Articles | Volume 15, issue 10
https://doi.org/10.5194/gmd-15-4259-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-4259-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Formulation of a new explicit tidal scheme in revised LICOM2.0
Jiangbo Jin
International Center for Climate and Environment Sciences, Institute
of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
Run Guo
International Center for Climate and Environment Sciences, Institute
of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
College of Earth and Planetary Sciences, University of Chinese Academy
of Sciences, Beijing 100049, China
Minghua Zhang
School of Marine and Atmospheric Sciences, Stony Brook University,
Stony Brook, New York, USA
Guangqing Zhou
International Center for Climate and Environment Sciences, Institute
of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
Qingcun Zeng
CORRESPONDING AUTHOR
International Center for Climate and Environment Sciences, Institute
of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
Related authors
Wenyu Yin, Xin Gao, Jiangbo Jin, Yi Yu, Guangqing Zhou, and Qingcun Zeng
EGUsphere, https://doi.org/10.5194/egusphere-2022-610, https://doi.org/10.5194/egusphere-2022-610, 2022
Preprint withdrawn
Short summary
Short summary
Heat flux is one of the major factors leading to ocean climate change under global warming. In this study, we quantitatively evaluate the impacts of the magnitude change of heat-flux perturbations over North Atlantic (NA) region on the ocean climate change. We found the changes in Atlantic Meridional Overturning Circulation (AMOC) and added ocean heat uptake over NA were almost linearly related to the heat flux over NA, while the changes in redistributed ocean heat uptake over NA were not.
Guangxing Lin, Wei Liao, Zhaohui Lin, He Zhang, Wenbin Kou, Xiaojie Guo, Zhenghui Xie, Qiu Yang, Chenglai Wu, and Minghua Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-4311, https://doi.org/10.5194/egusphere-2025-4311, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Traditional climate models struggle to accurately represent storm clouds, leading to large rainfall biases over East Asia. To address this, we used a multiscale modeling framework that embeds a high-resolution cloud model into each grid cell of the Chinese Academy of Sciences Earth System Model. This approach greatly improves the simulation of East Asia precipitation.
Wenyu Yin, Xin Gao, Jiangbo Jin, Yi Yu, Guangqing Zhou, and Qingcun Zeng
EGUsphere, https://doi.org/10.5194/egusphere-2022-610, https://doi.org/10.5194/egusphere-2022-610, 2022
Preprint withdrawn
Short summary
Short summary
Heat flux is one of the major factors leading to ocean climate change under global warming. In this study, we quantitatively evaluate the impacts of the magnitude change of heat-flux perturbations over North Atlantic (NA) region on the ocean climate change. We found the changes in Atlantic Meridional Overturning Circulation (AMOC) and added ocean heat uptake over NA were almost linearly related to the heat flux over NA, while the changes in redistributed ocean heat uptake over NA were not.
Cited articles
Arbic, B. K., Wallcraft, A. J., and Metzger, E. J.: Concurrent simulation of
the eddying general circulation and tides in a global ocean model, Ocean
Modell., 32, 175–187, https://doi.org/10.1016/j.ocemod.2010.01.007,
2010.
Boon, J.: Secrets of the Tides, Horwood Publishing, https://doi.org/10.1016/B978-1-904275-17-6.50002-1, 2004.
Cartwright, D. E.: Tides: a scientific history, Cambridge University Press, Earth Sciences History, 22, 114–117, http://www.jstor.org/stable/24137002 (last access: 31 May 2022)
1999.
Dong, X., Jin, J., Liu, H., Zhang, H., Zhang, M., Lin, P., Zeng, Q., Zhou,
G., Yu, Y., Song, Lin, M., Z., Lian, R., Gao, X., He, J., Zhang, D., and
Chen, K.: CAS-ESM2.0 model datasets for the CMIP6 Ocean Model
Intercomparison Project Phase 1 (OMIP1), Adv. Atmos. Sci., 38, 307–316,
https://doi.org/10.1007/s00376-020-0150-3, 2021.
Egbert, G. D. and Erofeeva, S. Y.: Efficient Inverse Modeling of Barotropic
Ocean Tides, J. Atmos. Ocean. Tech., 19, 183–204,
https://doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2, 2002.
Egbert, G. D. and Ray, R. D.: Semi-diurnal and diurnal tidal dissipation
from TOPEX/Poseidon altimetry, Geophys. Res. Lett., 30, 169–172,
https://doi.org/10.1029/2003GL017676, 2003.
Fairall, C. W., Bradley, E. F., Hare, J. E., Grachev, A. A., and Edson, J.
B.: Bulk parameterization of air–sea fluxes: Updates and verification for
the COARE algorithm, J. Climate, 16, 571–591, 2003.
Gill, S.: Sea-level science: Understanding tides, surges, tsunamis and mean
sea-level changes, Phys. Today, 68, 56–57, 2015.
Griffies, S. M. and Adcroft, A. J.: Formulating the Equations of Ocean
Models, J. Geophys. Res., 177, 281–317, https://doi.org/10.1029/177GM18,
2008.
Griffies, S. M. and Greatbatch, R. J.: Physical processes that impact the
evolution of global mean sea level in ocean climate models, Ocean Modell.,
51, 37–72, https://doi.org/10.1016/j.ocemod.2012.04.003, 2012.
Griffies, S. M., Harrison, M. J., Pacanowski, R. C., and Rosati, A.: A
Technical Guide to MOM4, GFDL Ocean group Tech. Rep, 5, 309–313, 2004.
Griffies, S. M., Schmidt, M., and Herzfeld, M.: Elements of mom4p1, GFDL
Ocean Group Tech. Rep, 6, 444 pp., 2009.
Griffies, S. M., Danabasoglu, G., Durack, P. J., Adcroft, A. J., Balaji, V., Böning, C. W., Chassignet, E. P., Curchitser, E., Deshayes, J., Drange, H., Fox-Kemper, B., Gleckler, P. J., Gregory, J. M., Haak, H., Hallberg, R. W., Heimbach, P., Hewitt, H. T., Holland, D. M., Ilyina, T., Jungclaus, J. H., Komuro, Y., Krasting, J. P., Large, W. G., Marsland, S. J., Masina, S., McDougall, T. J., Nurser, A. J. G., Orr, J. C., Pirani, A., Qiao, F., Stouffer, R. J., Taylor, K. E., Treguier, A. M., Tsujino, H., Uotila, P., Valdivieso, M., Wang, Q., Winton, M., and Yeager, S. G.: OMIP contribution to CMIP6: experimental and diagnostic protocol for the physical component of the Ocean Model Intercomparison Project, Geosci. Model Dev., 9, 3231–3296, https://doi.org/10.5194/gmd-9-3231-2016, 2016.
Hendershott, M. C.: The effects of solid earth deformation on global ocean
tides, Geophys. J. Int., 29, 389–402,
https://doi.org/10.1111/j.1365-246X.1972.tb06167.x, 1972.
Huang, R. X.: Mixing and energetics of the oceanic thermohaline circulation,
J. Phys. Oceanogr., 29, 727–746, 1999.
Jayne, S. R. and Laurent, L. C. S.: Parameterizing tidal dissipation over
rough topography, Geophys. Res. Lett., 28, 811–814,
https://doi.org/10.1029/2000GL012044, 2001.
Jin, J. and Guo, R.: The observation of the dynamic sea level (DSL) is available from the AVISO, Zenodo [data set], https://doi.org/10.5281/zenodo.5896655, 2022.
Jin, J. B., Zeng, Q. C., Wu, L., Liu, H. L., and Zhang, M. H.: Formulation
of a new ocean salinity boundary condition and impact on the simulated
climate of an oceanic general circulation model, Sci. China Earth Sci., 60,
491–500, https://doi.org/10.1007/s11430-016-9004-4, 2017.
Jin, J. B., Zhang, H., Dong, X., Liu, H. L., Zhang, M. H., Gao, X., He, J.
X., Chai, Z. Y., Zeng, Q. C., Zhou, G. Q., Lin, Z. H., Yu, Y., Lin, P. F.,
Lian, R. X., Yu, Y. Q., Song, M. R., and Zhang, D. L.: CAS-ESM2.0 model
datasets for the CMIP6 Flux-Anomaly-Forced Model Intercomparison Project
(FAFMIP), Adv. Atmos. Sci., 38, 296–306,
https://doi.org/10.1007/s00376-020-0188-2, 2021.
Killworth, P. D., Stainforth, D., Webb, D. J., and Paterson, S. M.: The
development of a free-surface Bryan–Cox–Semtner ocean model, J. Phys.
Oceanogr., 21, 1333–1348, 1991.
Large, W. G. and Yeager, S.: Diurnal to decadal global forcing for ocean
and sea–ice models: the datasets and flux climatologies, NCAR Technical
Note (No. NCAR/TN-460+STR), https://doi.org/10.5065/D6KK98Q6, 2004.
Laurent, L. C. St., Simmons, H. L., and Jayne, S. R.: Estimating tidally
driven mixing in the deep ocean, Geophys. Res. Lett., 29, 211–214,
https://doi.org/10.1029/2002GL015633, 2002.
Liu, H. L., Lin, P. F., Yu, Y. Q., and Zhang, X. H.: The baseline evaluation
of LASG/IAP climate system ocean model (LICOM) version 2, Acta Meteorol.
Sin., 26, 318–329, https://doi.org/10.1007/s13351-012-0305-y, 2012.
MacKinnon, J.: Mountain waves in the deep ocean, Nature, 501, 321–322,
https://doi.org/10.1038/501321a, 2013.
Melet, A., Hallberg, R., Legg, S., and Polzin, K.: Sensitivity of the ocean
state to the vertical distribution of internal-tide driven mixing, J. Phys.
Oceanogr., 43, 602–615, https://doi.org/10.1175/JPO-D-12-055.1, 2013.
Montenbruck, O. and Gill, E.: Satellite Orbits: Models, Methods and Applications, Springer Berlin, Heidelberg Press, https://doi.org/10.1007/978-3-642-58351-3, 2000.
Müller, M., Haak, H., Jungclaus, J. H., Sündermann, J., and Thomas,
M.: The effect of ocean tides on a climate model simulation, Ocean Modell.,
35, 304–313, https://doi.org/10.1016/j.ocemod.2010.09.001, 2010.
Ponchaut, F., Lyard, F., and Provost, C. L.: An analysis of the tidal signal
in the WOCE sea level dataset, J. Atmos. Ocean. Tech., 18, 77–91,
https://doi.org/10.1175/1520-0426(2001)018<0077:AAOTTS>2.0.CO;2, 2001.
Postlethwaite, C. F., Morales Maqueda, M. A., le Fouest, V., Tattersall, G. R., Holt, J., and Willmott, A. J.: The effect of tides on dense water formation in Arctic shelf seas, Ocean Sci., 7, 203–217, https://doi.org/10.5194/os-7-203-2011, 2011.
Saenko, O. A. and Merryfield, W. J.: On the effect of topographically
enhanced mixing on the global ocean circulation, J. Phys.
Oceanogr., 35, 826–834, 2005.
Sakamoto, K., Tsujino, H., Nakano, H., Hirabara, M., and Yamanaka, G.: A practical scheme to introduce explicit tidal forcing into an OGCM, Ocean Sci., 9, 1089–1108, https://doi.org/10.5194/os-9-1089-2013, 2013.
Schiller, A.: Effects of explicit tidal forcing in an OGCM on the water-mass
structure and circulation in the Indonesian throughflow region, Ocean
Modell., 6, 31–49, https://doi.org/10.1016/S1463-5003(02)00057-4, 2004.
Schiller, A. and Fiedler, R.: Explicit tidal forcing in an ocean general
circulation model, Geophys. Res. Lett., 34, L03611,
https://doi.org/10.1029/2006GL028363, 2007.
Schneider, D. P., Deser, C., Fasullo, J., and Trenberth, K. E.: Climate data
guide spurs discovery and understanding, Eos Trans. AGU, 94, 121,
https://doi.org/10.1002/2013EO130001, 2013.
Schwiderski, E.: On charting global ocean tides, Rev. Geophys., 18,
243–268, https://doi.org/10.1029/RG018i001p00243, 1980.
Shriver, J. F., Arbic, B. K., Richman, J. G., Ray, R. D., Metzger, E. J.,
Wallcraft, A. J., and Timko, P. G.: An evaluation of the barotropic and
internal tides in a high-resolution global ocean circulation model, J.
Geophys. Res., 117, C10024, https://doi.org/10.1029/2012JC008170, 2012.
Simmons, H. L., Jayne, S. R., Laurent, L. C. S., and Weaver, A. J.: Tidally
driven mixing in a numerical model of the ocean generalcirculation, Ocean
Modell., 6, 245–263, https://doi.org/10.1016/S1463-5003(03)00011-8, 2004.
Thomas, M., Sündermann, J., and Maier-Reimer, E.: Consideration of ocean
tides in an OGCM and impacts on subseasonal to decadal polar motion
excitation, Geophys. Res. Lett., 28, 2457–2460,
https://doi.org/10.1029/2000GL012234, 2001.
Wahr, J. M. and Sasao, T.: A diurnal resonance in the ocean tide and in the
earth load response due to the resonant free “core nutation”, Geophys. J.
Int., 64, 747–765, https://doi.org/10.1111/j.1365-246X.1981.tb02693.x,
1981.
Wang, X., Liu, Z., and Peng, S.: Impact of tidal mixing on water mass
transformation and circulation in the south china sea, J. Phys. Oceanogr.,
47, 419–432, https://doi.org/10.1175/JPO-D-16-0171.1, 2017.
Wunsch, C. and Ferrari, R.: Vertical mixing, energy, and the general
circulation of the oceans, Annu. Rev. Fluid Mech., 36, 281–314, 2004.
Yu, Y., Liu, H., and Lan, J.: The influence of explicit tidal forcing in a
climate ocean circulation model, Acta Meteorol. Sin., 35, 42–50,
https://doi.org/10.1007/s13131-016-0931-9, 2016.
Yu, Z., Liu, H., and Lin, P.: A Numerical Study of the Influence of Tidal
Mixing on Atlantic Meridional Overturning Circulation (AMOC) Simulation,
Chin. J. Atmos. Sci., 41, 1087–1100, 2017.
Zhang, H., Zhang, M., Jin, J., Fei, K., Ji, D., Wu, C., Zhu, J., He, J.,
Chai, Z., Xie, J., Dong, X., Zhang, D., Bi, X., Cao, H., Chen, H., Chen, K.,
Chen, X., Gao, X., Hao, H., Jiang, J., Kong, X., Li, S., Li, Y., Lin, P.,
Lin, Z., Liu, H., Liu, X., Shi, Y., Song, M., Wang, H., Wang, T., Wang, X.,
Wang, Z., Wei, Y., Wu, B., Xie, Z., Xu, Y., Yu, Y., Yuan, L., Zeng, Q.,
Zeng, X., Zhao, S., Zhou, G., and Zhu, J.: Description and climate simulation
performance of CAS-ESM version 2, J. Adv. Model. Earth. Sy., 12,
e2020MS002210, https://doi.org/10.1029/2020MS002210, 2020.
Zhang, R. H. and Endoh, M.: A free surface general circulation model for
the tropical Pacific Ocean, J. Geophys. Res., 97, 11237–11255,
https://doi.org/10.1029/92JC00911, 1992.
Zhang, X. and Liang, X.: A numerical world ocean general circulation model,
Adv. Atmos. Sci., 6, 44–61, 1989.
Zhou, X. B., Zhang, Y. T., and Zeng, Q. C.: The interface wave of
thermocline excited by the principal tidal constituents in the Bohai Sea,
Acta Meteorol. Sin., 24, 20–29, 2002.
Short summary
In this paper, the inclusion of tides in a global model via the explicit calculation of the tide-generating force based on the positions of the sun and moon is proposed, rather than the traditional method of including about eight tidal constituents with empirical amplitudes and frequencies. The new scheme can better simulate the diurnal and spatial characteristics of the tidal potential of spring and neap tides as well as the spatial patterns and magnitudes of major tidal constituents.
In this paper, the inclusion of tides in a global model via the explicit calculation of the...