Articles | Volume 15, issue 9
https://doi.org/10.5194/gmd-15-3797-2022
https://doi.org/10.5194/gmd-15-3797-2022
Development and technical paper
 | 
10 May 2022
Development and technical paper |  | 10 May 2022

Development of a deep neural network for predicting 6 h average PM2.5 concentrations up to 2 subsequent days using various training data

Jeong-Beom Lee, Jae-Bum Lee, Youn-Seo Koo, Hee-Yong Kwon, Min-Hyeok Choi, Hyun-Ju Park, and Dae-Gyun Lee

Related authors

Characteristics and source apportionment of fine haze aerosol in Beijing during the winter of 2013
Xiaona Shang, Kai Zhang, Fan Meng, Shihao Wang, Meehye Lee, Inseon Suh, Daigon Kim, Kwonho Jeon, Hyunju Park, Xuezhong Wang, and Yuxi Zhao
Atmos. Chem. Phys., 18, 2573–2584, https://doi.org/10.5194/acp-18-2573-2018,https://doi.org/10.5194/acp-18-2573-2018, 2018
Short summary

Related subject area

Atmospheric sciences
Exploring the footprint representation of microwave radiance observations in an Arctic limited-area data assimilation system
Máté Mile, Stephanie Guedj, and Roger Randriamampianina
Geosci. Model Dev., 17, 6571–6587, https://doi.org/10.5194/gmd-17-6571-2024,https://doi.org/10.5194/gmd-17-6571-2024, 2024
Short summary
Analysis of model error in forecast errors of extended atmospheric Lorenz 05 systems and the ECMWF system
Hynek Bednář and Holger Kantz
Geosci. Model Dev., 17, 6489–6511, https://doi.org/10.5194/gmd-17-6489-2024,https://doi.org/10.5194/gmd-17-6489-2024, 2024
Short summary
Description and validation of Vehicular Emissions from Road Traffic (VERT) 1.0, an R-based framework for estimating road transport emissions from traffic flows
Giorgio Veratti, Alessandro Bigi, Sergio Teggi, and Grazia Ghermandi
Geosci. Model Dev., 17, 6465–6487, https://doi.org/10.5194/gmd-17-6465-2024,https://doi.org/10.5194/gmd-17-6465-2024, 2024
Short summary
AeroMix v1.0.1: a Python package for modeling aerosol optical properties and mixing states
Sam P. Raj, Puna Ram Sinha, Rohit Srivastava, Srinivas Bikkina, and Damu Bala Subrahamanyam
Geosci. Model Dev., 17, 6379–6399, https://doi.org/10.5194/gmd-17-6379-2024,https://doi.org/10.5194/gmd-17-6379-2024, 2024
Short summary
Impact of ITCZ width on global climate: ITCZ-MIP
Angeline G. Pendergrass, Michael P. Byrne, Oliver Watt-Meyer, Penelope Maher, and Mark J. Webb
Geosci. Model Dev., 17, 6365–6378, https://doi.org/10.5194/gmd-17-6365-2024,https://doi.org/10.5194/gmd-17-6365-2024, 2024
Short summary

Cited articles

Bartnicki, J.: Computing source-receptor matrices with the EMEP Eulerian acid deposition model, Norwegian Meteorological Institute, Jerzy Bartnicki, 5, 99.3, ISSN 0332-9879, 1999. 
Berge, E., Huang, H. C., Chang, J., and Liu, T. H.: A study of the importance of initial conditions for photochemical oxidant modeling, J. Geophys. Res-Atmos., 106, 1347–1363, https://doi.org/10.1029/2000jd900227, 2001. 
Biancofiore, F., Busilacchio, M., Verdecchia, M., Tomassetti, B., Aruffo, E., Bianco, S., Tommaso, S. D., Colangeli, C., Rosatelli, G., and Carlo, P. D.: Recursive neural network model for analysis forecast of PM10 and PM2.5, Atmos. Pollut. Res., 8, 652–659, https://doi.org/10.1016/j.apr.2016.12.014, 2017. 
Binkowski, F. S., and Roselle, S. J.: Models-3 Community Multiscale Air Quality (CMAQ) model aerosol component 1, Model description, J. Geophys. Res.-Atmos., 108, 4183, https://doi.org/10.1029/2001jd001409, 2003. 
Bridle, J. S.: Training stochastic model recognition algorithms as networks can lead to maximum mutual information estimation of parameters, in: Proceedings of the 2nd International Conference on Neural Information Processing Systems, Neural PS 1989, 2, 211–217, https://proceedings.neurips.cc/paper/1989/file/0336dcbab05b9d5ad24f4333c7658a0e-Paper.pdf (last access: 7 July 2021), 1989. 
Download
Short summary
The predication of PM2.5 has been carried out using a numerical air quality model in South Korea. Despite recent progress of numerical air quality models, accurate prediction of PM2.5 is still challenging. In this study, we developed a data-based model using a deep neural network (DNN) to overcome the limitations of numerical air quality models. The results showed that the DNN model outperformed the CMAQ when it was trained by using observation and forecasting data from the numerical models.