Byun, K. and Hamlet, A. F.: Projected changes in future climate over the
Midwest and Great Lakes region using downscaled CMIP5 ensembles,
Int. J. Climatol., 38, e531–e553, 2018.
a,
b,
c,
d,
e,
f
Byun, K., Chiu, C.-M., and Hamlet, A. F.: Effects of 21st century climate
change on seasonal flow regimes and hydrologic extremes over the Midwest and
Great Lakes region of the US, Sci. Total Environ., 650,
1261–1277, 2019. a
Chen, C., Liu, H., and Beardsley, R. C.: An unstructured grid, finite-volume,
three-dimensional, primitive equations ocean model: application to coastal
ocean and estuaries, J. Atmos. Ocean. Tech., 20,
159–186, 2003. a
Chen, C., Beardsley, R.C., Cowles, G., Qi, J., Lai, Z., Gao, G., David Stuebe, D., Liu, H., Xu, Q., Xue. P., Ge, J., Hu, S., Ji, R., Tian, R., Huang, H., Wu, L., Lin, H., Sun, Y., and Zhao L.: An unstructured grid, finite-volume community ocean model, FVCOM user manual, 4th Edn., SMAST/UMASSD Technical Report-13-0701, 404 pp., 2013. a
Cherkauer, K. A. and Sinha, T.: Hydrologic impacts of projected future climate
change in the Lake Michigan region, J. Great Lakes Res., 36,
33–50, 2010.
a,
b
Collingsworth, P. D., Bunnell, D. B., Murray, M. W., Kao, Y.-C., Feiner, Z. S.,
Claramunt, R. M., Lofgren, B. M., Höök, T. O., and Ludsin, S. A.:
Climate change as a long-term stressor for the fisheries of the Laurentian
Great Lakes of North America, Rev. Fish Biol. Fish., 27,
363–391, 2017. a
Craig, A., Valcke, S., and Coquart, L.: Development and performance of a new version of the OASIS coupler, OASIS3-MCT_3.0, Geosci. Model Dev., 10, 3297–3308,
https://doi.org/10.5194/gmd-10-3297-2017, 2017.
a
Delaney, F. and Milner, G.: The State of Climate Modeling in the Great Lakes
Basin – A Synthesis in Support of a Workshop held on June 27, 2019 in Ann
Arbor, MI,
https://climateconnections.ca/app/uploads/2020/05/The-State-of-Climate-Modeling-in-the-Great-Lakes-Basin_Sept132019.pdf (last access: 31 May 2022), 2019. a
Dobiesz, N. E. and Lester, N. P.: Changes in mid-summer water temperature and
clarity across the Great Lakes between 1968 and 2002, J. Great Lakes
Res., 35, 371–384, 2009.
a,
b
d'Orgeville, M., Peltier, W. R., Erler, A. R., and Gula, J.: Climate change
impacts on Great Lakes Basin precipitation extremes, J. Geophys.
Res.-Atmos., 119, 10–799, 2014. a
Environmental Protection Agency (EPA): State of the Great Lakes 2011, EPA 950-R-13-002,
https://archive.epa.gov/solec/web/pdf/sogl-2011-technical-report-en.pdf (last access: 31 May 2022), 2014.
a,
b
Feser, F., Rockel, B., von Storch, H., Winterfeldt, J., Zahn, M., Feser, F.,
Rockel, B., Storch, H. v., Winterfeldt, J., and Zahn, M.: Regional climate
models add value to global model data: a review and selected examples, B. Am.
Meteorol. Soc., 92, 1181–1192, 2011. a
Fujisaki, A., Wang, J., Hu, H., Schwab, D. J., Hawley, N., and Rao, Y. R.: A
modeling study of ice–water processes for Lake Erie applying coupled
ice-circulation models, J. Great Lakes Res., 38, 585–599, 2012. a
Fujisaki, A., Wang, J., Bai, X., Leshkevich, G., and Lofgren, B.:
Model-simulated interannual variability of Lake Erie ice cover, circulation,
and thermal structure in response to atmospheric forcing, 2003–2012, J.
Geophys. Res.-Oceans, 118, 4286–4304, 2013. a
Giorgi, F.: Thirty years of regional climate modeling: where are we and where
are we going next?, J. Geophys. Res.-Atmos., 124,
5696–5723, 2019. a
Giorgi, F. and Mearns, L. O.: Calculation of average, uncertainty range, and
reliability of regional climate changes from AOGCM simulations via the
“reliability ensemble averaging” (REA) method, J. Climate, 15,
1141–1158, 2002.
a,
b
Gula, J. and Peltier, W. R.: Dynamical downscaling over the Great Lakes basin
of North America using the WRF regional climate model: The impact of the
Great Lakes system on regional greenhouse warming, J. Climate, 25,
7723–7742, 2012.
a,
b
Harris, I., Jones, P. D., Osborn, T. J., and Lister, D. H.: Updated
high-resolution grids of monthly climatic observations – the CRU TS3. 10
Dataset, Int. J. Climatol., 34, 623–642, 2014. a
Hayhoe, K., VanDorn, J., Croley II, T., Schlegal, N., and Wuebbles, D.:
Regional climate change projections for Chicago and the US Great Lakes,
J. Great Lakes Res., 36, 7–21, 2010. a
Huang, C.: Model Code for manuscript “Climate Projections over the Great Lakes Region: Using Two-way Coupling of a Regional Climate Model with a 3-D Lake Model”, Zenodo [code],
https://doi.org/10.5281/zenodo.6534139, 2022a.
a
Huang, C.: Validation Data used for manuscript “Climate Projections over the Great Lakes Region: Using Two-way Coupling of a Regional Climate Model with a 3-D Lake Model”, Zenodo [data set],
https://doi.org/10.5281/zenodo.6540504, 2022b.
a
Huang, C., Kuczynski, A., Auer, M. T., O’Donnell, D. M., and Xue, P.:
Management transition to the Great Lakes nearshore: Insights from
hydrodynamic modeling, J. Mar. Sci. Eng., 7, 129,
https://doi.org/10.3390/jmse7050129,
2019.
a
Huang, C., Anderson, E., Liu, Y., Ma, G., Mann, G., and Xue, P.: Evaluating
essential processes and forecast requirements for meteotsunami-induced
coastal flooding, Natural Hazards, 1–26, 2021a.
a,
b
Huang, C., Zhu, L., Ma, G., Meadows, G. A., and Xue, P.: Wave Climate
Associated With Changing Water Level and Ice Cover in Lake Michigan,
Front. Marine Sci., 8, 746916,
https://doi.org/10.3389/fmars.2021.746916, 2021b.
a,
b
Ibrahim, H. D., Xue, P., and Eltahir, E. A.: Multiple salinity equilibria and
resilience of Persian/Arabian Gulf basin salinity to brine discharge,
Front. Marine Sci., 7, 573,
https://doi.org/10.3389/fmars.2020.00573, 2020.
a
IPCC: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp., 2013. a
IPCC: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, editedby: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA,
https://doi.org/10.1017/9781009157896, in press, 2021.
a
Jones, M. L., Shuter, B. J., Zhao, Y., and Stockwell, J. D.: Forecasting
effects of climate change on Great Lakes fisheries: models that link habitat
supply to population dynamics can help, Can. J. Fish.
Aqua. Sci., 63, 457–468, 2006. a
Lynch, A. J., Myers, B. J., Chu, C., Eby, L. A., Falke, J. A., Kovach, R. P.,
Krabbenhoft, T. J., Kwak, T. J., Lyons, J., Paukert, C. P., and Whitney, J. E.: Climate
change effects on North American inland fish populations and assemblages,
Fisheries, 41, 346–361, 2016. a
MacKay, M. and Seglenieks, F.: On the simulation of Laurentian Great Lakes
water levels under projections of global climate change, Climatic Change,
117, 55–67, 2013. a
Mailhot, E., Music, B., Nadeau, D. F., Frigon, A., and Turcotte, R.: Assessment
of the Laurentian Great Lake'’ hydrological conditions in a changing
climate, Climatic Change, 157, 243–259, 2019. a
Melillo, J. M., Richmond, T., and Yohe, G. (Eds.): Climate Change Impacts in the United States: The Third National Climate Assessment, U.S. Global Change Research Program, 841 pp.,
https://doi.org/10.7930/J0Z31WJ2,
2014.
a
Miao, C., Duan, Q., Sun, Q., Huang, Y., Kong, D., Yang, T., Ye, A., Di, Z., and
Gong, W.: Assessment of CMIP5 climate models and projected temperature
changes over Northern Eurasia, Environ. Res. Lett., 9, 055007,
https://doi.org/10.1088/1748-9326/9/5/055007,
2014.
a
Music, B., Frigon, A., Lofgren, B., Turcotte, R., and Cyr, J.-F.: Present and
future Laurentian Great Lakes hydroclimatic conditions as simulated by
regional climate models with an emphasis on Lake Michigan-Huron, Climatic
Change, 130, 603–618, 2015. a
Notaro, M., Bennington, V., and Vavrus, S.: Dynamically downscaled projections
of lake-effect snow in the Great Lakes basin, J. Climate, 28,
1661–1684, 2015.
a,
b,
c,
d,
e,
f,
g,
h,
i,
j,
k,
l,
m
Notaro, M., Zhong, Y., Xue, P., Peters-Lidard, C., Cruz, C., Kemp, E.,
Kristovich, D., Kulie, M., Wang, J., Huang, C., and Vavrus, S. J.: Cold Season
Performance of the NU-WRF Regional Climate Model in the Great Lakes Region,
J. Hydrometeorol., 22, 2423–2454, 2021. a
Oleson, K., Lawrence, D., Bonan, G., Drewniak, B., Huang, M., Koven, C., Levis,
S., Li, F., Riley, W., Subin, Z., Swenson, S., Thornton, P., Bozbiyik, A.,
Fisher, R., Heald, C., Kluzek, E., Lamarque, J.-F., Lawrence, P., Leung, L.,
Lipscomb, W., Muszala, S., Ricciuto, D., Sacks, W., Sun, Y., Tang, J., and
Yang, Z.-L.: Technical description of version 4.5 of the Community Land Model
(CLM), Tech. rep.,
https://doi.org/10.5065/D6RR1W7M, 2013.
a
Oleson, K. W., Lawrence, D. M., Gordon, B., Flanner, M. G., Kluzek, E., Peter,
J., Levis, S., Swenson, S. C., Thornton, E., Feddema, J., Heald, C. L.,
Hoffman, F., Lamarque, J.-F., Mahowald, N., Niu, G.-Y., Qian, T., Randerson, J., Running, S., Sakaguchi, K., Slater, A., Stockli, R., Wang, A., Yang, Z.-L., Zeng, X., and Zeng, X.: Technical
description of version 4.0 of the Community Land Model (CLM),
https://doi.org/10.5065/D6FB50WZ, 2010.
a
Poesch, M. S., Chavarie, L., Chu, C., Pandit, S. N., and Tonn, W.: Climate
change impacts on freshwater fishes: a Canadian perspective, Fisheries, 41,
385–391, 2016. a
Pryor, S. C., Scavia, D., Downer, C., Gaden, M., Iverson, L., Nordstrom, R.,
Patz, J., and Robertson, G. P.: chap. 18: Midwest. Climate change impacts in the United
States: The third national climate assessment, in: National Climate Assessment Report, edited by: Melillo, J. M., Richmond, T. C.,
and Yohe, G. W., Washington, DC: US Global
Change Research Program, 418–440,
https://doi.org/10.7930/J0J1012N, 2014.
a
Rau, E., Vaccaro, L., Riseng, C., and Read, J.: The dynamic great lakes economy
employment trends from 2009 to 2018,
https://www.michiganseagrant.org/wp-content/uploads/2020/10/MICHU-20-203Great-Lakes-Jobs-Report.pdf (last access: 31 May 2022), 2020. a
Sharma, S., Jackson, D. A., Minns, C. K., and Shuter, B. J.: Will northern fish
populations be in hot water because of climate change?, Glob. Change
Biol., 13, 2052–2064, 2007. a
Shi, Q. and Xue, P.: Impact of lake surface temperature variations on lake
effect snow over the Great Lakes region, J. Geophys. Res.-Atmos., 124, 12553–12567, 2019. a
Subin, Z. M., Riley, W. J., and Mironov, D.: An improved lake model for climate
simulations: Model structure, evaluation, and sensitivity analyses in CESM1,
J. Adv. Model. Earth Sy., 4, M02001,
https://doi.org/10.1029/2011MS000072, 2012.
a
Sun, L., Liang, X.-Z., and Xia, M.: Developing the Coupled CWRF-FVCOM Modeling
System to Understand and Predict Atmosphere-Watershed Interactions Over the
Great Lakes Region, J. Adv. Model. Earth Sy., 12,
e2020MS002319,
https://doi.org/10.1029/2020MS002319, 2020.
a
Wang, G., Yu, M., Pal, J. S., Mei, R., Bonan, G. B., Levis, S., and Thornton,
P. E.: On the development of a coupled regional climate–vegetation model
RCM–CLM–CN–DV and its validation in Tropical Africa, Clim. Dynam., 46,
515–539, 2016. a
Wang, J., Bai, X., Hu, H., Clites, A., Colton, M., and Lofgren, B.: Temporal
and spatial variability of Great Lakes ice cover, 1973–2010, J.
Climate, 25, 1318–1329, 2012. a
Wang, S., Sun, X., and Lall, U.: A hierarchical Bayesian regression model for
predicting summer residential electricity demand across the USA, Energy, 140,
601–611, 2017. a
Woolway, R. I., Sharma, S., Weyhenmeyer, G. A., Debolskiy, A., Golub, M.,
Mercado-Bettín, D., Perroud, M., Stepanenko, V., Tan, Z., Grant, L.,
Ladwig, R., Mesman, J., Moore, T. N., Shatwell, T., Vanderkelen, I., Austin, J. A., DeGasperi, C. L., Dokulil, M., La Fuente, S., Mackay, E. B., Schladow, S. G., Watanabe, S., Marcé, R., Pierson, D. C., Thiery, W., and Jennings, E.: Phenological shifts in lake stratification under climate change,
Nat. Commun., 12, 1–11, 2021.
a,
b
Wuebbles, D., Cardinale, B., Cherkauer, K., Davidson-Arnott, R., Hellmann, J.,
Infante, D., and Ballinger, A.: An assessment of the impacts of climate
change on the Great Lakes, Environmental Law & Policy Center,
https://elpc.org/wp-content/uploads/2020/04/2019-ELPCPublication-Great-Lakes-Climate-Change-Report.pdf (last access: 31 May 2022), 2019.
a,
b,
c,
d
Xiao, C., Lofgren, B. M., Wang, J., and Chu, P. Y.: A dynamical downscaling
projection of future climate change in the Laurentian Great Lakes region
using a coupled air-lake model, Preprints,
https://doi.org/10.20944/preprints201807.0468.v1, 2018.
a,
b,
c,
d,
e,
f,
g
Xue, P., Eltahir, E. A., Malanotte-Rizzoli, P., and Wei, J.: Local feedback
mechanisms of the shallow water region around the M aritime C ontinent,
J. Geophys. Res.-Oceans, 119, 6933–6951, 2014. a
Xue, P., Schwab, D. J., and Hu, S.: An investigation of the thermal response to
meteorological forcing in a hydrodynamic model of Lake Superior, J.
Geophys. Res.-Oceans, 120, 5233–5253, 2015.
a,
b
Xue, P., Pal, J. S., Ye, X., Lenters, J. D., Huang, C., and Chu, P. Y.:
Improving the simulation of large lakes in regional climate modeling: Two-way
lake–atmosphere coupling with a 3D hydrodynamic model of the Great Lakes,
J. Climate, 30, 1605–1627, 2017.
a,
b
Xue, P., Malanotte-Rizzoli, P., Wei, J., and Eltahir, E. A.: Coupled
ocean-atmosphere modeling over the Maritime Continent: A review, J.
Geophys. Res.-Oceans, 125, e2019JC014978,
https://doi.org/10.1029/2019JC014978, 2020.
a
Ye, X., Anderson, E. J., Chu, P. Y., Huang, C., and Xue, P.: Impact of water
mixing and ice formation on the warming of Lake Superior: A model-guided
mechanism study, Limnol. Oceanogr., 64, 558–574, 2019. a
Ye, X., Chu, P. Y., Anderson, E. J., Huang, C., Lang, G. A., and Xue, P.:
Improved thermal structure simulation and optimized sampling strategy for
Lake Erie using a data assimilative model, J. Great Lakes Res.,
46, 144–158, 2020. a
Zhang, L., Zhao, Y., Hein-Griggs, D., and Ciborowski, J. J.: Projected monthly
temperature changes of the Great Lakes Basin, Environ. Res., 167,
453–467, 2018. a
Zhang, L., Zhao, Y., Hein-Griggs, D., Barr, L., and Ciborowski, J. J.:
Projected extreme temperature and precipitation of the Laurentian Great Lakes
Basin, Global Planet. Change, 172, 325–335, 2019.
a,
b,
c
Zhang, L., Zhao, Y., Hein-Griggs, D., Janes, T., Tucker, S., and Ciborowski,
J. J.: Climate change projections of temperature and precipitation for the
great lakes basin using the PRECIS regional climate model, J. Great
Lakes Res., 46, 255–266, 2020.
a,
b,
c,
d,
e,
f
Zhong, Y., Notaro, M., Vavrus, S. J., and Foster, M. J.: Recent accelerated
warming of the Laurentian Great Lakes: Physical drivers, Limnol.
Oceanogr., 61, 1762–1786, 2016. a