Articles | Volume 15, issue 10
Geosci. Model Dev., 15, 4259–4273, 2022
Geosci. Model Dev., 15, 4259–4273, 2022
Development and technical paper
01 Jun 2022
Development and technical paper | 01 Jun 2022

Formulation of a new explicit tidal scheme in revised LICOM2.0

Jiangbo Jin et al.

Related authors

The response of ocean climate change to different heat-flux perturbations over North Atlantic in FAFMIP
Wenyu Yin, Xin Gao, Jiangbo Jin, Yi Yu, Guangqing Zhou, and Qingcun Zeng
EGUsphere,,, 2022
Short summary

Related subject area

Climate and Earth system modeling
FOCI-MOPS v1 – integration of marine biogeochemistry within the Flexible Ocean and Climate Infrastructure version 1 (FOCI 1) Earth system model
Chia-Te Chien, Jonathan V. Durgadoo, Dana Ehlert, Ivy Frenger, David P. Keller, Wolfgang Koeve, Iris Kriest, Angela Landolfi, Lavinia Patara, Sebastian Wahl, and Andreas Oschlies
Geosci. Model Dev., 15, 5987–6024,,, 2022
Short summary
Assessment of the Paris urban heat island in ERA5 and offline SURFEX-TEB (v8.1) simulations using the METEOSAT land surface temperature product
Miguel Nogueira, Alexandra Hurduc, Sofia Ermida, Daniela C. A. Lima, Pedro M. M. Soares, Frederico Johannsen, and Emanuel Dutra
Geosci. Model Dev., 15, 5949–5965,,, 2022
Short summary
The Earth system model CLIMBER-X v1.0 – Part 1: Climate model description and validation​​​​​​​​​​​​​​
Matteo Willeit, Andrey Ganopolski, Alexander Robinson, and Neil R. Edwards
Geosci. Model Dev., 15, 5905–5948,,, 2022
Short summary
Cloud-based framework for inter-comparing submesoscale-permitting realistic ocean models
Takaya Uchida, Julien Le Sommer, Charles Stern, Ryan P. Abernathey, Chris Holdgraf, Aurélie Albert, Laurent Brodeau, Eric P. Chassignet, Xiaobiao Xu, Jonathan Gula, Guillaume Roullet, Nikolay Koldunov, Sergey Danilov, Qiang Wang, Dimitris Menemenlis, Clément Bricaud, Brian K. Arbic, Jay F. Shriver, Fangli Qiao, Bin Xiao, Arne Biastoch, René Schubert, Baylor Fox-Kemper, William K. Dewar, and Alan Wallcraft
Geosci. Model Dev., 15, 5829–5856,,, 2022
Short summary
swNEMO_v4.0: an ocean model based on NEMO4 for the new-generation Sunway supercomputer
Yuejin Ye, Zhenya Song, Shengchang Zhou, Yao Liu, Qi Shu, Bingzhuo Wang, Weiguo Liu, Fangli Qiao, and Lanning Wang
Geosci. Model Dev., 15, 5739–5756,,, 2022
Short summary

Cited articles

Arbic, B. K., Wallcraft, A. J., and Metzger, E. J.: Concurrent simulation of the eddying general circulation and tides in a global ocean model, Ocean Modell., 32, 175–187,, 2010. 
Boon, J.: Secrets of the Tides, Horwood Publishing,, 2004. 
Cartwright, D. E.: Tides: a scientific history, Cambridge University Press, Earth Sciences History, 22, 114–117, (last access: 31 May 2022) 1999. 
Dong, X., Jin, J., Liu, H., Zhang, H., Zhang, M., Lin, P., Zeng, Q., Zhou, G., Yu, Y., Song, Lin, M., Z., Lian, R., Gao, X., He, J., Zhang, D., and Chen, K.: CAS-ESM2.0 model datasets for the CMIP6 Ocean Model Intercomparison Project Phase 1 (OMIP1), Adv. Atmos. Sci., 38, 307–316,, 2021. 
Egbert, G. D. and Erofeeva, S. Y.: Efficient Inverse Modeling of Barotropic Ocean Tides, J. Atmos. Ocean. Tech., 19, 183–204,<0183:EIMOBO>2.0.CO;2, 2002. 
Short summary
In this paper, the inclusion of tides in a global model via the explicit calculation of the tide-generating force based on the positions of the sun and moon is proposed, rather than the traditional method of including about eight tidal constituents with empirical amplitudes and frequencies. The new scheme can better simulate the diurnal and spatial characteristics of the tidal potential of spring and neap tides as well as the spatial patterns and magnitudes of major tidal constituents.