Articles | Volume 15, issue 11
https://doi.org/10.5194/gmd-15-4425-2022
https://doi.org/10.5194/gmd-15-4425-2022
Model experiment description paper
 | 
09 Jun 2022
Model experiment description paper |  | 09 Jun 2022

Climate projections over the Great Lakes Region: using two-way coupling of a regional climate model with a 3-D lake model

Pengfei Xue, Xinyu Ye, Jeremy S. Pal, Philip Y. Chu, Miraj B. Kayastha, and Chenfu Huang

Related authors

Inland lake temperature initialization via coupled cycling with atmospheric data assimilation
Stanley G. Benjamin, Tatiana G. Smirnova, Eric P. James, Eric J. Anderson, Ayumi Fujisaki-Manome, John G. W. Kelley, Greg E. Mann, Andrew D. Gronewold, Philip Chu, and Sean G. T. Kelley
Geosci. Model Dev., 15, 6659–6676, https://doi.org/10.5194/gmd-15-6659-2022,https://doi.org/10.5194/gmd-15-6659-2022, 2022
Short summary
Data assimilation of in situ and satellite remote sensing data to 3D hydrodynamic lake models: a case study using Delft3D-FLOW v4.03 and OpenDA v2.4
Theo Baracchini, Philip Y. Chu, Jonas Šukys, Gian Lieberherr, Stefan Wunderle, Alfred Wüest, and Damien Bouffard
Geosci. Model Dev., 13, 1267–1284, https://doi.org/10.5194/gmd-13-1267-2020,https://doi.org/10.5194/gmd-13-1267-2020, 2020
Short summary

Related subject area

Climate and Earth system modeling
Monsoon Mission Coupled Forecast System version 2.0: model description and Indian monsoon simulations
Deepeshkumar Jain, Suryachandra A. Rao, Ramu A. Dandi, Prasanth A. Pillai, Ankur Srivastava, Maheswar Pradhan, and Kiran V. Gangadharan
Geosci. Model Dev., 17, 709–729, https://doi.org/10.5194/gmd-17-709-2024,https://doi.org/10.5194/gmd-17-709-2024, 2024
Short summary
Exploring the ocean mesoscale at reduced computational cost with FESOM 2.5: efficient modeling strategies applied to the Southern Ocean
Nathan Beech, Thomas Rackow, Tido Semmler, and Thomas Jung
Geosci. Model Dev., 17, 529–543, https://doi.org/10.5194/gmd-17-529-2024,https://doi.org/10.5194/gmd-17-529-2024, 2024
Short summary
Truly conserving with conservative remapping methods
Karl E. Taylor
Geosci. Model Dev., 17, 415–430, https://doi.org/10.5194/gmd-17-415-2024,https://doi.org/10.5194/gmd-17-415-2024, 2024
Short summary
High-resolution downscaling of CMIP6 Earth system and global climate models using deep learning for Iberia
Pedro M. M. Soares, Frederico Johannsen, Daniela C. A. Lima, Gil Lemos, Virgílio A. Bento, and Angelina Bushenkova
Geosci. Model Dev., 17, 229–259, https://doi.org/10.5194/gmd-17-229-2024,https://doi.org/10.5194/gmd-17-229-2024, 2024
Short summary
Earth system modeling on modular supercomputing architecture: coupled atmosphere–ocean simulations with ICON 2.6.6-rc
Abhiraj Bishnoi, Olaf Stein, Catrin I. Meyer, René Redler, Norbert Eicker, Helmuth Haak, Lars Hoffmann, Daniel Klocke, Luis Kornblueh, and Estela Suarez
Geosci. Model Dev., 17, 261–273, https://doi.org/10.5194/gmd-17-261-2024,https://doi.org/10.5194/gmd-17-261-2024, 2024
Short summary

Cited articles

Anderson, E. J., Fujisaki-Manome, A., Kessler, J., Lang, G. A., Chu, P. Y., Kelley, J. G., Chen, Y., and Wang, J.: Ice forecasting in the next-generation Great Lakes operational forecast system (GLOFS), J. Mar. Sci. Eng., 6, 123, https://doi.org/10.3390/jmse6040123, 2018. a, b, c
Austin, J. and Colman, S.: A century of temperature variability in Lake Superior, Limnol. Oceanogr., 53, 2724–2730, 2008. a
Austin, J. A. and Colman, S. M.: Lake Superior summer water temperatures are increasing more rapidly than regional air temperatures: A positive ice-albedo feedback, Geophys. Res. Lett., 34, L06604, https://doi.org/10.1029/2006GL029021, 2007. a
Basile, S. J., Rauscher, S. A., and Steiner, A. L.: Projected precipitation changes within the Great Lakes and Western Lake Erie Basin: a multi-model analysis of intensity and seasonality, Int. J. Climatol., 37, 4864–4879, 2017. a
Bennington, V., Notaro, M., and Holman, K. D.: Improving climate sensitivity of deep lakes within a regional climate model and its impact on simulated climate, J. Climate, 27, 2886–2911, 2014. a, b, c
Download
Short summary
The Great Lakes are the world's largest freshwater system. They are a key element in regional climate influencing local weather patterns and climate processes. Many of these complex processes are regulated by interactions of the atmosphere, lake, ice, and surrounding land areas. This study presents a Great Lakes climate change projection that employed the two-way coupling of a regional climate model with a 3-D lake model (GLARM) to resolve 3-D hydrodynamics essential for large lakes.