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Abstract. Natural disasters caused by heavy rainfall often
cause huge loss of life and property. Hence, the task of
precipitation nowcasting is of great importance. To solve
this problem, several deep learning methods have been pro-
posed to forecast future radar echo images, and then the pre-
dicted maps are converted to the distribution of rainfall. The
prevailing spatiotemporal sequence prediction methods ap-
ply a ConvRNN structure, which combines the convolution
and recurrent neural network. Although ConvRNN methods
achieve remarkable success, they do not capture both local
and global spatial features simultaneously, which degrades
the nowcasting in regions of heavy rainfall. To address this
issue, we propose a Region Attention Block (RAB) and em-
bed it into ConvRNN to enhance forecasting in the areas with
heavy rainfall. Besides, the ConvRNN models find it hard to
memorize longer historical representations with limited pa-
rameters. To this end, we propose a Recall Attention Mecha-
nism (RAM) to improve the prediction. By preserving longer
temporal information, RAM contributes to the forecasting,
especially in the moderate rainfall intensity. The experiments
show that the proposed model, Region Attention Predictive
Network (RAP-Net), significantly outperforms state-of-the-
art methods.

1 Introduction

Precipitation nowcasting has vital influence in the fields of
transportation, agriculture, tourism, industry, and city alarm-
ing. Due to the higher spatial and temporal resolution of the
radar echo image, it is effective for forecasting the distribu-
tion of rainfall by predicting the future radar echo maps and

converting each pixel to the rainfall intensity according to the
Z–R relationship (Shi et al., 2017). Therefore, precipitation
nowcasting is often defined as a spatiotemporal prediction
problem.

Traditional approaches to precipitation nowcasting are
motion-field-based methods. The specific process can be
briefly divided into three parts. First, the motion field is es-
timated by variational radar echo-tracking methods such as
optical flow (Woo and Wong, 2017). Second, the future radar
reflectivities are advected by a semi-Lagrangian advection
scheme under the assumption of stationary movement. Third,
the performance of the forecasts is evaluated by comparing
them to ground truth. However, these methods do not exploit
abundant historical observations.

To overcome this limitation, some deep learning-based
methods have been proposed to handle precipitation now-
casting (Shi et al., 2017; Ayzel et al., 2020; Li et al., 2021).
They usually build a mapping from previous observations to
future maps by learning from the abundant historical radar
data. Generally, the prevailing approaches utilize the struc-
ture of ConvRNN, which combines the convolution neural
network (CNN) and recurrent neural network (RNN). Fur-
thermore, to enhance the spatiotemporal representation abil-
ity, other types of neural networks such as the spatial trans-
former network (STN; Shi et al., 2017), deformable convolu-
tion network (DCN; Wu et al., 2021), and attention module
(Lin et al., 2020) are introduced in the ConvRNN unit and
obtain better performance.

However, existing ConvRNN models confront the follow-
ing three drawbacks: (1) the convolution employed in the cur-
rent input only extracts the local features instead of the large-
scale representation due to a fixed kernel size. It may lead

Published by Copernicus Publications on behalf of the European Geosciences Union.



5408 Z. Zhang et al.: RAP-Net

to useful information beyond the visual field of convolution
not being captured, and this thus degrades the performance.
(2) The convolution applied in the previous hidden states
only transmits local previous representations to the current
states, which means historical spatial information cannot be
fully used. (3) The update process of the temporal memory
limits the long-term spatiotemporal representation preserva-
tion. Thus, the information including high echo reflectivity
is easily dropped. Although some remedial solutions (Wang
et al., 2018b; Luo et al., 2021) based on the attention mech-
anism are proposed, they are hard to apply in large-scale in-
puts and long-term predictions due to the limitation of space
occupation.

To address the first two problems, we propose a Region
Attention Block (RAB) and embed it into the input and hid-
den state, respectively. It simultaneously exploits the global
spatial representation and preserves the local feature. RAB
classifies each feature map into equal-sized tensors, and each
tensor gatherers a similar semantic. Then, the attention mod-
ule is used to interact with the contents of all semantics. To
this end, the large-scale feature map can be captured from the
global view and, meanwhile, maintain local representations.
Therefore, the large-scale spatial feature of the current input
and previous hidden states can be preserved. Moreover, to
capture the long-term spatiotemporal dependency of repre-
sentation without increasing parameters, we present the Re-
call Attention Mechanism (RAM) to retrieval all historical
inputs. More rainfall information is captured by this com-
ponent. By combining these modules, the performance for
heavy and moderate rainfall can be significantly improved.
In brief, the main contributions of the paper are summarized
as follows:

1. We first propose a new attention method, namely Re-
gion Attention Block (RAB), to capture both global and
local spatial features simultaneously to improve the spa-
tial expressivity of feature maps.

2. We embed the RAB into current inputs and previous
hidden states to obtain the large-scale spatial informa-
tion from the global view and persevere different se-
mantics at the same time. For the same echo with a
large-scale size and long-range movement between the
adjacent time, more useful spatial information can be
extracted, which leads to more accurate predictions in
those regions with heavy rainfall.

3. We propose the Recall Attention Mechanism (RAM) to
retrieval all historical inputs with limited parameters.
The representation of moderate and heavy rainfall in-
tensity can be preserved in the predicted unit.

2 Related work

Traditional methods (Pulkkinen et al., 2019) mainly focus on
estimating the motion field between the adjacent radar maps,

and then the next prediction can be extrapolated based on this
movement. Here, the motion field describes the direction and
distance of each pixel that needs to be moved at the next mo-
ment. To obtain the movement, tracking radar echoes by cor-
relation (TREC; Wang et al., 2013) divides the whole radar
map into serval equal-sized boxes and calculates the motion
vector of each pair’s box center by searching the highest cor-
relation between boxes at the adjacent time steps. Another
type of approach is the optical flow-based method (Woo and
Wong, 2017). It calculates the motion field under a pixel
level, based on the assumption that the brightness of pixels
remains unchanged. Upon the idea, many algorithms (Ryu
et al., 2020) are developed to apply the radar maps with the
large movement vector. However, the invariant brightness as-
sumption conflicts with the realistic movements of hydrom-
eteors, and massive historical data are utilized.

To overcome it, many deep learning-based methods (Wang
et al., 2017, 2019; Trebing et al., 2021) are proposed to pre-
dict the radar sequence without the above unreasonable as-
sumption. Most of the methods commonly exploit the struc-
ture of ConvRNN. It combines convolution neural network
(CNN) and recurrent neural network (RNN) to preserve the
spatiotemporal feature of the historical sequence. Further-
more, Wang et al. added a spatial memory in a predicted unit
(Wang et al., 2017, 2018a, b) and an attention mechanism
in temporal memory (Wang et al., 2018b) to enhance the
spatiotemporal representation ability of the short term and
long term, respectively. Although these methods have a re-
markable performance, the visualization of their predictions
is usually blurry due to the loss function and the architecture
of the model (Shouno, 2020). To handle the issue, a genera-
tive adversarial network (GAN; Tian et al., 2019; Xie et al.,
2020; Zheng et al., 2022) has been introduced in the Con-
vRNN model to improve predictive clarity. Nevertheless, the
non-convergence and collapse problem would cause a nega-
tive influence on the prediction. Our proposed method is dif-
ferent from existing deep learning methods in two aspects. In
the short term, the proposed RAB can simultaneously exploit
local and global spatiotemporal representations. In the long
term, the RAM can effectively recall all historical observa-
tions with limited space occupancy.

3 Proposed method

3.1 Problem definition

The precipitation nowcasting task can be defined as the spa-
tiotemporal sequence prediction problem (Shi et al., 2017).
Based on historical observations X0:t , it aims to forecast the
future radar echo images Xt+1:T that have maximum proba-
bility with ground truth Xt+1:T , as follows:

Xt+1:T = argmaxP(Xt+1:T
∣∣X0,X1, . . .,Xt ). (1)
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Figure 1. The overall architecture of the Region Attention Predictive Network (RAP-Net).

In this paper, t and T are set to 5 and 15, respectively, which
means that 10 continuous radar maps need to be predicted
according to five historical images.

3.2 Overall architecture

The overall architecture of the proposed model RAP-Net
is presented in Fig. 1. It utilizes the structure of PredRNN
(Wang et al., 2017) and stacks several RAP-Units to gen-
erate the predictions from timestamp 2 to T . At any times-
tamp t , the model predicts a radar map X̂t+1 at the next
timestamp t + 1, according to the current radar map Xt and
historical radar sequence X0:t . The red and blue arrows de-
note the delivery direction of the spatial memory M and
temporal memory C, respectively. These two memories pre-
serve spatial and temporal representations, respectively. Dif-
ferent from the PredRNN, RAP-Net exploits dissimilar data
flow to transmit long-term spatiotemporal information Xlh
which preserves all historical representations. Besides, we
notice that the majority of ConvRNN models (Wang et al.,
2017, 2018a, b, 2019; Lin et al., 2020) employ similar ar-
chitecture. Hence, the difference lies in their units instead
of the employed architecture. In the experiment section, we
will discuss and analyze the performance of different units
utilized by the existed methods.

The internal structure of Region Attention Predictive Unit
(RAP-Unit) is shown in Fig. 2. The inputs include the cur-
rent input Xlt , previous hidden state H l

t−1, temporal memory
Clt−1, spatial memory M l−1

t , and long-term historical rep-
resentation Xl−1

h . According to Fig. 1, RAP-Net consists of
four stacked RAP-Units. At the bottom layer, Xl−1

h repre-
sents all historical inputs X0:t , while at other layers, Xl−1

h is
the output of the previous layer. The outputs of RAP-Unit
are the current hidden state H l

t , spatial memory M l
t , tempo-

ral memory Clt , and new long-term representation Xlh. The
details of the calculation are presented according to the fol-
lowing formulas:

X′
l
t = RAB(Xlt ),

H ′
l
t−1 = RAB(H l

t−1),

it = σ(Wxi ∗X
′l
t +Whi ∗H

′l
t−1+ bi),

gt = tanh(Wxg ∗X
′l
t +Whg ∗H

′l
t−1+ bg),

ft = σ(Wxf ∗X
′l
t +Whf ∗H

′l
t−1+ bf ),

i′t = σ(W
′

xi ∗X
′l
t +Wmi ∗M

l−1
t + b′i),

g′t = tanh(W ′xg ∗X
′l
t +Wmg ∗M

l−1
t + b′g),

f ′t = σ(W
′

xf ∗X
′l
t +Wmf ∗M

l−1
t + b′f ),

Clt = it ◦ gt + ft ◦C
l
t−1,

M l
t = i

′
t ◦ g

′
t + f

′
t ◦M

l−1
t ,

ot = σ(Wxo ∗X
′l
t +Who ∗H

′l
t−1+Wco ∗C

l
t+

Wmo ∗M
l
t + bo),

H l
t = ot ◦ tanh(W1×1 ∗ [X

′l
t ,M

k
t ]),

H l
t ,X

l
h = RAM(H l

t ,X
l−1
h ∗Wl), (2)

where the ∗ and ◦ symbols denote the convolution and
Hadamard product, respectively. it , gt , ft , i′t , g

′
t , and f ′t indi-

cate various gates, which can be viewed as intermediate vari-
ables. Here, RAB and RAM are the Region Attention Block
and Recall Attention Mechanism, respectively.

3.3 Region Attention Block

To address the issue, we expect that these patches can
be divided adaptively, and those elements with similar se-
mantic relationships are classified into the same patch, as
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Figure 2. The internal structure of the Region Attention Predictive Unit (RAP-Unit).

Figure 3. The calculation process of a similarity matrix, based on three different attention methods.

shown in Fig. 3c. To realize this idea, we propose the Re-
gion Attention Block (RAB), whose structure is illustrated
in Fig. 4. First, a convolution and softmax layer are em-
ployed in the input feature map F i ∈ RB×C×H×W to gen-
erate F c ∈ RB×N×H×W to distinguish the N classifications.
Second, the original input F i is split intoN groups of feature
maps F n ∈ RN×B×C×H×W by the split module, following
this formula:

Split(F i,F c)= Concatenate({F ij,k,h,w ·F
c
j,n,h,w|1< n

< N,n ∈ Z},axis= 0). (3)

These groups denote various semantic information extracted
from different positions. Third, F qk ∈ RB×N×c×h×w is con-
volved by F n to further exploit the feature of F n and reduce

the parameters, where the c, h, and w are smaller than C,
H , andW . Besides, F v ∈ RN×B×C×H×W are outputted by a
convolution layer applied in F n to preserve the original infor-
mation. Fourth, three different convolutions are used to gen-
erate query Qs , key Ks , and value Vs , based on F qk and F v .
After flattening, Qs ∈ R

B×N×c∗h∗w, Ks ∈ RB×N×c∗h∗w and
Vs ∈ R

B×N×C∗H∗W are fed into the spatial attention func-
tion to obtain F a ∈ RB×N×C×H×W that have been interact-
ing with the local representation from different regions. The
output after the attention function (Fu et al., 2019) is as fol-
lows:

Attention(Qs,Ks,Vs)= softmax
(
f (Qs,K

T
s )

√
dk

)
Vs, (4)
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Figure 4. The structure of Region Attention Block (RAB).

where f denotes the dot product, and dk is the dimension
of keyKs . f (Qs,K

T
s ) ∈ R

B×N×N is the similarity matrix of
various semantics in different regions. Fifth, an integration
module is utilized to integrate F a based on the F c and ob-
tains the result F a

′

from this equation, as follows:

F a
′

= Integration(F a,F c)

=

N∑
n=1

F aj,k,h,w ·F
c
j,n,k,h,w, (5)

where, F a
′

has the same size as input feature map F i . Fi-
nally, the structure of ResNet (He et al., 2016) is introduced
to deeply exploit the spatial feature and achieve the final re-
sult F o ∈ RB×N×C×H×W . In summary, the calculation pro-
cess is described by the following formulas:

F c = softmax(F i ∗Wc),

F n = Split(F i,F c),

F qk = F n ∗W ′qk,

F v = F n ∗W ′v,

F a = Attention(F qk ∗Wq ,F
qk
∗Wk,F

v
∗Wv),

F a
′

= Integration(F a,F c),

F o = F i +F a
′

. (6)

The traditional attention mechanism calculates, in Fig. 3a,
the similarity between different pixels, and the attention man-
ner of the vision transformer, in Fig. 3b, compares differ-
ent regions in a fixed location. Different from both mecha-
nisms, the attention similarity from region attention (ours),
in Fig. 3c, compares the difference between regions with a
flexible size and position. Due to the irregular shape of radar
echo and the different distributions, RAB can capture the cor-
relation between the different radar echoes better. Therefore,
the introduction of this block can improve the spatiotempo-
ral ability of the model, especially since the information of
radar echoes with high reflectivity is more easily extracted
because they have a more stable appearance and shape. RAM
has more of a contribution to improving the performance in
these regions with heavy rainfall.

Figure 5. The manner of embedding the Recall Attention Mecha-
nism (RAM) into the proposed predicted unit. Here, the RAP-Cell
is the RAP unit without RAM.

3.4 Recall Attention Mechanism

To capture the temporal long dependencies of representation,
Wang et al. (2018b) embedded the spatial attention module
in the updating of temporal memory. However, it has the fol-
lowing two limitations: (1) it saves abundant history tempo-
ral memories, which leads to the number of parameters easily
exceeding the space occupancy as the lead time goes. (2) The
temporal memory has lost some information during the gen-
eration of various gates. Therefore, the preserved previous
representation fails to capture all the information, and long-
term spatiotemporal expressivity is limited.

To address these issues, we propose the Recall Attention
Mechanism (RAM) to enhance the long-term spatiotempo-
ral representation ability with a fixed space occupation, as
Fig. 5 shows. First, we build an empty long-memory fea-
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Table 1. The parameter settings of the RAP-Unit. The term “In res” and “Out res” denote the resolutions of input and output, respectively,
while “Conv” is the convolution operation.

Attention type Name Kernel Stride Pad Ch I/O In res Out res Type

Region Attention Block

CNNc 5× 5 1× 1 2× 2 64/64 32× 32 32× 32 Conv
CNNqk 4× 4 4× 4 0× 0 64/8 8× 8 8× 8 Conv
CNNv 5× 5 1× 1 2× 2 64/64 32× 32 32× 32 Conv
Linq – – – – 512 512 Linear
Link – – – – 512 512 Linear

Recall Attention Mechanism CNN 5× 5 1× 1 2× 2 14/64 32× 32 32× 32 Conv

RNN unit

CNNx 5× 5 1× 1 2× 2 64/448 32× 32 32× 32 Conv
CNNh 5× 5 1× 1 2× 2 64/256 32× 32 32× 32 Conv
CNNm 5× 5 1× 1 2× 2 64/192 32× 32 32× 32 Conv
CNNo 5× 5 1× 1 2× 2 64/128 32× 32 32× 32 Conv
CNNlast 1× 1 1× 1 0× 0 128/64 32× 32 32× 32 Conv

ture map X0
h ∈ R

B×T×C×H×W in the bottom layer and feed
the current input Xt into it continually. Note that the X0

h

contains all original previous inputs X0:t ∈ R
B×T×C×H×W .

Second, a convolution neural network is employed to ex-
tract the feature of X0

h and output the long-memory hidden
state X1

h ∈ R
B×T×C×H×W . Last, X1

h and the output H ′1t of
the RAP-Cell (which can be regarded as the RAP-Net model
without RAM) feed into the channel attention module to gen-
erate new hidden states, where the X1

h can be regarded as the
key Kc ∈ RB×T ∗C×H∗W and value Vc ∈ RB×T ∗C×H∗W , and
the H ′t represents the query Qc ∈ R

B×C×H∗W . The formula
of channel attention is shown as follows:

Attention(Qc,Kc,Vc)= softmax(
f (Qc,K

T
c )

√
dk

)Vc, (7)

where the f denotes the dot product, and dk is the dimen-
sion of key Kc. f (Qc,K

T
c ) ∈ R

B×T×T ∗C is the similarity
matrix between channels of Qs and channels of Kc. From
Eq. (7), we can see that the Vc can be extracted according to
the f (Qc,K

T
c ), where Qc decides how to explore the Vc by

dot-producing withKc. Therefore, the original outputH ′1t of
the RAP-Cell can be regarded as query Qc to explore long-
term spatiotemporal representations X1

h that are the key Kc
and value Vc. In this way, the new output H 1

t has recalled
all original historical representations, and long-term depen-
dencies can be effectively preserved. Besides, the size of the
long-memory feature map Xlh is fixed at any time step be-
cause the size of Xh is predefined, and the corresponding
content at different timestamps are fed into Xh. Similarly, in
the lth layer, the input of the long-memory hidden state is
the X1

h. In the bottom layer, Xlh is the result after convolu-
tion by historical input sequences X0:t . In the other layers,
the Xlh is the result after convolution by the Xl−1

h . By RAM,
the long-term historical representation can be delivered to the
next layer.

4 Experiments

4.1 Dataset

The dataset is collected from the CIKM AnalytiCup2017
competition (available at https://tianchi.aliyun.com/
competition/entrance/231596/information, Alibaba Cloud,
2022), which covers the whole area of Shenzhen, China.
For convenience, we name this public dataset RadarCIKM.
RadarCIKM has a training set and test set with 10 000 and
4000 sequences, respectively. There are 2000 sequences ran-
domly sampled from the training set to build the validation
set. Each sequence contains 15 continual observations within
90 min, where the spatial and temporal resolution of each
map is 101× 101 and 6 min, respectively. The range of each
pixel is from 0 to 255, and each pixel denotes 1 km× 1 km.
Moreover, the type of pixel is an integer, and each value can
be converted to radar reflectivity (dBZ) by the following
equation:

dBZ= p×
95

255
− 10. (8)

Then, the rainfall intensity can be obtained by the radar re-
flectivity (dBZ) and Z–R relationship as follows:

dBZ= 10loga+ 10b logR, (9)

where the R is the rain rate level, a = 58.53, and b = 1.56.

4.2 Evaluation metrics

In this paper, in addition to common measurements such as
structural similarity (SSIM) and mean absolute error (MAE)
in video prediction, we also utilize the Heidke skill score
(HSS) and critical success index (CSI) that are commonly
used in precipitation nowcasting tasks. The HSS evaluates
the fraction of correct forecasts after eliminating random pre-
dictions. The CSI measures the number of correct forecasts

Geosci. Model Dev., 15, 5407–5419, 2022 https://doi.org/10.5194/gmd-15-5407-2022
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Figure 6. The HSS and CSI scores of different case lead time values (best viewed in color).

divided by the total number of occasions when the rainfall
events were forecasted or observed. Specifically, the predic-
tion and ground truth are converted to a binary matric based
on a threshold τ . When the value of the dBZ is larger than
τ , then it is set to 1 or otherwise to 0. Next, the number of
the true positive (TP; prediction= 1; truth= 1), false nega-
tive (FN; prediction= 0; truth= 1), false positive (FP; pre-
diction= 1; truth= 0), and true negative (TN; prediction= 0;
truth= 0) are counted. Finally, the HSS and CSI can be cal-

culated by the following formulas:

HSS=
2(TP×TN−FN×FP)

(TP+FN)(FN+TN)+ (TP+FP)(FP+TN)
, (10)

CSI=
TP

TP+FN+FP
. (11)

Here, the range of HSS, CSI, and SSIM is [0,1]. The range
of MAE is [0,+∞].

4.3 Parameters setting

The proposed RAP-Net takes five previous radar echo maps
as inputs and outputs 10 predictions. It utilizes four layers of

https://doi.org/10.5194/gmd-15-5407-2022 Geosci. Model Dev., 15, 5407–5419, 2022
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Figure 7. The first row is the reflectivity of the ground truth, and the remaining rows show the predicted reflectivity of various methods on
an example from the RadarCIKM dataset (best viewed in color).

RAP-Units, as shown in Fig. 1, and the parameters setting of
each RAP-Unit are shown in Table 1. The Adam optimizer
is applied to train our model with a learning rate of 0.0004.
Besides, the early stopping and scheduled sampling strate-
gies are also used to optimize our model. The loss function
combines the L1 and L2 to train RAP-Net. All experiments
are implemented in Pytorch and conducted on NVIDIA 3090
graphics processing units (GPUs).

4.4 Result and analysis

Table 2 shows the results of all models. The best results
are in boldface and the second best scores are underlined.

We find that the RAP-Net achieves the smallest error and
the highest structural similarity according to the MAE and
SSIM. It is observed that our model outperforms other mod-
els in terms of the comprehensive performance. Besides, the
proposed model has significant superiority especially for the
nowcasting in heavy rainfall regions. Because the HSS and
CSI keep the top position in the middle and high thresholds
(20 and 40 dBZ). For the state-of-art method, PFST-LSTM
(Luo et al., 2020), all measurements of it are exceeded by
RAP-Net, which shows the performance of our model. Com-
paring with PredRNN, PredRNN++, and RAP-Net, we can
see that they have a similar SSIM due to applying the same

Geosci. Model Dev., 15, 5407–5419, 2022 https://doi.org/10.5194/gmd-15-5407-2022
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Figure 8. The performance changes against different nowcast lead times in terms of HSS and CSI scores in the ablation study (best viewed
in color).

architecture. However, the other evaluation scores of RAP-
Net are significantly higher than PredRNN and PredRNN++,
which implies the benefit of RAP-Unit. Last, we notice that
the SA-ConvLSTM (Lin et al., 2020) has the best HSS and
CSI in the lowest threshold (5 dBZ). Nevertheless, its perfor-
mance is poor in the highest threshold (40 dBZ), which im-
plies that the RAB and RAM can improve the prediction in
the area with a high radar echo compared to the traditional at-
tention mechanism because the main difference between the
RAP-Net and SA-ConvLSTM is that they introduce different
attention submodules.

To show the performances of various models at differ-
ent nowcasting lead times, Fig. 6 presents the HSS and CSI
curves with regard to different lead times under all thresh-
olds. We observe that both HSS and CSI scores of all mod-
els decrease as the lead time increases, which shows the
difficulty of long-term predictions. Among these models,
RAP-Net achieves notable superiority in the middle and late
stages of the nowcasting period at the highest threshold. Es-
pecially in the last prediction, all baseline methods trend to
obtain the same poor result. The RAP-Net remarkably out-
performs other models. It implies that the introduction of

https://doi.org/10.5194/gmd-15-5407-2022 Geosci. Model Dev., 15, 5407–5419, 2022
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Table 2. Comparison results on RadarCIKM in terms of HSS, CSI, SSIM, and MAE. The best results are given in bold, and the second-best
scores are underlined.

Methods
HSS ↑ CSI ↑

MAE ↓ SSIM ↑
5 dBZ 20 dBZ 40 dBZ avg. 5 dBZ 20 dBZ 40 dBZ avg.

ConvLSTM (Xingjian et al., 2015) 0.7031 0.4857 0.1470 0.4453 0.7663 0.4092 0.0801 0.4186 5.97 0.6334
ConvGRU (Shi et al., 2017) 0.6816 0.4827 0.1225 0.4289 0.7522 0.3952 0.0657 0.4043 6.00 0.6338
TrajGRU (Shi et al., 2017) 0.6809 0.4945 0.1907 0.4553 0.7466 0.4028 0.1061 0.4185 5.90 0.6424
DFN (Jia et al., 2016) 0.6772 0.4719 0.1306 0.4266 0.7489 0.3771 0.0704 0.3988 6.03 0.6268
PredRNN (Wang et al., 2017) 0.7082 0.4915 0.1639 0.4606 0.7692 0.4051 0.0901 0.4215 5.42 0.6887
PredRNN++ (Wang et al., 2018a) 0.7061 0.5047 0.1710 0.4548 0.7642 0.4176 0.0940 0.4253 5.44 0.6851
E3D-LSTM (Wang et al., 2018b) 0.7111 0.4810 0.1361 0.4427 0.7720 0.4060 0.0734 0.4171 5.51 0.6958
MIM (Wang et al., 2019) 0.7052 0.5166 0.1858 0.4692 0.7628 0.4279 0.1034 0.4313 5.47 0.6796
PhyDNet (Guen and Thome, 2020) 0.6741 0.4709 0.1832 0.4427 0.7402 0.4003 0.1017 0.4141 6.25 0.6443
SA-ConvLSTM (Lin et al., 2020) 0.7118 0.4861 0.1582 0.4520 0.7725 0.4161 0.0870 0.4252 5.71 0.6709
PFST-LSTM (Luo et al., 2020) 0.7045 0.5071 0.2218 0.4778 0.7680 0.4175 0.1257 0.4371 5.82 0.6367
CMS-LSTM (Chai et al., 2022) 0.6835 0.4605 0.1720 0.4387 0.7567 0.3788 0.0948 0.4101 5.95 0.6496
RAP-Net 0.7117 0.5116 0.2293 0.4842 0.7666 0.4305 0.1307 0.4426 5.37 0.7019

Figure 9. The first row is the reflectivity of the ground truth and the remaining rows are the predicted reflectivity of different methods on an
example from the RadarCIKM dataset (best viewed in color).

RAB and RAM in the proposed model contributes to gen-
erating long-term predictions within heavy rainfall regions.
Although the performance of RAP-Net would be degraded
when the threshold becomes small, it still has competitive-
ness compared to other models.

Figure 7 shows an example of predictions from these mod-
els. The various colors denote the different ranges of reflec-
tivity according to the color bar in the bottom of Fig. 7. From
the ground truth in the first row, the rainfall event is obvi-
ously the trend of increasing the rainfall intensity. However,
only our model can forecast this trend and keep the intensity
of the regions. The RAP-Net can generate a high reflectivity
area, which can also explain why our model can achieve the

highest evaluation index HSS and CSI in the middle and high
thresholds.

4.5 Ablation study

To investigate the influence of various modules, we conduct
an ablation study to discuss the effectiveness of Region At-
tention Block to the current input and the last hidden state.
The result of evaluations is shown in Table 3. RAP-Cellx
and RAP-Cellh denote the PredRNN model embedding the
RAB into the input and hidden state, respectively. The RAP-
Cell model is the combination of RAP-Cellx and RAP-Cellh
and can also be regarded as RAP-Net without RAM. The re-
sults of RAP-Cellx and RAP-Cellh are higher than PredRNN,
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Table 3. Ablation results on RadarCIKM in terms of HSS, CSI, MAE, and SSIM. The best results are given in bold, and the second-best
scores are underlined.

Methods
HSS ↑ CSI ↑

MAE ↓ SSIM ↑
5 dBZ 20 dBZ 40 dBZ avg. 5 dBZ 20 dBZ 40 dBZ avg.

PredRNN 0.7082 0.4915 0.1639 0.4545 0.7692 0.4051 0.0901 0.4215 5.42 0.6887
RAP-Cellx 0.7102 0.5042 0.1754 0.4633 0.7747 0.4235 0.0967 0.4316 5.36 0.6965
RAP-Cellh 0.7149 0.4967 0.1753 0.4623 0.7772 0.4138 0.0967 0.4292 5.32 0.7009
RAP-Cell 0.7234 0.4757 0.2283 0.4758 0.7817 0.4143 0.1300 0.4420 5.64 0.7036

RAP-Net 0.7117 0.5116 0.2293 0.4842 0.7666 0.4305 0.1307 0.4429 5.37 0.7019

which shows the advantage of introducing the Region Atten-
tion Block, especially since RAP-Cellh significantly reduces
the error according to MAE. Besides, the HSS, CSI, and
SSIM of the RAP-Cell have significant improvements, par-
ticularly when the threshold τ is 40 dBZ, which implies that
RAB being simultaneously employed in the input and hid-
den state contributes to the prediction in the heavy rainfall
regions. Moreover, by comparing the RAP-Cell and RAP-
Net, we find that the RAM can enhance the accuracy of the
nowcasting, especially in the areas with moderate intensity
rainfall.

Similarly, we also plot Fig. 8 to show the experimental re-
sults of all models against different nowcast lead times. We
can see that RAP-Net delivers more promising results when
the threshold increases, which demonstrates the effectiveness
of combining RAB and RAM in terms of long-term predic-
tion in a high reflectivity area. The performance of RAM
can be shown by comparing RAP-Cell and RAP-Net. We
notice that the introduction of RAM can improve the pre-
diction in the regions of moderate rainfall intensity. Besides,
RAP-Cellx and RAP-Cellh embed RAB in the current input
and the hidden state, respectively. Their performance is better
than the original model PredRNN, especially in the 20 dBZ
threshold. It shows the superiority of RAB.

We also show predictions of different methods for a given
sample in Fig. 9. We find that RAP-Cell can generate the red
area which is reflected by better evaluation indexes of HSS
and CSI in the highest threshold. However, all forecasts, ex-
cept for RAP-Net, have a gap in the radar echo block, which
is obviously different from the ground truth. The improve-
ment of prediction in moderate rainfall intensity regions can
be owed to the embedding of RAM.

5 Conclusions

In this paper, we propose the RAP-Net to handle the precip-
itation nowcasting task. On the one hand, it embeds the Re-
gion Attention Block to enhance the local and global spatial
representation ability simultaneously by extracting and deliv-
ering the features in ConvRNN. The improvement can signif-
icantly enhance the accuracy, especially in those regions with

heavy rainfall. On the other hand, we introduce the Recall
Attention Mechanism to improve the temporal expressivity
in the long term. It can preserve and retrieve longer histori-
cal information and effectively enhance the performance of
prediction, particularly for the moderate rainfall intensity re-
gions. We conduct extensive experiments to evaluate the per-
formances of most ConvRNN models. Empirically, RAP-Net
can preserve regions of heavy intensity in long-term predic-
tions. It shows the effectiveness of RAB and RAM in im-
proving forecasting. The ablation study independently mea-
sures the influence of these two modules. The RAB is able
to enhance the accuracy in the high threshold, and RAM can
improve the prediction in the middle threshold.

Currently, most of the existing methods focus on radar
echo maps prediction based on a single altitude layer. The
variety and movement of the echo not only need to consider
the previous sequence in the same layers but also need to use
different altitude layers because the hydrometeors not only
happen in the horizontal direction but also act in the vertical
direction. For future work, we will consider integrating other
layers’ historical information to improve the forecasting. In
detail, we intend to utilize channel attention to exploit the
spatiotemporal representations and then integrate those into
the RAP unit. After training, the model can adaptively extract
valid spatial information from different levels. We will per-
form further experiments on multi-channel RAP-Net based
on multi-layers of radar echo images. Besides, by a visual-
ization of the similarity matrix in channel attention, the level
which is more important for final predictions can be found
out.

Code availability. The source code and pretrained model of RAP-
Net are available at https://doi.org/10.5281/zenodo.5979275 (Zhang
and Luo, 2022).

Data availability. The data are available at https://doi.org/10.5281/
zenodo.5979275 (Zhang and Luo, 2022).
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