi.org/10.1016/j.tree.2021.02.001, 2021.
Tuzet, A., Granier, A., Betsch, P., Peiffer, M., and Perrier, A.: Modelling
hydraulic functioning of an adult beech stand under non-limiting soil water
and severe drought condition, Ecol. Model., 348, 56–77,
https://doi.org/10.1016/j.ecolmodel.2017.01.007, 2017.
Tyree, M. T. and Ewers, F. W.: The hydraulic architecture of trees and other
woody plants, New Phytol., 119, 345–360,
https://doi.org/10.1111/j.1469-8137.1991.tb00035.x, 1991.
Tyree, M. T. and Hammel, H. T.: The Measurement of the turgor pressure and
the water relations of plants by the pressure-bomb technique, J. Exp. Bot.,
23, 267–282, https://doi.org/10.1093/jxb/23.1.267, 1972.
Tyree, M. T. and Yang, S.: Water-storage capacity ofThuja, Tsuga andAcer
stems measured by dehydration isotherms, Planta, 182, 420–426, 1990.
van Genuchten, M. T.: A closed-form equation for predicting the hydraulic
conductivity of unsaturated soils, Soil Sci. Soc. Am. J., 44, 892,
https://doi.org/10.2136/sssaj1980.03615995004400050002x, 1980.
Venturas, M. D., Todd, H. N., Trugman, A. T., and Anderegg, W. R. L.:
Understanding and predicting forest mortality in the western United States
using long-term forest inventory data and modeled hydraulic damage, New
Phytol., 230, 1896–1910, https://doi.org/10.1111/nph.17043, 2020.
Vidal, J. P., Martin, E., Franchistéguy, L., Baillon, M., and
Soubeyroux, J. M.: A 50 year high resolution atmospheric reanalysis over
France with the Safran system, Int. J. Climatol., 30, 1627–1644, 2010.
Wang, Y., Sperry, J. S., Anderegg, W. R. L. L., Venturas, M. D., and
Trugman, A. T.: A theoretical and empirical assessment of stomatal
optimization modeling, New Phytol., 227, 311–325,
https://doi.org/10.1111/nph.16572, 2020.
Williams, M., Rastetter, E. B., Fernandes, D. N., Goulden, M. L., Wofsy, S.
C., Shaver, G. R., Melillo, J. M., Munger, J. W., Fan, S. M., and
Nadelhoffer, K. J.: Modelling the soil-plant-atmosphere continuum in a
Quercus-acer stand at Harvard forest: The regulation of stomatal conductance
by light, nitrogen and soil/plant hydraulic properties, Plant Cell Environ.,
19, 911–927, https://doi.org/10.1111/j.1365-3040.1996.tb00456.x, 1996.
Xu, X., Medvigy, D., Powers, J. S., Becknell, J. M., and Guan, K.: Diversity
in plant hydraulic traits explains seasonal and inter-annual variations of
vegetation dynamics in seasonally dry tropical forests, New Phytol., 212,
80–95, https://doi.org/10.1111/nph.14009, 2016.
Short summary
A widespread increase in tree mortality has been observed around the globe, and this trend is likely to continue because of ongoing climate change. Here we present SurEau-Ecos, a trait-based plant hydraulic model to predict tree desiccation and mortality. SurEau-Ecos can help determine the areas and ecosystems that are most vulnerable to drying conditions.
A widespread increase in tree mortality has been observed around the globe, and this trend is...