Articles | Volume 15, issue 12
https://doi.org/10.5194/gmd-15-4783-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-4783-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Using terrestrial laser scanning to constrain forest ecosystem structure and functions in the Ecosystem Demography model (ED2.2)
Félicien Meunier
CORRESPONDING AUTHOR
CAVElab – Computational and Applied Vegetation Ecology, Department of
Environment, Ghent University, Ghent, Belgium
Sruthi M. Krishna Moorthy
CAVElab – Computational and Applied Vegetation Ecology, Department of
Environment, Ghent University, Ghent, Belgium
Marc Peaucelle
CAVElab – Computational and Applied Vegetation Ecology, Department of
Environment, Ghent University, Ghent, Belgium
now at: INRAE, Université de Bordeaux, UMR 1391 ISPA, 33140
Villenave-d'Ornon, France
Kim Calders
CAVElab – Computational and Applied Vegetation Ecology, Department of
Environment, Ghent University, Ghent, Belgium
Louise Terryn
CAVElab – Computational and Applied Vegetation Ecology, Department of
Environment, Ghent University, Ghent, Belgium
Wim Verbruggen
CAVElab – Computational and Applied Vegetation Ecology, Department of
Environment, Ghent University, Ghent, Belgium
Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, 1350, Denmark
Chang Liu
CAVElab – Computational and Applied Vegetation Ecology, Department of
Environment, Ghent University, Ghent, Belgium
Ninni Saarinen
Department of Forest Sciences, University of Helsinki, Helsinki, Finland
School of Forest Sciences, University of Eastern Finland, Joensuu, Finland
Niall Origo
NPL – Climate and Earth Observation (CEO) group, National Physical
Laboratory, Teddington, UK
Joanne Nightingale
NPL – Climate and Earth Observation (CEO) group, National Physical
Laboratory, Teddington, UK
Mathias Disney
UCL Department of Geography, Gower Street, London, WC1E 6BT, UK
NERC National Centre for Earth Observation (NCEO), UCL Geography,
Gower Street, London, WC1E 6BT, UK
Yadvinder Malhi
Environmental Change Institute, School of Geography and the
Environment, University of Oxford, Oxford, UK
Hans Verbeeck
CAVElab – Computational and Applied Vegetation Ecology, Department of
Environment, Ghent University, Ghent, Belgium
Related authors
Wim Verbruggen, David Wårlind, Stéphanie Horion, Félicien Meunier, Hans Verbeeck, and Guy Schurgers
EGUsphere, https://doi.org/10.5194/egusphere-2025-1259, https://doi.org/10.5194/egusphere-2025-1259, 2025
Short summary
Short summary
We improved the representation of soil water movement in a state-of-the-art dynamic vegetation model. This is especially important for dry ecosystems, as they are often driven by changes in soil water availability. We showed that this update resulted in a generally better match with observations, and that the updated model is more sensitive to soil texture. This updated model will help scientists to better understand the future of dry ecosystems under climate change.
Inês Vieira, Félicien Meunier, Maria Carolina Duran Rojas, Stephen Sitch, Flossie Brown, Giacomo Gerosa, Silvano Fares, Pascal Boeckx, Marijn Bauters, and Hans Verbeeck
EGUsphere, https://doi.org/10.5194/egusphere-2025-1375, https://doi.org/10.5194/egusphere-2025-1375, 2025
Short summary
Short summary
We used a computer model to study how ozone pollution reduces plant growth in six European forests, from Finland to Italy. Combining field data and simulations, we found that ozone can lower carbon uptake by up to 6 % each year, especially in Mediterranean areas. Our study shows that local climate and forest type influence ozone damage and highlights the need to include ozone effects in forest and climate models.
Tao Chen, Félicien Meunier, Marc Peaucelle, Guoping Tang, Ye Yuan, and Hans Verbeeck
Biogeosciences, 21, 2253–2272, https://doi.org/10.5194/bg-21-2253-2024, https://doi.org/10.5194/bg-21-2253-2024, 2024
Short summary
Short summary
Chinese subtropical forest ecosystems are an extremely important component of global forest ecosystems and hence crucial for the global carbon cycle and regional climate change. However, there is still great uncertainty in the relationship between subtropical forest carbon sequestration and its drivers. We provide first quantitative estimates of the individual and interactive effects of different drivers on the gross primary productivity changes of various subtropical forest types in China.
Félicien Meunier, Wim Verbruggen, Hans Verbeeck, and Marc Peaucelle
Geosci. Model Dev., 15, 7573–7591, https://doi.org/10.5194/gmd-15-7573-2022, https://doi.org/10.5194/gmd-15-7573-2022, 2022
Short summary
Short summary
Drought stress occurs in plants when water supply (i.e. root water uptake) is lower than the water demand (i.e. atmospheric demand). It is strongly related to soil properties and expected to increase in intensity and frequency in the tropics due to climate change. In this study, we show that contrary to the expectations, state-of-the-art terrestrial biosphere models are mostly insensitive to soil texture and hence probably inadequate to reproduce in silico the plant water status in drying soils.
Jan Vanderborght, Valentin Couvreur, Felicien Meunier, Andrea Schnepf, Harry Vereecken, Martin Bouda, and Mathieu Javaux
Hydrol. Earth Syst. Sci., 25, 4835–4860, https://doi.org/10.5194/hess-25-4835-2021, https://doi.org/10.5194/hess-25-4835-2021, 2021
Short summary
Short summary
Root water uptake is an important process in the terrestrial water cycle. How this process depends on soil water content, root distributions, and root properties is a soil–root hydraulic problem. We compare different approaches to implementing root hydraulics in macroscopic soil water flow and land surface models.
Hannes P. T. De Deurwaerder, Marco D. Visser, Matteo Detto, Pascal Boeckx, Félicien Meunier, Kathrin Kuehnhammer, Ruth-Kristina Magh, John D. Marshall, Lixin Wang, Liangju Zhao, and Hans Verbeeck
Biogeosciences, 17, 4853–4870, https://doi.org/10.5194/bg-17-4853-2020, https://doi.org/10.5194/bg-17-4853-2020, 2020
Short summary
Short summary
The depths at which plants take up water is challenging to observe directly. To do so, scientists have relied on measuring the isotopic composition of xylem water as this provides information on the water’s source. Our work shows that this isotopic composition changes throughout the day, which complicates the interpretation of the water’s source and has been currently overlooked. We build a model to help understand the origin of these composition changes and their consequences for science.
Cecilia Chavana-Bryant, Phil Wilkes, Wanxin Yang, Andrew Burt, Peter Vines, Amy C. Bennett, Georgia C. Pickavance, Declan L. M. Cooper, Simon L. Lewis, Oliver L. Phillips, Benjamin Brede, Alvaro Lau, Martin Herold, Iain McNicol, Edward T. A. Mitchard, David A. Coomes, Toby Jackson, Loic Makaga, Heddy O. Milamizokou Napo, Alfred Ngomanda, Stephan Ntie, Vincent Medjibe, Pacome Dimbonda, Luna Soenens, Virginie Daelemans, Laetitia Proux, Reuben Nilus, Nicolas Labriere, Kathryn Jeffery, David F. R. P. Burslem, Daniel Clewley, David Moffat, Lan Qie, Harm Bartholomeus, Vincent Gregoire, Nicolas Barbier, Geraldine Derroire, Katharine Abernethy, Klaus Scipal, and Mat Disney
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-67, https://doi.org/10.5194/essd-2025-67, 2025
Preprint under review for ESSD
Short summary
Short summary
The ForestScan project provides a comprehensive set of datasets of tropical forest 3D structural measurements using terrestrial, unpiloted aerial vehicle and aerial laser scanning, plus tree census data. Collected at three sites in French Guiana, Gabon, and Malaysia, these datasets are crucial for calibrating and validating earth observation-derived forest biomass estimates, therefore, expanding and enhancing their use, and aiding global conservation efforts.
Derrick Muheki, Bas Vercruysse, Krishna Kumar Thirukokaranam Chandrasekar, Christophe Verbruggen, Julie M. Birkholz, Koen Hufkens, Hans Verbeeck, Pascal Boeckx, Seppe Lampe, Ed Hawkins, Peter Thorne, Dominique Kankonde Ntumba, Olivier Kapalay Moulasa, and Wim Thiery
EGUsphere, https://doi.org/10.5194/egusphere-2024-3779, https://doi.org/10.5194/egusphere-2024-3779, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Archives worldwide host vast records of observed weather data crucial for understanding climate variability. However, most of these records are still in paper form, limiting their use. To address this, we developed MeteoSaver, an open-source tool, to transcribe these records to machine-readable format. Applied to ten handwritten temperature sheets, it achieved a median accuracy of 74%. This tool offers a promising solution to preserve records from archives and unlock historical weather insights.
Wim Verbruggen, David Wårlind, Stéphanie Horion, Félicien Meunier, Hans Verbeeck, and Guy Schurgers
EGUsphere, https://doi.org/10.5194/egusphere-2025-1259, https://doi.org/10.5194/egusphere-2025-1259, 2025
Short summary
Short summary
We improved the representation of soil water movement in a state-of-the-art dynamic vegetation model. This is especially important for dry ecosystems, as they are often driven by changes in soil water availability. We showed that this update resulted in a generally better match with observations, and that the updated model is more sensitive to soil texture. This updated model will help scientists to better understand the future of dry ecosystems under climate change.
Inês Vieira, Félicien Meunier, Maria Carolina Duran Rojas, Stephen Sitch, Flossie Brown, Giacomo Gerosa, Silvano Fares, Pascal Boeckx, Marijn Bauters, and Hans Verbeeck
EGUsphere, https://doi.org/10.5194/egusphere-2025-1375, https://doi.org/10.5194/egusphere-2025-1375, 2025
Short summary
Short summary
We used a computer model to study how ozone pollution reduces plant growth in six European forests, from Finland to Italy. Combining field data and simulations, we found that ozone can lower carbon uptake by up to 6 % each year, especially in Mediterranean areas. Our study shows that local climate and forest type influence ozone damage and highlights the need to include ozone effects in forest and climate models.
Kristiina Visakorpi, Sofia Gripenberg, Yadvinder Malhi, and Terhi Riutta
Web Ecol., 24, 97–113, https://doi.org/10.5194/we-24-97-2024, https://doi.org/10.5194/we-24-97-2024, 2024
Short summary
Short summary
Plant-feeding insects can have large impacts on the photosynthetic rate of their host plants. Through reducing photosynthesis, and thus carbon assimilation by the plant, these impacts might have large-scale influences on ecosystem carbon cycling. Nevertheless, these effects are rarely considered in ecosystem-level studies. Here we propose an approach to incorporating these changes in plant physiology into estimates of ecosystem productivity.
Flossie Brown, Gerd Folberth, Stephen Sitch, Paulo Artaxo, Marijn Bauters, Pascal Boeckx, Alexander W. Cheesman, Matteo Detto, Ninong Komala, Luciana Rizzo, Nestor Rojas, Ines dos Santos Vieira, Steven Turnock, Hans Verbeeck, and Alfonso Zambrano
Atmos. Chem. Phys., 24, 12537–12555, https://doi.org/10.5194/acp-24-12537-2024, https://doi.org/10.5194/acp-24-12537-2024, 2024
Short summary
Short summary
Ozone is a pollutant that is detrimental to human and plant health. Ozone monitoring sites in the tropics are limited, so models are often used to understand ozone exposure. We use measurements from the tropics to evaluate ozone from the UK Earth system model, UKESM1. UKESM1 is able to capture the pattern of ozone in the tropics, except in southeast Asia, although it systematically overestimates it at all sites. This work highlights that UKESM1 can capture seasonal and hourly variability.
Tao Chen, Félicien Meunier, Marc Peaucelle, Guoping Tang, Ye Yuan, and Hans Verbeeck
Biogeosciences, 21, 2253–2272, https://doi.org/10.5194/bg-21-2253-2024, https://doi.org/10.5194/bg-21-2253-2024, 2024
Short summary
Short summary
Chinese subtropical forest ecosystems are an extremely important component of global forest ecosystems and hence crucial for the global carbon cycle and regional climate change. However, there is still great uncertainty in the relationship between subtropical forest carbon sequestration and its drivers. We provide first quantitative estimates of the individual and interactive effects of different drivers on the gross primary productivity changes of various subtropical forest types in China.
W. A. J. Van den Broeck, L. Terryn, W. Cherlet, Z. T. Cooper, and K. Calders
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W2-2023, 765–770, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-765-2023, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-765-2023, 2023
Joseph Okello, Marijn Bauters, Hans Verbeeck, Samuel Bodé, John Kasenene, Astrid Françoys, Till Engelhardt, Klaus Butterbach-Bahl, Ralf Kiese, and Pascal Boeckx
Biogeosciences, 20, 719–735, https://doi.org/10.5194/bg-20-719-2023, https://doi.org/10.5194/bg-20-719-2023, 2023
Short summary
Short summary
The increase in global and regional temperatures has the potential to drive accelerated soil organic carbon losses in tropical forests. We simulated climate warming by translocating intact soil cores from higher to lower elevations. The results revealed increasing temperature sensitivity and decreasing losses of soil organic carbon with increasing elevation. Our results suggest that climate warming may trigger enhanced losses of soil organic carbon from tropical montane forests.
Félicien Meunier, Wim Verbruggen, Hans Verbeeck, and Marc Peaucelle
Geosci. Model Dev., 15, 7573–7591, https://doi.org/10.5194/gmd-15-7573-2022, https://doi.org/10.5194/gmd-15-7573-2022, 2022
Short summary
Short summary
Drought stress occurs in plants when water supply (i.e. root water uptake) is lower than the water demand (i.e. atmospheric demand). It is strongly related to soil properties and expected to increase in intensity and frequency in the tropics due to climate change. In this study, we show that contrary to the expectations, state-of-the-art terrestrial biosphere models are mostly insensitive to soil texture and hence probably inadequate to reproduce in silico the plant water status in drying soils.
Flossie Brown, Gerd A. Folberth, Stephen Sitch, Susanne Bauer, Marijn Bauters, Pascal Boeckx, Alexander W. Cheesman, Makoto Deushi, Inês Dos Santos Vieira, Corinne Galy-Lacaux, James Haywood, James Keeble, Lina M. Mercado, Fiona M. O'Connor, Naga Oshima, Kostas Tsigaridis, and Hans Verbeeck
Atmos. Chem. Phys., 22, 12331–12352, https://doi.org/10.5194/acp-22-12331-2022, https://doi.org/10.5194/acp-22-12331-2022, 2022
Short summary
Short summary
Surface ozone can decrease plant productivity and impair human health. In this study, we evaluate the change in surface ozone due to climate change over South America and Africa using Earth system models. We find that if the climate were to change according to the worst-case scenario used here, models predict that forested areas in biomass burning locations and urban populations will be at increasing risk of ozone exposure, but other areas will experience a climate benefit.
Marina Corrêa Scalon, Imma Oliveras Menor, Renata Freitag, Karine S. Peixoto, Sami W. Rifai, Beatriz Schwantes Marimon, Ben Hur Marimon Junior, and Yadvinder Malhi
Biogeosciences, 19, 3649–3661, https://doi.org/10.5194/bg-19-3649-2022, https://doi.org/10.5194/bg-19-3649-2022, 2022
Short summary
Short summary
We investigated dynamic nutrient flow and demand in a typical savanna and a transition forest to understand how similar soils and the same climate dominated by savanna vegetation can also support forest-like formations. Savanna relied on nutrient resorption from wood, and nutrient demand was equally partitioned between leaves, wood and fine roots. Transition forest relied on resorption from the canopy biomass and nutrient demand was predominantly driven by leaves.
Jan Vanderborght, Valentin Couvreur, Felicien Meunier, Andrea Schnepf, Harry Vereecken, Martin Bouda, and Mathieu Javaux
Hydrol. Earth Syst. Sci., 25, 4835–4860, https://doi.org/10.5194/hess-25-4835-2021, https://doi.org/10.5194/hess-25-4835-2021, 2021
Short summary
Short summary
Root water uptake is an important process in the terrestrial water cycle. How this process depends on soil water content, root distributions, and root properties is a soil–root hydraulic problem. We compare different approaches to implementing root hydraulics in macroscopic soil water flow and land surface models.
Maurizio Santoro, Oliver Cartus, Nuno Carvalhais, Danaë M. A. Rozendaal, Valerio Avitabile, Arnan Araza, Sytze de Bruin, Martin Herold, Shaun Quegan, Pedro Rodríguez-Veiga, Heiko Balzter, João Carreiras, Dmitry Schepaschenko, Mikhail Korets, Masanobu Shimada, Takuya Itoh, Álvaro Moreno Martínez, Jura Cavlovic, Roberto Cazzolla Gatti, Polyanna da Conceição Bispo, Nasheta Dewnath, Nicolas Labrière, Jingjing Liang, Jeremy Lindsell, Edward T. A. Mitchard, Alexandra Morel, Ana Maria Pacheco Pascagaza, Casey M. Ryan, Ferry Slik, Gaia Vaglio Laurin, Hans Verbeeck, Arief Wijaya, and Simon Willcock
Earth Syst. Sci. Data, 13, 3927–3950, https://doi.org/10.5194/essd-13-3927-2021, https://doi.org/10.5194/essd-13-3927-2021, 2021
Short summary
Short summary
Forests play a crucial role in Earth’s carbon cycle. To understand the carbon cycle better, we generated a global dataset of forest above-ground biomass, i.e. carbon stocks, from satellite data of 2010. This dataset provides a comprehensive and detailed portrait of the distribution of carbon in forests, although for dense forests in the tropics values are somewhat underestimated. This dataset will have a considerable impact on climate, carbon, and socio-economic modelling schemes.
Paula Alejandra Lamprea Pineda, Marijn Bauters, Hans Verbeeck, Selene Baez, Matti Barthel, Samuel Bodé, and Pascal Boeckx
Biogeosciences, 18, 413–421, https://doi.org/10.5194/bg-18-413-2021, https://doi.org/10.5194/bg-18-413-2021, 2021
Short summary
Short summary
Tropical forest soils are an important source and sink of greenhouse gases (GHGs) with tropical montane forests having been poorly studied. In this pilot study, we explored soil fluxes of CO2, CH4, and N2O in an Ecuadorian neotropical montane forest, where a net consumption of N2O at higher altitudes was observed. Our results highlight the importance of short-term variations in N2O and provide arguments and insights for future, more detailed studies on GHG fluxes from montane forest soils.
Wim Verbruggen, Guy Schurgers, Stéphanie Horion, Jonas Ardö, Paulo N. Bernardino, Bernard Cappelaere, Jérôme Demarty, Rasmus Fensholt, Laurent Kergoat, Thomas Sibret, Torbern Tagesson, and Hans Verbeeck
Biogeosciences, 18, 77–93, https://doi.org/10.5194/bg-18-77-2021, https://doi.org/10.5194/bg-18-77-2021, 2021
Short summary
Short summary
A large part of Earth's land surface is covered by dryland ecosystems, which are subject to climate extremes that are projected to increase under future climate scenarios. By using a mathematical vegetation model, we studied the impact of single years of extreme rainfall on the vegetation in the Sahel. We found a contrasting response of grasses and trees to these extremes, strongly dependent on the way precipitation is spread over the rainy season, as well as a long-term impact on CO2 uptake.
Hannes P. T. De Deurwaerder, Marco D. Visser, Matteo Detto, Pascal Boeckx, Félicien Meunier, Kathrin Kuehnhammer, Ruth-Kristina Magh, John D. Marshall, Lixin Wang, Liangju Zhao, and Hans Verbeeck
Biogeosciences, 17, 4853–4870, https://doi.org/10.5194/bg-17-4853-2020, https://doi.org/10.5194/bg-17-4853-2020, 2020
Short summary
Short summary
The depths at which plants take up water is challenging to observe directly. To do so, scientists have relied on measuring the isotopic composition of xylem water as this provides information on the water’s source. Our work shows that this isotopic composition changes throughout the day, which complicates the interpretation of the water’s source and has been currently overlooked. We build a model to help understand the origin of these composition changes and their consequences for science.
Cited articles
Åkerblom, M., Raumonen, P., Casella, E., Disney, M. I., Danson, F. M.,
Gaulton, R., Schofield, L. A., and Kaasalainen, M.: Non-intersecting leaf
insertion algorithm for tree structure models, Interface Focus, 8, 20170045,
https://doi.org/10.1098/rsfs.2017.0045, 2018.
Albani, M., Medvigy, D., Hurtt, G. C., and Moorcroft, P. R.: The
contributions of land-use change, CO2 fertilization, and climate variability
to the Eastern US carbon sink, Glob. Change Biol., 12, 2370–2390,
https://doi.org/10.1111/j.1365-2486.2006.01254.x, 2006.
Antonarakis, A., Saatchi, S., Chazdon, R., and Moorcroft, P.: Using Lidar
and Radar measurements to constrain predictions of forest ecosystem
structure and function., Ecol. Appl. Publ. Ecol. Soc. Am., 21, 1120–1137,
https://doi.org/10.1890/10-0274.1, 2011.
Antonarakis, A. S., Munger, J. W., and Moorcroft, P. R.: Imaging
spectroscopy- and lidar-derived estimates of canopy composition and
structure to improve predictions of forest carbon fluxes and ecosystem
dynamics, Geophys. Res. Lett., 41, 2535–2542,
https://doi.org/10.1002/2013GL058373, 2014.
Asner, G. P., Martin, R. E., Anderson, C. B., Kryston, K., Vaughn, N.,
Knapp, D. E., Bentley, L. P., Shenkin, A., Salinas, N., Sinca, F.,
Tupayachi, R., Huaypar, K. Q., Pillco, M. M., Álvarez, F. D. C.,
Díaz, S., Enquist, B. J., and Malhi, Y.: Scale dependence of canopy
trait distributions along a tropical forest elevation gradient, New Phytol.,
214, 973–988, https://doi.org/10.1111/nph.14068, 2017.
Babst, F., Friend, A. D., Karamihalaki, M., Wei, J., von Arx, G., Papale,
D., and Peters, R. L.: Modeling Ambitions Outpace Observations of Forest
Carbon Allocation, Trends Plant Sci., 26, 210–219,
https://doi.org/10.1016/j.tplants.2020.10.002, 2020.
Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S.,
Anthoni, P., Bernhofer, C., Davis, K., Evans, R., Fuentes, J., Goldstein,
A., Katul, G., Law, B., Lee, X., Malhi, Y., Meyers, T., Munger, W., Oechel,
W., U, K. T. P., Pilegaard, K., Schmid, H. P., Valentini, R., Verma, S.,
Vesala, T., Wilson, K., and Wofsy, S.: FLUXNET: A New Tool to Study the
Temporal and Spatial Variability of Ecosystem-Scale Carbon Dioxide, Water
Vapor, and Energy Flux Densities, B. Am. Meteorol. Soc., 82, 2415–2434,
https://doi.org/10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2, 2001.
Bonan, G.: Climate Change and Terrestrial Ecosystem Modeling, 1st edn.,
Cambridge University Press, https://doi.org/10.1017/9781107339217, 2019.
Bonan, G. B.: Forests and Climate Change: Forcings, Feedbacks, and the
Climate Benefits of Forests, Science, 320, 1444–1449, 2008.
Bürkner, P.-C.: brms: An R Package for Bayesian Multilevel Models Using
stan, J. Stat. Softw., 80, 1–27, https://doi.org/10.18637/jss.v080.i01, 2017.
Burt, A., Disney, M., and Calders, K.: Extracting individual trees from
lidar point clouds using treeseg, Methods Ecol. Evol., 10, 438–445,
https://doi.org/10.1111/2041-210X.13121, 2019.
Butt, N., Campbell, G., Malhi, Y., Morecroft, M., Fenn, K., and Thomas, M.:
Initial Results from Establishment of a Long-term Broadleaf Monitoring Plot
at Wytham Woods, University of Oxford Report, Oxford, UK, 2009.
Calders, K., Armston, J., Newnham, G., Herold, M., and Goodwin, N.:
Implications of sensor configuration and topography on vertical plant
profiles derived from terrestrial LiDAR, Agric. Forest Meteorol., 194,
104–117, https://doi.org/10.1016/j.agrformet.2014.03.022, 2014.
Calders, K., Newnham, G., Burt, A., Murphy, S., Raumonen, P., Herold, M.,
Culvenor, D., Avitabile, V., Disney, M., Armston, J., and Kaasalainen, M.:
Nondestructive estimates of above-ground biomass using terrestrial laser
scanning, Methods Ecol. Evol., 6, 198–208,
https://doi.org/10.1111/2041-210X.12301, 2015.
Calders, K., Disney, M. I., Armston, J., Burt, A., Brede, B., Origo, N.,
Muir, J., and Nightingale, J.: Evaluation of the Range Accuracy and the
Radiometric Calibration of Multiple Terrestrial Laser Scanning Instruments
for Data Interoperability, IEEE T. Geosci. Remote, 55, 2716–2724,
https://doi.org/10.1109/TGRS.2017.2652721, 2017.
Calders, K., Origo, N., Burt, A., Disney, M., Nightingale, J., Raumonen, P.,
Åkerblom, M., Malhi, Y., and Lewis, P.: Realistic Forest Stand
Reconstruction from Terrestrial LiDAR for Radiative Transfer Modelling,
Remote Sens., 10, 933, https://doi.org/10.3390/rs10060933, 2018a.
Calders, K., Origo, N., Disney, M., Nightingale, J., Woodgate, W., Armston,
J., and Lewis, P.: Variability and bias in active and passive ground-based
measurements of effective plant, wood and leaf area index, Agric. Forest
Meteorol., 252, 231–240, https://doi.org/10.1016/j.agrformet.2018.01.029,
2018b.
Calders, K., Adams, J., Armston, J., Bartholomeus, H., Bauwens, S., Bentley,
L. P., Chave, J., Danson, F. M., Demol, M., Disney, M., Gaulton, R., Krishna
Moorthy, S. M., Levick, S. R., Saarinen, N., Schaaf, C., Stovall, A.,
Terryn, L., Wilkes, P., and Verbeeck, H.: Terrestrial laser scanning in
forest ecology: Expanding the horizon, Remote Sens. Environ., 251, 112102,
https://doi.org/10.1016/j.rse.2020.112102, 2020.
Cano, I. M., Shevliakova, E., Malyshev, S., Wright, S. J., Detto, M.,
Pacala, S. W., and Muller-Landau, H. C.: Allometric constraints and
competition enable the simulation of size structure and carbon fluxes in a
dynamic vegetation model of tropical forests (LM3PPA-TV), Glob. Change
Biol., 26, 4478–4494, https://doi.org/10.1111/gcb.15188, 2020.
Chave, J., Réjou-Méchain, M., Búrquez, A., Chidumayo, E., Colgan,
M. S., Delitti, W. B. C., Duque, A., Eid, T., Fearnside, P. M., Goodman, R.
C., Henry, M., Martínez-Yrízar, A., Mugasha, W. A., Muller-Landau, H. C.,
Mencuccini, M., Nelson, B. W., Ngomanda, A., Nogueira, E. M.,
Ortiz-Malavassi, E., Pélissier, R., Ploton, P., Ryan, C. M., Saldarriaga,
J. G., and Vieilledent, G.: Improved allometric models to estimate the
aboveground biomass of tropical trees, Glob. Change Biol., 20, 3177–3190,
https://doi.org/10.1111/gcb.12629, 2014.
Collalti, A., Marconi, S., Ibrom, A., Trotta, C., Anav, A., D'Andrea, E., Matteucci, G., Montagnani, L., Gielen, B., Mammarella, I., Grünwald, T., Knohl, A., Berninger, F., Zhao, Y., Valentini, R., and Santini, M.: Validation of 3D-CMCC Forest Ecosystem Model (v.5.1) against eddy covariance data for 10 European forest sites, Geosci. Model Dev., 9, 479–504, https://doi.org/10.5194/gmd-9-479-2016, 2016.
Collalti, A., Thornton, P. E., Cescatti, A., Rita, A., Borghetti, M.,
Nolè, A., Trotta, C., Ciais, P., and Matteucci, G.: The sensitivity of
the forest carbon budget shifts across processes along with stand
development and climate change, Ecol. Appl., 29, e01837,
https://doi.org/10.1002/eap.1837, 2019.
Dietze, M. C. and Moorcroft, P. R.: Tree mortality in the eastern and
central United States: patterns and drivers, Glob. Change Biol., 17,
3312–3326, https://doi.org/10.1111/j.1365-2486.2011.02477.x, 2011.
Dietze, M. C., Wolosin, M. S., and Clark, J. S.: Capturing diversity and
interspecific variability in allometries: A hierarchical approach, For.
Ecol. Manag., 256, 1939–1948, https://doi.org/10.1016/j.foreco.2008.07.034,
2008.
Dietze, M. C., Serbin, S. P., Davidson, C., Desai, A. R., Feng, X., Kelly,
R., Kooper, R., LeBauer, D., Mantooth, J., McHenry, K., and Wang, D.: A
quantitative assessment of a terrestrial biosphere model's data needs across
North American biomes, J. Geophys. Res.-Biogeo., 119, 286–300,
https://doi.org/10.1002/2013JG002392, 2014.
Dokoohaki, H., Kivi, M. S., Martinez-Feria, R., Miguez, F. E., and
Hoogenboom, G.: A comprehensive uncertainty quantification of large-scale
process-based crop modeling frameworks, Environ. Res. Lett., 16, 084010,
https://doi.org/10.1088/1748-9326/ac0f26, 2021.
Ehbrecht, M., Schall, P., Ammer, C., and Seidel, D.: Quantifying stand
structural complexity and its relationship with forest management, tree
species diversity and microclimate, Agric. For. Meteorol., 242, 1–9,
https://doi.org/10.1016/j.agrformet.2017.04.012, 2017.
Esprey, L. J., Sands, P. J., and Smith, C. W.: Understanding 3-PG using a
sensitivity analysis, For. Ecol. Manag., 193, 235–250,
https://doi.org/10.1016/j.foreco.2004.01.032, 2004.
Fan, G., Nan, L., Dong, Y., Su, X., and Chen, F.: AdQSM: A New Method for
Estimating Above-Ground Biomass from TLS Point Clouds, Remote Sens., 12,
3089, https://doi.org/10.3390/rs12183089, 2020.
Fenn, K., Malhi, Y., Morecroft, M., Lloyd, C., and Thomas, M.: The Carbon
Cycle of a Maritime Ancient Temperate Broadleaved Woodland at Seasonal and
Annual Scales, Ecosystems, 18, 1–15,
https://doi.org/10.1007/s10021-014-9793-1, 2015.
Fer, I., Kelly, R., Moorcroft, P. R., Richardson, A. D., Cowdery, E. M., and Dietze, M. C.: Linking big models to big data: efficient ecosystem model calibration through Bayesian model emulation, Biogeosciences, 15, 5801–5830, https://doi.org/10.5194/bg-15-5801-2018, 2018.
Fischer, F. J., Maréchaux, I., and Chave, J.: Improving plant allometry
by fusing forest models and remote sensing, New Phytol., 223, 1159–1165,
https://doi.org/10.1111/nph.15810, 2019.
Fisher, R., McDowell, N., Purves, D., Moorcroft, P., Sitch, S., Cox, P.,
Huntingford, C., Meir, P., and Ian Woodward, F.: Assessing uncertainties in
a second-generation dynamic vegetation model caused by ecological scale
limitations, New Phytol., 187, 666–681,
https://doi.org/10.1111/j.1469-8137.2010.03340.x, 2010.
Fisher, R. A., Muszala, S., Verteinstein, M., Lawrence, P., Xu, C., McDowell, N. G., Knox, R. G., Koven, C., Holm, J., Rogers, B. M., Spessa, A., Lawrence, D., and Bonan, G.: Taking off the training wheels: the properties of a dynamic vegetation model without climate envelopes, CLM4.5(ED), Geosci. Model Dev., 8, 3593–3619, https://doi.org/10.5194/gmd-8-3593-2015, 2015.
Fisher, R. A., Koven, C. D., Anderegg, W. R. L., Christoffersen, B. O.,
Dietze, M. C., Farrior, C. E., Holm, J. A., Hurtt, G. C., Knox, R. G.,
Lawrence, P. J., Lichstein, J. W., Longo, M., Matheny, A. M., Medvigy, D.,
Muller-Landau, H. C., Powell, T. L., Serbin, S. P., Sato, H., Shuman, J. K.,
Smith, B., Trugman, A. T., Viskari, T., Verbeeck, H., Weng, E., Xu, C., Xu,
X., Zhang, T., and Moorcroft, P. R.: Vegetation demographics in Earth System
Models: A review of progress and priorities, Glob. Change Biol., 24, 35–54,
https://doi.org/10.1111/gcb.13910, 2018.
Friedlingstein, P., Cox, P., Betts, R., Bopp, L., Bloh, W. von, Brovkin, V.,
Cadule, P., Doney, S., Eby, M., Fung, I., Bala, G., John, J., Jones, C.,
Joos, F., Kato, T., Kawamiya, M., Knorr, W., Lindsay, K., Matthews, H. D.,
Raddatz, T., Rayner, P., Reick, C., Roeckner, E., Schnitzler, K.-G., Schnur,
R., Strassmann, K., Weaver, A. J., Yoshikawa, C., and Zeng, N.:
Climate–Carbon Cycle Feedback Analysis: Results from the C4MIP Model
Intercomparison, J. Climate, 19, 3337–3353,
https://doi.org/10.1175/JCLI3800.1, 2006.
Friedlingstein, P., Meinshausen, M., Arora, V. K., Jones, C. D., Anav, A.,
Liddicoat, S. K., and Knutti, R.: Uncertainties in CMIP5 Climate Projections
due to Carbon Cycle Feedbacks, J. Climate, 27, 511–526,
https://doi.org/10.1175/JCLI-D-12-00579.1, 2014.
Hackenberg, J., Spiecker, H., Calders, K., Disney, M., and Raumonen, P.:
SimpleTree – An Efficient Open Source Tool to Build Tree Models from TLS
Clouds, Forests, 6, 4245–4294, https://doi.org/10.3390/f6114245, 2015.
Hall, J., Kirby, K., and Whitbread, A.: National Vegetation Classification:
Field Guide to Woodland, JNCC,
ISBN 1 86107 554 5, 2001.
Hopkinson, C., Chasmer, L., Young-Pow, C., and Treitz, P.: Assessing forest
metrics with a ground-based scanning lidar, Can. J. For. Res., 34, 573–583,
https://doi.org/10.1139/x03-225, 2011.
Hurtt, G., Zhao, M., Sahajpal, R., Armstrong, A., Birdsey, R., Campbell, E.,
Dolan, K., Dubayah, R., Fisk, J. P., Flanagan, S., Huang, C., Huang, W.,
Johnson, K., Lamb, R., Ma, L., Marks, R., O'Leary, D., O'Neil-Dunne, J.,
Swatantran, A., and Tang, H.: Beyond MRV: high-resolution forest carbon
modeling for climate mitigation planning over Maryland, USA, Environ. Res.
Lett., 14, 045013, https://doi.org/10.1088/1748-9326/ab0bbe, 2019.
Hurtt, G. C., Fisk, J., Thomas, R. Q., Dubayah, R., Moorcroft, P. R., and
Shugart, H. H.: Linking models and data on vegetation structure, J. Geophys.
Res.-Biogeo., 115, G00E10, https://doi.org/10.1029/2009JG000937, 2010.
Jones, H. G. and Vaughan, R. A.: Remote Sensing of Vegetation: Principles,
Techniques, and Applications, OUP Oxford, 381 pp., 2010.
Jupp, D. L. B., Culvenor, D. S., Lovell, J. L., Newnham, G. J., Strahler, A.
H., and Woodcock, C. E.: Estimating forest LAI profiles and structural
parameters using a ground-based laser called “Echidna®”, Tree
Physiol., 29, 171–181, https://doi.org/10.1093/treephys/tpn022, 2009.
Kattge, J., Bönisch, G., Díaz, S., et al.: TRY
plant trait database – enhanced coverage and open access, Glob. Change
Biol., 26, 119–188, https://doi.org/10.1111/gcb.14904, 2020.
Keeling, H. C. and Phillips, O. L.: The global relationship between forest
productivity and biomass, Glob. Ecol. Biogeogr., 16, 618–631,
https://doi.org/10.1111/j.1466-8238.2007.00314.x, 2007.
Keenan, T. F. and Niinemets, Ü.: Global leaf trait estimates biased due
to plasticity in the shade, Nat. Plants, 3, 1–6,
https://doi.org/10.1038/nplants.2016.201, 2016.
LeBauer, D. S., Wang, D., Richter, K. T., Davidson, C. C., and Dietze, M.
C.: Facilitating feedbacks between field measurements and ecosystem models,
Ecol. Monogr., 83, 133–154, 2013.
Lin, J. C., Pejam, M. R., Chan, E., Wofsy, S. C., Gottlieb, E. W., Margolis,
H. A., and McCaughey, J. H.: Attributing uncertainties in simulated
biospheric carbon fluxes to different error sources, Glob. Biogeochem.
Cycles, 25, 1–17, https://doi.org/10.1029/2010GB003884, 2011.
Lloyd, J., Patiño, S., Paiva, R. Q., Nardoto, G. B., Quesada, C. A., Santos, A. J. B., Baker, T. R., Brand, W. A., Hilke, I., Gielmann, H., Raessler, M., Luizão, F. J., Martinelli, L. A., and Mercado, L. M.: Optimisation of photosynthetic carbon gain and within-canopy gradients of associated foliar traits for Amazon forest trees, Biogeosciences, 7, 1833–1859, https://doi.org/10.5194/bg-7-1833-2010, 2010.
Longo, M., Knox, R. G., Medvigy, D. M., Levine, N. M., Dietze, M. C., Kim, Y., Swann, A. L. S., Zhang, K., Rollinson, C. R., Bras, R. L., Wofsy, S. C., and Moorcroft, P. R.: The biophysics, ecology, and biogeochemistry of functionally diverse, vertically and horizontally heterogeneous ecosystems: the Ecosystem Demography model, version 2.2 – Part 1: Model description, Geosci. Model Dev., 12, 4309–4346, https://doi.org/10.5194/gmd-12-4309-2019, 2019a.
Longo, M., Knox, R., Medvigy, D. M., Levine, N. M., Dietze, M., Swann, A. L. S., Zhang, K., Rollinson, C., di Porcia e Brugnera, M., Scott, D., Serbin, S. P., Kooper, R., Pourmokhtarian, A., Shiklomanov, A., Viskari, T., and Moorcroft, P.: Ecosystem Demography Model, version 2.2 (ED-2.2) (rev-86), Zenodo [code], https://doi.org/10.5281/zenodo.3365659, 2019b.
Longo, M., Saatchi, S., Keller, M., Bowman, K., Ferraz, A., Moorcroft, P.
R., Morton, D. C., Bonal, D., Brando, P., Burban, B., Derroire, G.,
dos-Santos, M. N., Meyer, V., Saleska, S., Trumbore, S., and Vincent, G.:
Impacts of Degradation on Water, Energy, and Carbon Cycling of the Amazon
Tropical Forests, J. Geophys. Res.-Biogeo., 125, e2020JG005677,
https://doi.org/10.1029/2020JG005677, 2020.
Lovell, J. L., Jupp, D. L. B., Culvenor, D. S., and Coops, N. C.: Using
airborne and ground-based ranging lidar to measure canopy structure in
Australian forests, Can. J. Remote Sens., 29, 607–622,
https://doi.org/10.5589/m03-026, 2003.
Lovenduski, N. S. and Bonan, G. B.: Reducing uncertainty in projections of
terrestrial carbon uptake, Environ. Res. Lett., 12, 044020,
https://doi.org/10.1088/1748-9326/aa66b8, 2017.
Luo, Y., Weng, E., Wu, X., Gao, C., Zhou, X., and Zhang, L.: Parameter
identifiability, constraint, and equifinality in data assimilation with
ecosystem models, Ecol. Appl., 19, 571–574,
https://doi.org/10.1890/08-0561.1, 2009.
Maas, H.-G., Bienert, A., Scheller, S., and Keane, E.: Automatic forest
inventory parameter determination from terrestrial laser scanner data, Int.
J. Remote Sens., 29, 1579–1593, https://doi.org/10.1080/01431160701736406,
2008.
Massoud, E. C., Xu, C., Fisher, R. A., Knox, R. G., Walker, A. P., Serbin, S. P., Christoffersen, B. O., Holm, J. A., Kueppers, L. M., Ricciuto, D. M., Wei, L., Johnson, D. J., Chambers, J. Q., Koven, C. D., McDowell, N. G., and Vrugt, J. A.: Identification of key parameters controlling demographically structured vegetation dynamics in a land surface model: CLM4.5(FATES), Geosci. Model Dev., 12, 4133–4164, https://doi.org/10.5194/gmd-12-4133-2019, 2019.
McGuire, A. D., Sitch, S., Clein, J. S., Dargaville, R., Esser, G., Foley,
J., Heimann, M., Joos, F., Kaplan, J., Kicklighter, D. W., Meier, R. A.,
Melillo, J. M., Moore, B., Prentice, I. C., Ramankutty, N., Reichenau, T.,
Schloss, A., Tian, H., Williams, L. J., and Wittenberg, U.: Carbon balance
of the terrestrial biosphere in the Twentieth Century: Analyses of CO2,
climate and land use effects with four process-based ecosystem models, Glob.
Biogeochem. Cycles, 15, 183–206, https://doi.org/10.1029/2000GB001298,
2001.
Medvigy, D. and Moorcroft, P. R.: Predicting ecosystem dynamics at regional
scales: an evaluation of a terrestrial biosphere model for the forests of
northeastern North America, Philos. Trans. R. Soc. Lond. B Biol. Sci., 367,
222–235, https://doi.org/10.1098/rstb.2011.0253, 2012.
Medvigy, D., Wofsy, S. C., Munger, J. W., Hollinger, D. Y., and Moorcroft,
P. R.: Mechanistic scaling of ecosystem function and dynamics in space and
time: Ecosystem Demography model version 2, J. Geophys. Res., 114, 1–21,
https://doi.org/10.1029/2008JG000812, 2009.
Meunier, F.: Data associated to the paper “Using terrestrial laser scanning to constrain forest ecosystem structure and functions in the Ecosystem Demography model (ED2.2)”, Zenodo [data set], https://doi.org/10.5281/zenodo.6363617, 2022.
Meunier, F., Verbeeck, H., Cowdery, B., Schnitzer, S. A., Smith-Martin, C.
M., Powers, J., Xu, X., Slot, M., De Deurwaerder, H. P. T., Detto, M.,
Bonal, D., Longo, M., Santiago, L. S., and Dietze, M.: Unraveling the
relative role of light and water competition between lianas and trees in
tropical forests, J. Ecol., 109, 519–540,
https://doi.org/10.1111/1365-2745.13540, 2020.
Meunier, F., Visser, M. D., Shiklomanov, A., Dietze, M. C., Guzmán Q.,
J. A., Sanchez-Azofeifa, G. A., De Deurwaerder, H. P. T., Krishna Moorthy,
S. M., Schnitzer, S. A., Marvin, D. C., Longo, M., Liu, C., Broadbent, E.
N., Almeyda Zambrano, A. M., Muller-Landau, H. C., Detto, M., and Verbeeck,
H.: Liana optical traits increase tropical forest albedo and reduce
ecosystem productivity, Glob. Change Biol., 28, 227–244,
https://doi.org/10.1111/gcb.15928, 2022.
Moorcroft, P. R., Hurtt, G. C., and Pacala, S. W.: A method for scaling
vegetation dynamics: the ecosystem demography model (ED), Ecol. Monogr., 71,
557–586, 2001.
Oleson, K., Lawrence, M., Bonan, B., Drewniak, B., Huang, M., Koven, D.,
Levis, S., Li, F., Riley, J., Subin, M., Swenson, S., Thornton, E.,
Bozbiyik, A., Fisher, R., Heald, L., Kluzek, E., Lamarque, J.-F., Lawrence,
J., Leung, R., Lipscomb, W., Muszala, P., Ricciuto, M., Sacks, J., Sun, Y.,
Tang, J., and Yang, Z.-L.: Technical description of version 4.5 of the
Community Land Model (CLM), NCAR,
ISBN NCAR/TN-503+STR, https://doi.org/10.5065/D6RR1W7M, 2013.
Peaucelle, M., Bacour, C., Ciais, P., Vuichard, N., Kuppel, S.,
Peñuelas, J., Marchesini, L. B., Blanken, P. D., Buchmann, N., Chen, J.,
Delpierre, N., Desai, A. R., Dufrene, E., Gianelle, D., Gimeno-Colera, C.,
Gruening, C., Helfter, C., Hörtnagl, L., Ibrom, A., Joffre, R., Kato,
T., Kolb, T. E., Law, B., Lindroth, A., Mammarella, I., Merbold, L.,
Minerbi, S., Montagnani, L., Šigut, L., Sutton, M., Varlagin, A.,
Vesala, T., Wohlfahrt, G., Wolf, S., Yakir, D., and Viovy, N.: Covariations
between plant functional traits emerge from constraining parameterization of
a terrestrial biosphere model, Glob. Ecol. Biogeogr., 28, 1351–1365,
https://doi.org/10.1111/geb.12937, 2019.
Peylin, P., Bacour, C., MacBean, N., Leonard, S., Rayner, P., Kuppel, S., Koffi, E., Kane, A., Maignan, F., Chevallier, F., Ciais, P., and Prunet, P.: A new stepwise carbon cycle data assimilation system using multiple data streams to constrain the simulated land surface carbon cycle, Geosci. Model Dev., 9, 3321–3346, https://doi.org/10.5194/gmd-9-3321-2016, 2016.
Poulter, B., Hattermann, F., Hawkins, E., Zaehle, S., Sitch, S.,
Restrepo-Coupe, N., Heyder, U., and Cramer, W.: Robust dynamics of Amazon
dieback to climate change with perturbed ecosystem model parameters, Glob.
Change Biol., 16, 2476–2495,
https://doi.org/10.1111/j.1365-2486.2009.02157.x, 2010.
Raczka, B., Dietze, M. C., Serbin, S. P., and Davis, K. J.: What Limits
Predictive Certainty of Long-Term Carbon Uptake?, J. Geophys. Res.-Biogeo., 123, 3570–3588, https://doi.org/10.1029/2018JG004504, 2018.
Raumonen, P., Kaasalainen, M., Åkerblom, M., Kaasalainen, S., Kaartinen,
H., Vastaranta, M., Holopainen, M., Disney, M., and Lewis, P.: Fast
Automatic Precision Tree Models from Terrestrial Laser Scanner Data, Remote
Sens., 5, 491–520, https://doi.org/10.3390/rs5020491, 2013.
R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria,
https://www.R-project.org/ (last access: 12 June 2022), 2019.
Rezende, L. F. C., Arenque-Musa, B. C., Moura, M. S. B., Aidar, S. T., Von
Randow, C., Menezes, R. S. C., Ometto, J. P. B. H., Rezende, L. F. C.,
Arenque-Musa, B. C., Moura, M. S. B., Aidar, S. T., Von Randow, C., Menezes,
R. S. C., and Ometto, J. P. B. H.: Calibration of the maximum carboxylation
velocity (Vcmax) using data mining techniques and ecophysiological data from
the Brazilian semiarid region, for use in Dynamic Global Vegetation Models,
Braz. J. Biol., 76, 341–351, https://doi.org/10.1590/1519-6984.14414, 2016.
Richardson, A. D., Williams, M., Hollinger, D. Y., Moore, D. J. P., Dail, D.
B., Davidson, E. A., Scott, N. A., Evans, R. S., Hughes, H., Lee, J. T.,
Rodrigues, C., and Savage, K.: Estimating parameters of a forest ecosystem C
model with measurements of stocks and fluxes as joint constraints,
Oecologia, 164, 25–40, 2010.
Roberts, J., Hopkins, R., and Morecroft, M.: Towards a predictive
description of forest canopies from litter properties, Funct. Ecol., 13,
265–272, https://doi.org/10.1046/j.1365-2435.1999.00312.x, 1999.
Rogers, A., Medlyn, B. E., Dukes, J. S., Bonan, G., Caemmerer, S. von,
Dietze, M. C., Kattge, J., Leakey, A. D. B., Mercado, L. M., Niinemets,
Ü., Prentice, I. C., Serbin, S. P., Sitch, S., Way, D. A., and Zaehle,
S.: A roadmap for improving the representation of photosynthesis in Earth
system models, New Phytol., 213, 22–42, https://doi.org/10.1111/nph.14283,
2017.
Saarinen, N., Calders, K., Kankare, V., Yrttimaa, T., Junttila, S., Luoma,
V., Huuskonen, S., Hynynen, J., and Verbeeck, H.: Understanding 3D
structural complexity of individual Scots pine trees with different
management history, Ecol. Evol., 11, 2561–2572, https://doi.org/10.1002/ece3.7216,
2021.
Savill, P., Perrins, C., Kirby, K., and Fisher, N.: Wytham Woods: Oxford's
Ecological Laboratory, 1st edn., Oxford University Press, 288 pp., ISBN-10 0199605181, ISBN-13 978-0199605187, 2010.
Sellers, P. J.: Canopy reflectance, photosynthesis and transpiration, Int.
J. Remote Sens., 6, 1335–1372, https://doi.org/10.1080/01431168508948283,
1985.
Shiklomanov, A. N., Bond-Lamberty, B., Atkins, J. W., and Gough, C. M.:
Structure and parameter uncertainty in centennial projections of forest
community structure and carbon cycling, Glob. Change Biol., 26, 6080–6096,
https://doi.org/10.1111/gcb.15164, 2020.
Stiers, M., Willim, K., Seidel, D., Ehbrecht, M., Kabal, M., Ammer, C., and
Annighöfer, P.: A quantitative comparison of the structural complexity
of managed, lately unmanaged and primary European beech (Fagus sylvatica L.)
forests, For. Ecol. Manag., 430, 357–365,
https://doi.org/10.1016/j.foreco.2018.08.039, 2018.
Takoudjou, S. M., Ploton, P., Sonké, B., Hackenberg, J., Griffon, S.,
Coligny, F. de, Kamdem, N. G., Libalah, M., Mofack, G. I., Moguédec, G.
L., Pélissier, R., and Barbier, N.: Using terrestrial laser scanning
data to estimate large tropical trees biomass and calibrate allometric
models: A comparison with traditional destructive approach, Methods Ecol.
Evol., 9, 905–916, https://doi.org/10.1111/2041-210X.12933, 2018.
Tanago, J. G. de, Lau, A., Bartholomeus, H., Herold, M., Avitabile, V.,
Raumonen, P., Martius, C., Goodman, R. C., Disney, M., Manuri, S., Burt, A.,
and Calders, K.: Estimation of above-ground biomass of large tropical trees
with terrestrial LiDAR, Methods Ecol. Evol., 9, 223–234,
https://doi.org/10.1111/2041-210X.12904, 2018.
Thomas, M. V., Malhi, Y., Fenn, K. M., Fisher, J. B., Morecroft, M. D., Lloyd, C. R., Taylor, M. E., and McNeil, D. D.: Carbon dioxide fluxes over an ancient broadleaved deciduous woodland in southern England, Biogeosciences, 8, 1595–1613, https://doi.org/10.5194/bg-8-1595-2011, 2011.
Thomas, R. Q., Hurtt, G. C., Dubayah, R., and Schilz, M. H.: Using lidar
data and a height-structured ecosystem model to estimate forest carbon
stocks and fluxes over mountainous terrain, Can. J. Remote Sens., 34,
S351–S363, https://doi.org/10.5589/m08-036, 2008.
van Breugel, M., Ransijn, J., Craven, D., Bongers, F., and Hall, J. S.:
Estimating carbon stock in secondary forests: Decisions and uncertainties
associated with allometric biomass models, For. Ecol. Manag., 262,
1648–1657, https://doi.org/10.1016/j.foreco.2011.07.018, 2011.
Vicari, M. B., Pisek, J., and Disney, M.: New estimates of leaf angle
distribution from terrestrial LiDAR: Comparison with measured and modelled
estimates from nine broadleaf tree species, Agric. Forest Meteorol., 264,
322–333, https://doi.org/10.1016/j.agrformet.2018.10.021, 2019.
Viovy, N.: CRUNCEP Version 7 – Atmospheric Forcing Data for the Community
Land Model, NCAR, https://doi.org/10.5065/PZ8F-F017, 2018.
Viskari, T., Shiklomanov, A., Dietze, M. C., and Serbin, S. P.: The
influence of canopy radiation parameter uncertainty on model projections of
terrestrial carbon and energy cycling, PLOS ONE, 14, e0216512,
https://doi.org/10.1371/journal.pone.0216512, 2019.
Wang, Y., Hyyppä, J., Liang, X., Kaartinen, H., Yu, X., Lindberg, E.,
Holmgren, J., Qin, Y., Mallet, C., Ferraz, A., Torabzadeh, H., Morsdorf, F.,
Zhu, L., Liu, J., and Alho, P.: International Benchmarking of the Individual
Tree Detection Methods for Modeling 3-D Canopy Structure for Silviculture
and Forest Ecology Using Airborne Laser Scanning, IEEE T. Geosci. Remote, 54, 5011–5027, https://doi.org/10.1109/TGRS.2016.2543225, 2016.
Wang, Y. P.: A comparison of three different canopy radiation models
commonly used in plant modelling, Funct. Plant Biol. FPB, 30, 143–152,
https://doi.org/10.1071/FP02117, 2003.
Wei, H., Xia, Y., Mitchell, K. E., and Ek, M. B.: Improvement of the Noah
land surface model for warm season processes: evaluation of water and energy
flux simulation, Hydrol. Process., 27, 297–303,
https://doi.org/10.1002/hyp.9214, 2013.
Williams, I. N. and Torn, M. S.: Vegetation controls on surface heat flux
partitioning, and land-atmosphere coupling, Geophys. Res. Lett., 42,
9416–9424, https://doi.org/10.1002/2015GL066305, 2015.
Wramneby, A., Smith, B., Zaehle, S., and Sykes, M. T.: Parameter
uncertainties in the modelling of vegetation dynamics – Effects on tree
community structure and ecosystem functioning in European forest biomes,
Ecol. Model., 216, 277–290,
https://doi.org/10.1016/j.ecolmodel.2008.04.013, 2008.
Wright, I. J., Reich, P. B., Westoby, M., Ackerly, D. D., Baruch, Z.,
Bongers, F., Cavender-Bares, J., Chapin, T., Cornelissen, J. H. C., Diemer,
M., Flexas, J., Garnier, E., Groom, P. K., Gulias, J., Hikosaka, K., Lamont,
B. B., Lee, T., Lee, W., Lusk, C., Midgley, J. J., Navas, M.-L., Niinemets,
Ü., Oleksyn, J., Osada, N., Poorter, H., Poot, P., Prior, L., Pyankov,
V. I., Roumet, C., Thomas, S. C., Tjoelker, M. G., Veneklaas, E. J., and
Villar, R.: The worldwide leaf economics spectrum, Nature, 428, 821–827,
https://doi.org/10.1038/nature02403, 2004.
Zaehle, S., Sitch, S., Smith, B., and Hatterman, F.: Effects of parameter
uncertainties on the modeling of terrestrial biosphere dynamics, Glob.
Biogeochem. Cycles, 19, 1–16, https://doi.org/10.1029/2004GB002395, 2005.
Zhao, F., Strahler, A. H., Schaaf, C. L., Yao, T., Yang, X., Wang, Z.,
Schull, M. A., Román, M. O., Woodcock, C. E., Olofsson, P., Ni-Meister,
W., Jupp, D. L. B., Lovell, J. L., Culvenor, D. S., and Newnham, G. J.:
Measuring gap fraction, element clumping index and LAI in Sierra Forest
stands using a full-waveform ground-based lidar, Remote Sens. Environ., 125,
73–79, https://doi.org/10.1016/j.rse.2012.07.007, 2012.
Zhao, W. and Qualls, R. J.: A multiple-layer canopy scattering model to
simulate shortwave radiation distribution within a homogeneous plant canopy,
Water Resour. Res., 41, 1–16, https://doi.org/10.1029/2005WR004016, 2005.
Short summary
We integrated state-of-the-art observations of the structure of the vegetation in a temperate forest to constrain a vegetation model that aims to reproduce such an ecosystem in silico. We showed that the use of this information helps to constrain the model structure, its critical parameters, as well as its initial state. This research confirms the critical importance of the representation of the vegetation structure in vegetation models and proposes a method to overcome this challenge.
We integrated state-of-the-art observations of the structure of the vegetation in a temperate...