Articles | Volume 15, issue 13
https://doi.org/10.5194/gmd-15-5407-2022
https://doi.org/10.5194/gmd-15-5407-2022
Development and technical paper
 | 
15 Jul 2022
Development and technical paper |  | 15 Jul 2022

RAP-Net: Region Attention Predictive Network for precipitation nowcasting

Zheng Zhang, Chuyao Luo, Shanshan Feng, Rui Ye, Yunming Ye, and Xutao Li

Related subject area

Atmospheric sciences
Exploring the footprint representation of microwave radiance observations in an Arctic limited-area data assimilation system
Máté Mile, Stephanie Guedj, and Roger Randriamampianina
Geosci. Model Dev., 17, 6571–6587, https://doi.org/10.5194/gmd-17-6571-2024,https://doi.org/10.5194/gmd-17-6571-2024, 2024
Short summary
Analysis of model error in forecast errors of extended atmospheric Lorenz 05 systems and the ECMWF system
Hynek Bednář and Holger Kantz
Geosci. Model Dev., 17, 6489–6511, https://doi.org/10.5194/gmd-17-6489-2024,https://doi.org/10.5194/gmd-17-6489-2024, 2024
Short summary
Description and validation of Vehicular Emissions from Road Traffic (VERT) 1.0, an R-based framework for estimating road transport emissions from traffic flows
Giorgio Veratti, Alessandro Bigi, Sergio Teggi, and Grazia Ghermandi
Geosci. Model Dev., 17, 6465–6487, https://doi.org/10.5194/gmd-17-6465-2024,https://doi.org/10.5194/gmd-17-6465-2024, 2024
Short summary
AeroMix v1.0.1: a Python package for modeling aerosol optical properties and mixing states
Sam P. Raj, Puna Ram Sinha, Rohit Srivastava, Srinivas Bikkina, and Damu Bala Subrahamanyam
Geosci. Model Dev., 17, 6379–6399, https://doi.org/10.5194/gmd-17-6379-2024,https://doi.org/10.5194/gmd-17-6379-2024, 2024
Short summary
Impact of ITCZ width on global climate: ITCZ-MIP
Angeline G. Pendergrass, Michael P. Byrne, Oliver Watt-Meyer, Penelope Maher, and Mark J. Webb
Geosci. Model Dev., 17, 6365–6378, https://doi.org/10.5194/gmd-17-6365-2024,https://doi.org/10.5194/gmd-17-6365-2024, 2024
Short summary

Cited articles

Alibaba Cloud: CIKM AnalytiCup2017 competition, Alibaba Cloud [data set], https://tianchi.aliyun.com/competition/entrance/231596/information, last access: 2022. a
Ayzel, G., Scheffer, T., and Heistermann, M.: RainNet v1.0: a convolutional neural network for radar-based precipitation nowcasting, Geosci. Model Dev., 13, 2631–2644, https://doi.org/10.5194/gmd-13-2631-2020, 2020. a
Chai, Z., Yuan, C., Lin, Z., and Bai, Y.: CMS-LSTM: Context-Embedding and Multi-Scale Spatiotemporal-Expression LSTM for Video Prediction, arXiv [preprint], https://doi.org/10.48550/arXiv.2102.03586, April 2022. a
Fu, J., Liu, J., Tian, H., Li, Y., Bao, Y., Fang, Z., and Lu, H.: Dual attention network for scene segmentation, in: CVPR, pp. 3146–3154, https://doi.org/10.1109/CVPR.2019.00326, 2019. a
Guen, V. L. and Thome, N.: Disentangling physical dynamics from unknown factors for unsupervised video prediction, in: CVPR, pp. 11474–11484, https://doi.org/10.1109/CVPR42600.2020.01149, 2020.​​​​​​​ a
Download
Short summary
In this paper, we develop a model to predict radar echo sequences and apply it in the precipitation nowcasting field. Different from existing models, we propose two new attention modules. By introducing them, the performance of RAP-Net outperforms other models, especially in those regions with moderate and heavy rainfall. Considering that these regions cause more threats to human activities, the research in our work is significant for preventing natural disasters caused by heavy rainfall.