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Abstract. Despite recent progress of numerical air quality
models, accurate prediction of fine particulate matter (PM2.5)
is still challenging because of uncertainties in physical and
chemical parameterizations, meteorological data, and emis-
sion inventory databases. Recent advances in artificial neu-
ral networks can be used to overcome limitations in numer-
ical air quality models. In this study, a deep neural network
(DNN) model was developed for a 3 d forecasting of 6 h av-
erage PM2.5 concentrations: the day of prediction (D+ 0),
1 d after prediction (D+ 1), and 2 d after prediction (D+ 2).
The DNN model was evaluated against the currently oper-
ational Community Multiscale Air Quality (CMAQ) mod-
eling system in South Korea. Our study demonstrated that
the DNN model outperformed the CMAQ modeling results.
The DNN model provided better forecasting skills by reduc-
ing the root-mean-squared error (RMSE) by 4.1, 2.2, and
3.0 µg m−3 for the 3 consecutive days, respectively, com-
pared with the CMAQ. Also, the false-alarm rate (FAR) de-
creased by 16.9 %p (D+ 0), 7.5 %p (D+ 1), and 7.6 %p
(D+ 2), indicating that the DNN model substantially miti-
gated the overprediction of the CMAQ in high PM2.5 con-
centrations. These results showed that the DNN model out-
performed the CMAQ model when it was simultaneously
trained by using the observation and forecasting data from
the numerical air quality models. Notably, the forecasting
data provided more benefits to the DNN modeling results as
the forecasting days increased. Our results suggest that our
data-driven machine learning approach can be a useful tool

for air quality forecasting when it is implemented with air
quality models together by reducing model-oriented system-
atic biases.

1 Introduction

Fine particulate matter (PM2.5) refers to tiny particles or
droplets in the atmosphere that exhibit an aerodynamic di-
ameter of less than 2.5 µm. Such matter is mainly produced
through secondary chemical reactions following the emission
of precursors, such as sulfur oxides (SOX), nitrogen oxides
(NOX), and ammonia (NH3), into the atmosphere (Kim et
al., 2017). Studies reveal that the PM2.5 generated in the at-
mosphere is introduced into the human body through res-
piration and increases the incidence of cardiovascular and
respiratory diseases as well as premature mortality (Pope et
al., 2019; Crouse et al., 2015). To reduce the negative ef-
fects on health caused by PM2.5, the National Institute of
Environmental Research (NIER) under the Ministry of Envi-
ronment of Korea has been performing daily average PM2.5
forecasts for 19 regions since 2016. The forecasts rely on the
judgment of the forecaster based on the Community Mul-
tiscale Air Quality (CMAQ) prediction results and obser-
vation data. The forecasts are announced four times daily
(at 05:00, 11:00, 17:00, and 23:00 LST), and the predicted
daily average PM2.5 concentrations are represented via four
different air quality index (AQI) categories in South Korea:
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good (PM2.5 ≤ 15 µg m−3), moderate (16 µg m−3
≤ PM2.5 ≤

35 µg m−3), bad (36 µg m−3
≤ PM2.5 ≤ 75 µg m−3), and very

bad (76 µg m−3
≤ PM2.5). When the forecasts were based

on the CMAQ model, the accuracy (ACC) of the daily fore-
cast for the following day (D+ 1) in Seoul, South Korea,
over the 3-year period from 2018 to 2020 was 64 %, and
the prediction accuracy for the high-concentration categories
(“bad” and “very bad”) was 69 %. Furthermore, a high false-
alarm rate (FAR) of 49 % was obtained. Studies have re-
vealed that the prediction performance of the atmospheric
chemical transport model (CTM) is limited by the uncertain-
ties in the meteorological field data used as model input (Sea-
man, 2000; Doraiswamy et al., 2010; Hu et al., 2010; Jo et
al., 2017; Wang et al., 2021), and in emissions (Hanna et al.,
2001; Kim and Jang, 2014; Hsu et al., 2019). Moreover, the
physical and chemical mechanisms in the model cannot fully
reflect real-world phenomena (Berge et al., 2001; Liu et al.,
2001; Mallet and Sportisse, 2006; Tang et al., 2009).

To overcome the uncertainty and limitations of the atmo-
spheric CTM, a model for predicting air quality using arti-
ficial neural networks (ANNs) based on statistical data has
recently been developed (Cabaneros et al., 2019; Ditsuhi et
al., 2020). Studies using ANNs, such as the recurrent neural
network (RNN) algorithm which is advantageous for time-
series data training (Biancofiore et al., 2017; Kim et al., 2019;
Zhang et al., 2020; Huang et al., 2021) and the deep neural
network (DNN) algorithm which is advantageous for extract-
ing complex and non-linear features, are underway (Schmid-
huber et al., 2015; LeCun et al., 2015; Lightstone et al., 2017;
Cho et al., 2019; Eslami et al., 2020; Chen et al., 2021; Light-
stone et al., 2021). Kim et al. (2019) developed an RNN
model to predict PM2.5 concentrations after 24 h periods at
two observation points in Seoul. The evaluation of the pre-
diction performance of the RNN model for the May to June
2016 period yielded an index of agreement (IOA) range be-
tween 0.62 and 0.76, which constituted a 0.12 to 0.25 IOA
improvement compared with the CMAQ model. Lightstone
et al. (2021) developed a DNN model that predicted 24 h
PM2.5 concentrations based on aerosol optical depth (AOD)
data and Kriging PM2.5. The DNN-model predictions for
the January to December 2016 period yielded a root-mean-
squared error (RMSE) of 2.67 µg m−3, thereby demonstrat-
ing a prediction-performance improvement of 2.1 µg m−3

compared with the CMAQ model.
It is to be noted that previous studies concerning the pre-

diction of PM2.5 concentrations using ANNs primarily de-
veloped and evaluated models for predicting the daily aver-
age concentration within a 24 h period based solely on obser-
vation data. In this study, we developed a DNN model that
predicts PM2.5 concentrations at 6 h intervals over 3 d – from
the day of prediction (D+ 0) to 2 d after the day of predic-
tion (D+ 2) – by extending the prediction period compared
with that of the previous studies. Furthermore, the daily and
6 h average prediction performance was comparatively eval-
uated against that of the CMAQ model currently operational

for such predictions. In addition, the effect of the training
data on the daily prediction performance of the DNN model
was quantitatively analyzed via three experiments that used
different configurations of the training data in terms of pre-
dictive data from numerical models as well as observation
data.

2 DNN model implementation and acquisition of
training data

Figure 1 outlines the process for the development of the DNN
model used herein, which consists of three broad stages: pre-
processing, model training, and post-processing. In the pre-
processing stage, the data necessary for the development of
the DNN model are collected, and the collected data are pro-
cessed into a suitable format for use as the training and val-
idation data. In the model training stage, the backpropaga-
tion algorithm and parameters are applied to implement the
DNN model, and the most optimal “weight file” is saved once
training and validation are completed. In the post-processing
stage, prediction is performed using the saved “weight file”.
Section 2.1 provides a detailed description of the data used
for training, and Sect. 2.2 describes the development of the
DNN model.

2.1 Training data acquisition

For training of the DNN model, validating the trained DNN
model, and making predictions using the developed DNN
model, we used observation data, such as ground-based air
quality and weather data, as well as forecasting data, such as
ground-based and altitude-specific weather data and ground-
based PM2.5, generated via the WRF and CMAQ models in
Seoul, South Korea. In addition, the membership function
was used to reflect temporal information. Data pertaining to a
3-year period (2016–2018) were used for training the model,
and data pertaining to 2019 were used for validation. Data
pertaining to a 3-month period (January to March 2021) were
used to evaluate the prediction performance.

Figure 2 illustrates the spatial distribution of the weather
and air quality observation points in Seoul, South Korea,
where the observation data used for training the model had
been measured, and Table 1 presents a list of the weather and
air quality observation data variables used for the training.
Six variables of air quality (SO2, NO2, O3, CO, PM10, and
PM2.5), measured with the measuring equipment provided by
Air Korea on their website, were used to obtain observation
data. SO2 and NO2 are the precursors that directly affect the
changes in the PM2.5 concentration. O3 is generated by NOx
and volatile organic compounds (VOCs) and causes direct
and indirect effects on the changes in the PM2.5 concentra-
tion (Wu et al., 2017; Geng et al., 2019). CO affects the gen-
eration of O3 in the oxidation process via the OH reaction,
which, in turn, has an indirect effect on the changes in the
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Figure 1. Flowchart of the PM2.5 forecasting system based on the DNN algorithm.

PM2.5 concentration (Kim et al., 2016). Furthermore, partic-
ulate matter with particles exhibiting a less than 10 µm diam-
eter (PM10) is highly correlated with PM2.5 during periods
of high concentration and exhibits similar trends in seasonal
concentrations (Mohammed et al., 2017; Gao and Ji, 2018).

Real-time data from the Automated Surface Observing
System (ASOS) were used as the weather data, through the
uniform resource locator–application programming interface
(URL–API) operated by the Korea Meteorological Admin-
istration. The eight variables for the surface-weather data
included: vertical and horizontal wind speed, precipitation,
relative humidity, dew point, atmospheric pressure, solar ra-
diation, and temperature. Wind speeds and precipitation are
known to be negatively correlated with the PM2.5 concentra-
tion, whereas an increase in the relative humidity increases
the PM2.5 concentration. Wind speed is generally associated
with turbulence, and an increase in the intensity of the turbu-
lence facilitates the mixing of air, inducing a decrease in the
PM2.5 concentration (Yoo et al., 2020). Precipitation affects
the PM2.5 concentration owing to the washing effect therein.
A lower than 80 % increase in the relative humidity affects
the increase in the PM2.5 concentration, owing to increased
condensation and nucleation (Yoo et al., 2020; Kim et al.,
2020). The dew point is associated with relative humidity;
therefore, it has an indirect effect on the PM2.5 concentra-
tion. In addition, atmospheric pressure, solar radiation, and
temperature affect the occurrence of high PM2.5 concentra-
tions and seasonal changes in PM2.5. In terms of atmospheric
pressure, the atmospheric stagnation caused by high pressure
influences the occurrence of high PM2.5 concentrations (Park
and Yu, 2018). Solar radiation appears to be negatively corre-
lated with the PM2.5 concentration in winter (Turnock et al.,
2015), and temperature is reported to affect the changes in the
PM2.5 concentration owing to an increased sulfate concentra-
tion and decreased nitrate concentration at high temperatures
(Dawson et al., 2007; Jacob and Winner, 2009).

Figure 3 depicts the nested-grid modeling domains used to
generate the forecast data in terms of surface-level and alti-
tudinal weather and air quality that is used for training the
DNN model, with northeastern Asia represented as Domain
1 (27 km) and the Korean Peninsula represented as Domain
2 (9 km). The simulation results of the Weather Research
and Forecasting (WRF, v3.3) model, a regional-scale weather
model developed by the National Center for Environmental
Prediction (NCEP) under the National Oceanic and Atmo-
spheric Administration (NOAA) in the United States, were
used as the weather forecast data. The simulation results
obtained via the CMAQ system (v4.7.1) developed by the
U.S. Environmental Protection Agency were used as the
PM2.5 prediction data. The unified model (UM) global fore-
cast data provided by the Korea Meteorological Administra-
tion were used as the initial and boundary conditions of the
WRF model for the weather simulation. In the WRF model
simulation, the Yonsei University Scheme (YSU) (Hong et
al., 2006) was used for the planetary boundary layer (PBL)
physics, the WRF single-moment class-3 (WSM3) scheme
(Hong et al., 1998, 2004) was used for cloud microphysics,
and the Kain-Fritsch scheme (Kain, 2004) was used for
cloud parameterization. The meteorological field generated
was converted into a form of data input to the numerical
air quality model using the Meteorology–Chemistry Inter-
face Processor (MCIP, v3.6). The Sparse Matrix Operator
Kernel Emission (SMOKE, v3.1) model was applied to the
emissions inventory of northeastern Asia (excluding South
Korea). The Model Inter-Comparison Study for Asia, Phase
2010 (MICS-Asia; Itahashi et al., 2020) and the Clean Air
Policy Support System, 2010 (CAPSS) were applied to the
emissions inventory of South Korea. The Model of Emissions
of Gases and Aerosols from Nature (MEGAN, v2.0.4) was
used to represent natural emissions. In case of the CMAQ
model for PM2.5 concentration simulation, the Statewide Air
Pollution Research Center, version 99 (SAPRC-99; Carter
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Table 1. Training variables in the PM2.5 prediction system using a DNN based on surface-weather observations. Air quality variables were
obtained from 41 air quality measurement equipment in Seoul. Surface weather variables were obtained from ASOS in Seoul. Observation
data were collected every hour.

Observation variable Description Unit

O_SO2 Sulfur dioxide ppm
O_NO2 Nitrogen dioxide ppm
O_O3 Ozone ppm
O_CO Carbon monoxide ppm
O_PM10 Particulate matter (aerodynamic diameters ≤ 10 µm) µg m−3

O_PM2.5 Particulate matter (aerodynamic diameters ≤ 2.5 µm) µg m−3

O_V Vertical wind velocity m s−1

O_U Horizontal wind velocity m s−1

O_RN_ACC Accumulative precipitation Mm
O_RH Relative humidity %
O_Td Dew point temperature degree
O_Pa Pressure hPa
O_Radiation Solar radiation 0.01 MJ h−1 m−3

O_Ta Air temperature degree

Figure 2. Spatial distributions of weather (N) and air quality (•) measurement sites in Seoul.

et al., 1999) mechanism was used for the chemical mecha-
nism, the fifth-generation CMAQ aerosol module (AERO5;
Binkowski et al., 2003) was used for the aerosol mechanism,
and the Yamartino scheme for mass-conserving advection
(YAMO scheme) (Yamartino, 1993) was used for the advec-
tion process. We directly generated the training data using
the WRF and CMAQ.

Table 2 presents a list of the weather and air quality predic-
tion model data variables used for training the PM2.5 predic-
tion system. The air quality forecast variable of the CMAQ
model was PM2.5. Sixteen meteorological forecast variables
were created by the WRF model. PM2.5 and its precursors

are emitted from the ground, and they move at an altitude of
1.5 km or less. Therefore, lower altitude data variables were
mainly used. The meteorological forecast variables on the
ground included vertical and horizontal wind speed, precipi-
tation, relative humidity, atmospheric pressure, temperature,
and mixing height. In addition, the predicted meteorological
variables for each altitude included the geopotential height as
well as the vertical and horizontal wind speed at 925 hPa. The
geopotential height, vertical and horizontal wind speed, rel-
ative humidity, potential temperature at 850 hPa, and the dif-
ference in the potential temperature between 850 and 925 hPa
were also included. An increase or decrease in mixing height,
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Figure 3. CMAQ modeling domains applied to generate the DNN model training data: (a) Northeastern Asian area with 27 km horizontal
grid resolution and (b) Korean Peninsula area with 9 km horizontal grid resolution.

which depends on thermal and mechanical turbulence, af-
fects the spread of air pollutants. As the mixing height in-
creases, the diffusion intensity increases and the concentra-
tion of air pollutants, such as PM2.5, decreases. The potential
temperature is an indicator of the vertical stability of the at-
mosphere, and the vertical stability can be used to identify
the formation of the inversion layer, which has a significant
effect on the PM2.5 concentration (Wang et al., 2014). Fi-
nally, altitude data are associated with the atmospheric sta-
bility and long-term transport of air pollutants (Lee et al.,
2018).

To train the DNN model to understand the change patterns
in the PM2.5 concentration over time and consider the prop-
agation of temporal change, time data were generated using
the membership function presented by Yu et al. (2019). The
concept of the membership function is derived from the fuzzy
theory, and it defines the probability that a single element be-
longs to a set. In this study, the probability that the date (el-
ement) belongs to 12 months (set) was calculated using the
membership function. PM2.5 concentration in Seoul is high
in January, February, March, and December, and low from
August to October. PM2.5 concentration has a characteristic
that changes gradually from month to month. The member-
ship function was used to reflect these monthly change char-
acteristics. The temporal data using the membership function
contained 12 variables, representing the months from Jan-
uary to December. The sum of the variables was set to 1.
Of the 12 variables, 10 had a value of 0, and 2 had values
between 0 and 1. The 2 non-zero variables were determined
based on the day of generation of the temporal data and were
defined as “month” and “adjacent month”. If the temporal
data were generated between the 1st and the 14th day of a
“month”, the “adjacent month” referred to the month pre-
ceding this “month”. If the temporal data were generated be-
tween the 16th to the 31st day of a “month”, the “adjacent
month” referred to the month succeeding this “month”. The

“adjacent month” was not considered when the temporal data
were generated on the 15th day of the “month”. The values of
the “adjacent month” and “month” variables were calculated
through Eqs. (1)–(4). For example, when generating the tem-
poral data for 10 January, the “month” would be January, and
the “adjacent month” would be December. Based on the cal-
culations in Eq. (1), the “month” variable value would equal
0.82 and the “adjacent month” variable value would equal
0.18, and the rest of the variable values from February to
November would equal 0:

if (d < 15) then “Month value”=
1

28
× d +

13
28
; (1)

if (d > 15) then “Month value”=−
1

30
× d +

3
2
; (2)

if (d = 15) then “Month value”= 1; (3)
and “Adjacent Month value”= 1− “Month value”. (4)

2.2 Implementation of the DNN model

To develop DNN models over 6 h intervals, time steps (T -
steps) were constructed for the target period of 3 d (D+ 0 to
D+2) to perform predictions as shown in Table 3. T12_D0 to
T24_D0 are included in the day of prediction (D+ 0), T06_D1
to T24_D1 in the 1 d after of prediction (D+1), and T06_D2 to
T24_D2 in the 2 d after of prediction (D+2). Weather and air
quality prediction data used in each T -step training data aver-
ages 1 h interval data into 6 h interval data; and the 9 km grids
corresponding to Seoul were averaged spatially. The obser-
vation data used in each T -step training data averages the
preceding 6 h period at the beginning of the forecast (01:00
to 06:00 on D+ 0).

The feature scaling, including standardization and normal-
ization, was implemented to transform data into uniform for-
mats, reduce data bias of training data, and ensure equal
training for the DNN model at each T -step. The normal dis-
tribution of the variables in the training data was standardized
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Table 2. Training variables in the PM2.5 prediction system using a DNN based on the WRF and CMAQ models. WRF and CMAQ model
results were obtained from 9 km horizontal grid resolution. These values were collected on an hourly interval.

Model Forecast variable Description Unit

CMAQ F_PM2.5 Particulate matter (aerodynamic diameter ≤ 2.5 µm) µg m−3

WRF

F_V Vertical wind velocity at surface m s−1

F_U Horizontal wind velocity at surface m s−1

F_RN_ACC Accumulative precipitation Mm
F_RH Relative humidity at surface %
F_Pa Pressure at surface Pa
F_Ta Air temperature at surface K
F_MH Mixing height M
F_925hpa_gpm Position altitude at 925 hPa M
F_925hpa_V Vertical wind velocity at 925 hPa m s−1

F_925hpa_U Horizontal wind velocity at 925 hPa m s−1

F_850hpa_gpm Position altitude at 850 hPa M
F_850hpa_V Vertical wind velocity at 850 hPa m s−1

F_850hpa_U Horizontal wind velocity at 850 hPa m s−1

F_850hpa_RH Relative humidity at 850 hPa %
F_850hpa_Ta Potential temperature at 850 hPa 2

F_Temp_ 850–925 hpa Potential temperature difference between 850 and 925 hPa 2

Table 3. Configuration of the training data for each T -step to implement the DNN model for the 6 h average prediction.

Day T -step Time Configuration of the training data

D+ 0
T12_D0 07:00 to 12:00
T18_D0 13:00 to 18:00
T24_D0 19:00 to 00:00

D+ 1

T06_D1 01:00 to 06:00
T12_D1 07:00 to 12:00 01:00 to 06:00 observations data on D+ 0 at each T -step
T18_D1 13:00 to 18:00 + Forecast data of Tx_Dy (x: 06, 12, 18, 24; y: 0–2) from CMAQ and WRF
T24_D1 19:00 to 00:00

D+ 2

T06_D2 01:00 to 06:00
T12_D2 07:00 to 12:00
T18_D2 13:00 to 18:00
T24_D2 19:00 to 00:00

through standardization. The variables in the training data
were standardized to be distributed in the range of a mean of
0 and standard deviation of 1. The standardized variables of
the training data were subsequently normalized to the mini-
mum (min(x)) and maximum (max(x)) values so that the val-
ues would be bounded in an equal range between 0 and 1.
Both normalization and standardization were applied to train
the characteristics of training variables equally to the DNN
model. Standardization and normalization were performed
using the Z-score (Eq. 5) and Min–max scaler (Eq. 6), re-
spectively:

Z score=
x−µ

σ
; (5)

Min–max scaler=
x−min(x)

max(x)−min(x)
. (6)

Figure 4 depicts the training process of the DNN model. Af-
ter feature scaling, the training data is trained through the
backpropagation algorithm in the five-stacked-layer DNN
model. The statistical and AQI performance results of the
DNN model based on the layer are presented in Tables S1
and S2, respectively, in the Supplement. The results of the
four-stacked-layer and five-stacked-layer models show that
the performance is similar. However, compared with the four-
stacked-layer model, the RMSE of the five-stacked-layer de-
creases by approximately 0.1–1 µg m−3 at D+ 0 to D+ 2,
and the ACC of the five-stacked-layer model increases by ap-
proximately 1 %p to 6 %p at D+ 0 to D+ 2. Therefore, the
five-stacked-layer model shows the better performance. The
six-stacked-layer and eight-stacked-layer models contain er-
rors that converge without decreasing during the training pro-
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cess of the model (vanishing gradient problem). The cause
of this problem is the activate function. The backpropaga-
tion algorithm consists of the feedforward and backpropaga-
tion processes. Feedforward is the process of calculating the
difference (cost) between the output value (hypothesis) and
target value (true value) in the output layer, after the calcula-
tion has proceeded from the input layer to subsequent layers
and finally reached the output layer. Backpropagation is the
process of creating new node values for the input layer by up-
dating the weight using the cost calculated in the feedforward
process.

In the feedforward process, the node (i) value (x(l)i ) of the
previous layer (l) is converted to the hypothesized (x(l+1)

i ),
and the node (m) value of the subsequent layer (l+1) is con-
verted through the weight (wlm,i), deviation (bm), and sig-

moid function (∅(Z(l+1)
m )), which is an activation function.

Equations (7) and (8) outline the calculation process:

Z(l+1)
m =

n∑
i=1

(
x
(l)
i ×w

(l)
m,i + bm

)
; (7)

x(l+1)
m =∅

(
Z(l+1)
m

)
=

1

1+ e(−Z
(l+1)
m )

. (8)

The mean squared error (MSE), a cost function, is applied
to the difference (cost) between the hypothesized and target
value calculated during the forward propagation process, as
denoted by Eq. (9) (Hinton and Salakhutdinov, 2006):

Cost=
1
n

(
x

Outlayer
m −Target

)2

=
1
n
(Hypothesis−Target)2. (9)

In the backpropagation process, the weights calculated in
the feedforward process are updated via the gradient descent
method. For weight updating, the corresponding magnitude
can be adjusted by multiplying it with a scalar value known
as the learning rate (η) (Eq. 10) (Bridle, 1989):

W
(l)
m,i =W

(l)
m,i − η

∂Cost

∂W
(l)
m,i

. (10)

Therefore, the backpropagation algorithm is configured as
expressed in Eqs. (5)–(10), and the DNN model learns the
features of the training data by repeating the backpropaga-
tion algorithm as many times as the number of epochs.

In this study, early-stopping was applied to avoid the over-
fitting that occurred in the form of a decrease in the cost
of the training data while the cost of the validation data in-
creased with the number of epochs. The early-stopping con-
dition is applicable when the cost value of the validation data
at Epochn is lower than the cost of the validation data from
Epochn+1 to EpochMax. When the early-stopping condition
is satisfied, the user-defined variable “Count” increases by 1

if the “Count” is zero, and if “Count” is non-zero, the learn-
ing rate decreases by 10−1×Count, so that learning is per-
formed with an updated learning rate from Epochn+1 on-
wards. When the cost values of the validation data from
Epochn+1 to EpochMax exceed the cost values of Epochn in
the previous “Count”, the learning of the model is completed.

3 Experimental design and indicators for prediction
performance evaluation

Figure 5 displays the average monthly PM2.5 concentrations
observed in Seoul from 2016 to 2019. The highest aver-
age monthly PM2.5 concentration between 2017 and 2019
was observed in January, March, and December, i.e., during
the winter season. The average monthly PM2.5 concentration
ranged between 28.8 and 37.8 µg m−3 in winter and 16.6 and
26.6 µg m−3 in summer over the 4-year period (2016–2019).
This indicated that the concentration in winter exceeded that
in summer by approximately 12 µg m−3. In this study, the
prediction performance of the DNN model was evaluated
during winter months (1 January to 31 March 2021) that ex-
hibited high PM2.5 concentrations.

Three experiments (DNN-OBS, DNN-OPM, and DNN-
ALL) were performed to examine the effects of the training-
data configuration on the prediction performance of the DNN
model. The DNN-OBS model used the observation data as
the sole training data, the DNN-OPM model used both ob-
servation and weather forecast data for Tx_D y (x: 06, 12, 18,
24; y: 0–2) as the training data, and the DNN-ALL model
used the observation data, weather forecast data, and PM2.5
concentration prediction data Tx_D y (x: 06, 12, 18, 24; y: 0–
2) as the training data. The observation variables presented
in Table 1 in Sect. 2.1 were used as common variables in the
three experiments. Among the predictors shown in Table 2
in Sect. 2.1, the variables produced in the WRF model were
used in the DNN-OPM and DNN-ALL models, whereas the
variables produced in the CMAQ model were used only in
the DNN-ALL model.

The prediction performances of the three DNN-model ex-
periments were evaluated based on statistics and the AQI.
The MSE, RMSE, IOA, and correlation coefficient (R) were
used as the indicators in statistical evaluation. The MSE and
RMSE, which represented the loss functions of the DNN
model, were used to determine the quantitative difference
between the model predictions and observed values. The
IOA indicator determined the level of agreement between the
model predictions and observed values based on the ratio of
the MSE to the potential error. The R indicator determined
the correlation between the model predictions and observed
values. Equations (11)–(14) were used to calculate these five
indicators:

MSE
(

µgm−3
)2
=

1
N

N∑
1
(Model−Obs)2; (11)
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Figure 4. Structure of DNN model training process.

Figure 5. Time series of the monthly average PM2.5 concentrations from 2016 to 2019.

RMSE
(

µgm−3
)
=

√√√√ 1
N

N∑
1
(Model−Obs)2; (12)

IOA= 1−

N∑
1
(Model−Obs)2

N∑
1

(∣∣Model−Obs
∣∣+ ∣∣Obs−Obs

∣∣)2 ; (13)

R =

∑(
Model−Model

)
×
(
Obs−Obs

)√∑(
Model−Model

)2
×
∑(

Obs−Obs
)2 . (14)

The AQI for PM2.5 was classified into four categories based
on the PM2.5-concentration standards used in South Korea.

PM2.5 concentrations from 0 to 15 µg m−3 were classified
as “good”; 16 to 35 µg m−3, “moderate”; 36 to 75 µg m−3,
“bad”; and 76 µg m−3 or higher, “very bad”. The ACC deter-
mined the categorical prediction accuracy of the model per-
taining to the four AQI categories, and the probability of de-
tection (POD) determined the prediction performance of the
model for high PM2.5 concentrations (“bad” and “very bad”
AQI categories). The FAR determined the rate of incorrect
predictions when the observations tended to be “moderate”
or “good”, but the predictions pointed to high concentrations
(“bad” or “very bad” AQI categories). A low FAR value in-
dicated better performance. The F1-score indicator, which is
the harmonic mean of the POD and FAR, reflected the POD
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Table 4. Intervals corresponding to the four categories for calculat-
ing ACC, POD, FAR, and recall and precision: “good” (PM2.5 ≤
15 µg m−3); “moderate” (16 µg m−3

≤ PM2.5 ≤ 35 µg m−3); “bad”
(36 µg m−3

≤ PM2.5 ≤ 75 µg m−3); and “very bad” (76 µg m−3
≤

PM2.5).

Level
Model forecast

Good Moderate Bad Very bad

Observation

Good a1 b1 c1 d1
Moderate a2 b2 c2 d2
Bad a3 b3 c3 d3
Very bad a4 b4 c4 d4

as well as FAR evaluations. Additionally, the recall and pre-
cision were evaluated for four categories. The recall is an
indicator of how well the model reproduced the categories
that appear in observation. The precision is the accuracy that
matches the category of observation among the prediction
results of the model for each category. Equations (S1)–(S8)
in the Supplement were used for calculating the recall and
precision. Equations (15)–(18) were used for calculating the
AQI prediction-evaluation indicators:

ACC(%)=
(a1+ b2+ c3+ d4)

N
× 100; (15)

POD(%)

=
(c3+ c4+ d3+ d4)

(a3+ a4+ b3+ b4+ c3+ c4+ d3+ d4)
× 100; (16)

FAR(%)

=
(c1+ c2+ d1+ d2)

(c1+ c2+ c3+ c4+ d1+ d2+ d3+ d4)
× 100; (17)

F1score= 2×
POD× (100−FAR)
POD+ (100−FAR)

. (18)

Table 4 lists the intervals corresponding to the four categories
for calculating ACC, POD, FAR, and recall and precision.

The effect of the training data on the prediction perfor-
mance of the DNN model was quantitatively analyzed using
the RMSE indicator. The overall effect of the forecast data
on model predictions was calculated based on the RMSE dif-
ference between the DNN-ALL and DNN-OBS models. The
effect of the predicted weather data on model predictions was
calculated based on the RMSE difference between the DNN-
OPM and DNN-OBS models (Eq. 19):

Contribution of predicted weather (%)

=

∣∣∣∣ (DNN−OPMD+i)− (DNN−OBSD+i)
(DNN−ALLD+i)− (DNN−OBSD+i)

∣∣∣∣
× 100(i = 0–2) . (19)

The effect of the predicted PM2.5 data on model predictions
was calculated based on the RMSE difference between the

DNN-ALL and DNN-OBS models (Eq. 20).

Contribution of predicted PM2.5 (%)

=

∣∣∣∣ (DNN−ALLD+i)− (DNN−OPMD+i)

(DNN−ALLD+i)− (DNN−OBSD+i)

∣∣∣∣
× 100 (i = 0–2). (20)

4 Evaluation of prediction performance

The evaluations based on statistics and AQI classifications
were conducted for each of the DNN-model experiments
(DNN-OBS, DNN-OPM, and DNN-ALL), and the results
were compared with those of the CMAQ model currently op-
erational in South Korea. In Sect. 4.1, we examine the daily
prediction performance of the three DNN-model experiments
and CMAQ model using statistical indicators for the 3 d pe-
riod (D+0 toD+2), and quantitatively analyze the effect of
different training data combinations on the prediction perfor-
mance of the DNN model. A comparative evaluation with the
CMAQ model was conducted to assess whether the DNN-
ALL model was more comprehensive for 6 h average fore-
casting than the existing daily average forecasting model. In
Sect. 4.2, to assess the potential of DNN-ALL as a superior
forecasting model, the daily AQI predictions therein for the
3 d period (D+0 to D+2) were compared with those of the
CMAQ model.

4.1 Evaluation of daily prediction performance based
on the training data

Table S3 in the Supplement shows the statistical evaluation
results of three DNN-model experiments (DNN-OBS, DNN-
OPM, and DNN-ALL) and CMAQ model during the training
period from 2016 to 2018. InD+0 toD+2, the DNN-ALL
model performs the best in terms of all statistical indicators.
In addition, the values of all three experiments indicate a
decrease in the RMSE compared to the CMAQ model. Ta-
ble S4 in the Supplement presents the statistical evaluation
results of the three experiments and CMAQ models during
the validation period in 2019. The DNN-OBS model shows
similar performance for D+ 0 compared with the CMAQ
model but decreased performance owing to an increased
RMSE of D+ 1 and D+ 2 by 2.0 and 2.2 µg m−3, respec-
tively. The DNN-OPM model shows an increase in perfor-
mance owing to a decrease in the RMSE of D+0 and D+1
by 3.0 µg m−3 and 0.4 µg m−3, respectively, compared with
the CMAQ model, indicating that the performance is sim-
ilar. However, the RMSE of D+ 2 increased by 0.4 µg m−3

compared with the CMAQ model. For the DNN-ALL model,
the RMSE from D+ 0 to D+ 2 decreased by 4.6, 2.7, and
2.1 µg m−3, compared with the CMAQ model, which shows
an improved performance.

Table 5 summarizes the results of the statistical evalua-
tions of the prediction performances of the three DNN-model
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Table 5. Statistical summary of daily PM2.5 concentration pre-
diction performance of the CMAQ, DNN-OBS, DNN-OPM, and
DNN-ALL models.

Model Day MSE ((µg m−3)2) RMSE (µg m−3) R IOA

CMAQ
D+ 0 130.4 11.4 0.83 0.90
D+ 1 125.4 11.2 0.82 0.90
D+ 2 185.0 13.6 0.74 0.85

DNN-OBS
D+ 0 116.6 10.8 0.79 0.86
D+ 1 262.4 16.2 0.31 0.44
D+ 2 285.6 16.9 0.17 0.27

DNN-OPM
D+ 0 64.0 8.0 0.89 0.93
D+ 1 148.8 12.2 0.70 0.78
D+ 2 196.0 14.0 0.59 0.72

DNN-ALL
D+ 0 53.3 7.3 0.91 0.95
D+ 1 81.0 9.0 0.85 0.90
D+ 2 112.4 10.6 0.79 0.86

experiments and the CMAQ model in the test set (January
to March 2021). Figure 6 depicts the corresponding Taylor
diagrams, and Fig. 7 illustrates the corresponding time se-
ries. For D+ 0, the CMAQ model RMSE was 11.4 µg m−3

with a 0.90 IOA, and that of the DNN-OBS was 10.8 µg m−3

with a 0.86 IOA, thereby indicating a lower error and IOA
compared with those of the CMAQ model. The RMSEs of
the DNN-OPM and DNN-ALL were 8.0 and 7.3 µg m−3,
respectively, and their IOAs were 0.93 and 0.95, respec-
tively, indicating decreased errors and increased IOAs com-
pared with those of the CMAQ model. Based on the RMSE
and IOA values, the DNN-ALL exhibited the best predic-
tion performance. The Taylor diagram (Fig. 6a), which de-
picts the RMSE, R, and standard deviation indicators simul-
taneously, confirms that DNN-ALL demonstrated the best
prediction performance among the evaluated models. Fig-
ure 7a1 and a2 reveal that all three of the DNN-model experi-
ments exhibited improved overprediction performance com-
pared with the CMAQ model; however, the DNN-OBS ex-
hibited the highest underprediction of PM2.5 concentration
during the high-concentration period (11–14 February). The
domestic and foreign contributions to the high-concentration
period were analyzed using the CMAQ with the brute-force
method (CMAQ-BFM) model (Bartnicki, 1999; Nam et al.,
2019). The BFM revealed that the foreign contribution to
the PM2.5 concentration because of the long-term transport
of pollutants to the Seoul area was 68 % on 11 February,
54 % on 12 February, 66 % on 13 February, and 41 % on
14 February. This aspect of the high PM2.5 concentration
could not be characterized solely by using observation data
(data observed at each point) as the training data. This phe-
nomenon seemed to cause an increase in the concentration
on the day subsequent to the day a high concentration oc-
curred. The DNN-OBS RMSE obtained on excluding the
high-concentration period was 9.4 µg m−3, which was lower
than that of the CMAQ model (10.9 µg m−3) and 1.4 µg m−3

lower than that exhibited by the DNN-OBS model when
the high-concentration period was included. In contrast, the

RMSEs of the DNN-OPM and DNN-ALL were 7.3 and
7.0 µg m−3, respectively, the IOAs were 0.93 and 0.94, re-
spectively, and the R values were 0.89 for both models, when
the high-concentration period was excluded. No significant
difference in results was observed even on inclusion of the
high-concentration period (11–14 February). These results
suggest that when the observation and prediction data are
used as the training data, the DNN model reflects the char-
acteristics of the high-concentration phenomenon caused by
long-distance transport. Excluding the high PM2.5 concentra-
tion caused by long-term transport, the DNN model demon-
strated a marginally improved prediction performance com-
pared with the CMAQ model on D+ 0, even when using
only the observation data as the training data. In addition,
the use of the prediction data as the training data facilitated
an improved prediction performance concerning the long-
term-transport-induced phenomenon compared with that of
the CMAQ model.

ForD+1 andD+2, the CMAQ model RMSEs were 11.2
and 13.6 µg m−3, respectively, and the IOAs were 0.90 and
0.85, respectively. In contrast, the DNN-OBS RMSEs for
D+ 1 and D+ 2 were 16.2 and 16.9 µg m−3, respectively,
and the IOAs were 0.44 and 0.27, respectively. Thus, the
DNN-OBS model resulted in larger errors and smaller IOAs
compared with the CMAQ model. The errors increased and
the IOAs decreased for the DNN-OPM, when compared with
those of the CMAQ model. However, the DNN-OPM model
RMSEs decreased by 4.0 and 2.9 µg m−3, and the IOAs in-
creased by 0.34 and 0.45 compared with those of the DNN-
OBS model, for D+ 1 and D+ 2, respectively. The DNN-
ALL model performed the best, with RMSEs of 9.0 and
10.6 µg m−3 and IOAs of 0.90 and 0.86 forD+1 andD+2,
respectively, exhibiting smaller errors and larger IOAs com-
pared with those of the CMAQ model. The standard devi-
ations of the DNN-ALL model were 13.5 and 12.7 µg m−3

for D+ 1 and D+ 2, respectively. For D+ 1 and D+ 2,
DNN-ALL outperformed the remaining DNN models and
the CMAQ model (Fig. 6b and c). This was concluded based
on the superior RMSE and R values exhibited therein. More-
over, as shown in Fig. 7b1, b2, c1, and c2, the DNN-ALL
model exhibited lower overprediction compared with that by
the CMAQ model. However, the DNN-OBS and DNN-OPM
models overpredicted low PM2.5 concentrations and under-
predicted high PM2.5 concentrations, when compared with
the observation data. The DNN-OBS model did not predict
the change in the observed PM2.5 concentration after D+ 0,
indicating a decrease in IOA and a limited range of predicted
PM2.5 concentrations with respect to the observations. Al-
though the DNN-OPM model outperformed DNN-OBS, it
was inferior to DNN-ALL because the DNN-OPM training
data lacked sufficient features for predicting the change in the
observed PM2.5 concentration. The DNN-ALL model out-
performed the CMAQ model for D+ 1 and D+ 2, while all
three DNN-based models outperformed the CMAQ model
for D+ 0. For D+ 1 and D+ 2, the RMSE of the DNN-

Geosci. Model Dev., 15, 3797–3813, 2022 https://doi.org/10.5194/gmd-15-3797-2022



J.-B. Lee et al.: Development of a deep neural network 3807

ALL model decreased by 7.2 and 6.3 µg m−3, respectively,
compared with DNN-OBS. The effects of weather forecast
data were 56 % (4 µg m−3) and 46 % (2.9 µg m−3), respec-
tively, and those of predicted PM2.5 concentration were 44 %
(3.2 µg m−3) and 54 % (3.4 µg m−3), respectively, when used
as training data. These results suggest that as the prediction
period lengthens, the weather forecast and PM2.5 concentra-
tion prediction data are more important than current observa-
tion data for improving the model prediction performance.

Also, the performance of the Random Forest (RF) model,
one of the statistical models, was evaluated and compared
with DNN-ALL. Table S5 in the Supplement shows the sta-
tistical evaluation of the Random Forest (RF) model, and the
DNN-ALL model with the best results in the statistical evalu-
ation of the three experiments and CMAQ model. Compared
with the RF model, the RMSE value of the DNN-ALL model
decreased by 0.6–1.9 µg m−3, and the R and IOA values in-
creased slightly. Although the volume of training data in this
paper was not sufficiently huge to be applied to DNN model,
the DNN model outperformed the RF model. In the future,
the DNN model can also reflect the expansion of training
data and consider the scalability of the model that can pre-
dict future data growth over time and segmentation with a
1 h interval. Therefore, the performance of the DNN model
is expected to improve as the training data increases.

In modern times, people demand the availability of more
detailed forecasts, well in advance of the average daily fore-
cast, to enable better planning of daily lives and the mitiga-
tion of air-polluting emissions. Therefore, the applicability of
the DNN-ALL model as a 6 h forecast model was evaluated.
Furthermore, the 6 h mean prediction performance of the
DNN-ALL model was evaluated against that of the CMAQ
model. Table 6 presents the RMSE and IOA for each T -step
of the DNN-ALL and CMAQ models. The RMSEs of the
DNN-ALL model ranged between 7.3 and 16.0 µg m−3, a de-
crease of 2.7–8.8 µg m−3 compared with the CMAQ model.
The DNN-ALL IOAs ranged between 0.74 and 0.97, indicat-
ing higher (or similar) IOAs than those of the CMAQ model.
However, the RMSE and IOA of the DNN-ALL model did
not decrease monotonically. This is because the model per-
formance may differ according to the conditions of target
time such as daytime, nighttime, high concentration, and low
concentration. As shown in the CMAQ model results, the
prediction performance of the DNN-ALL model degrades or
improves monotonically over time.

4.2 AQI-prediction performance

Among the three experiments described in Sect. 4.1, the
DNN-ALL model demonstrated the best results in the sta-
tistical evaluation. The AQI-prediction performance of the
DNN-ALL model was compared with that of the CMAQ and
RF model.

Table 7 and Fig. 8 present the AQI evaluation results of
the DNN-ALL and CMAQ models. The overall ACC of the

Figure 6. Taylor diagrams for D+ 0 to D+ 2 (a–c) of the CMAQ,
DNN-OBS, DNN-OPM, and DNN-ALL models. In each diagram,
the contour line connecting the x and y axes represents the standard
deviation, and the dark gray contour line represents the RMSE. The
smaller the RMSE, the higher the R value; the closer the standard
deviation is to the standard deviation of the observation, the closer
it is to the Obs (?).

DNN-ALL model forD+0 was 77.8 %, 12.2 %p higher than
that of the CMAQ model. The categorical-prediction ACC of
the DNN-ALL was greater than that of the CMAQ model
by 7.4 %p for “good”, 17.1 %p for “moderate”, 4.8 %p for
“bad”, and 100 %p for “very bad”. During the target period
of this study, “very bad” occurred once. Although DNN-ALL
predicted this occurrence accurately, the CMAQ predicted
“bad”, indicating a 100 %p difference in accuracy between
the two models (Fig. 8a1, b1). The F1 score was 80 %, 3 %p
higher than that of the CMAQ model. The FAR of the DNN-
ALL model improved by 16.9 %p, although the POD de-
creased by 9.1 %p. These results suggest that the DNN-ALL
model overpredicted less than the CMAQ model, whose pre-
dicted PM2.5 concentrations were generally higher than the
observed values.

For D+ 1 and D+ 2, the overall ACC was 64.4 % and
61.1 %, respectively, a decrease of 2.3 %p and 1.1 %p, re-
spectively, compared with the CMAQ model. The AQI-
prediction ACC of the DNN-ALL model decreased by
26.9 %p on both days in “good”, and increased by 11.6 %p
for D+ 1 and 4.7 %p for D+ 2 in “moderate”. The “good”
ACC was low because the CMAQ model underpredicted, and
the DNN-ALL model overpredicted, with respect to the ob-
served values. An equal “bad” ACC of 70.0 % was obtained
via the DNN-ALL and CMAQ models for D+ 1, which

https://doi.org/10.5194/gmd-15-3797-2022 Geosci. Model Dev., 15, 3797–3813, 2022



3808 J.-B. Lee et al.: Development of a deep neural network

Figure 7. Time series of PM2.5 concentrations from observations and predictions using the CMAQ, DNN-OBS, DNN-OPM, and DNN-ALL
models. Panels (a1)–(c1) depict the time series of predictions and observations and (a2)–(c2) depict the differences between the predictions
and observations (predictions minus observations). In (a1)–(c1), each of the dashed lines represents values of 15.5, 35.5, 75.5, and the
average value of observation (27 µg m−3). In (a2)–(c2), the dashed lines represent the standard deviation of observation PM2.5 as negative
and positive.
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Table 6. Statistical summary of the performances of the CMAQ and DNN-ALL models in the case of 6 h average PM2.5 forecasts.

Model Indicator T -step

T12_D0 T18_D0 T24_D0 T06_D1 T12_D1 T18_D1 T24_D1 T06_D2 T12_D2 T18_D2 T24_D2

CMAQ
RMSE (µg m−3) 16.1 14.2 16.5 18.1 16.9 12.9 15.3 19.0 16.6 18.5 16.3
IOA 0.85 0.85 0.82 0.80 0.84 0.88 0.84 0.78 0.84 0.75 0.82

DNN-ALL
RMSE (µg m−3) 7.3 9.0 12.4 14.5 13.4 10.2 12.3 16.0 13.5 13.9 13.6
IOA 0.97 0.92 0.86 0.83 0.86 0.87 0.86 0.77 0.85 0.74 0.80

Table 7. Categorical forecast scores of the performance of the CMAQ and DNN-ALL models.

Model Day ACC (%) POD (%) FAR (%) F1 score (%)

CMAQ
D+ 0 65.6 59/90 81.8 18/22 28.0 7/25 77
D+ 1 66.7 60/90 81.0 17/21 39.3 11/28 69
D+ 2 62.2 56/90 71.4 15/21 48.3 14/29 60

DNN-ALL
D+ 0 77.8 70/90 72.7 16/22 11.1 2/18 80
D+ 1 64.4 58/90 71.4 15/21 31.8 7/22 70
D+ 2 61.1 55/90 76.2 16/21 40.7 11/27 67

increased by 20.0 %p for the DNN-ALL model on D+ 2
(Fig. 8a2, a3, b2, and b3). The F1 score of DNN-ALL model
was 70.0 % for D+1 and 67.0 % for D+2; however, the F1
score increased for the DNN-ALL model by 1 %p for D+ 1
and 7 %p forD+2. For the DNN-ALL model, in the case of
D+ 1, the POD decreased by 9.6 %p and FAR improved by
7.5 %p, whereas in the case of D+ 2, the POD increased by
4.8 %p and FAR improved by 7.6 %p.

Table S6 in the Supplement shows the precision and re-
call of all categories for the DNN-ALL and CMAQ models.
The precision and recall of the DNN-ALL model in the bad
category are presented to be higher than those of the CMAQ
model. In the bad category of D+ 0, the precision and re-
call of the DNN-ALL model are greater than those of the
CMAQ model by 0.24 and 0.04, respectively. In addition,
in the “very bad” category, the precision and recall of the
DNN-ALL model are to be 1.0 equally higher than those of
the CMAQ model. In D+ 1, the precision of the DNN-ALL
model in the “bad” category is greater than that of the CMAQ
model by 0.10, but the recall is similar to the CMAQ model.
In D+ 2, the precision and recall for the “bad” category of
the DNN-ALL model increased by 0.14 and 0.20 compared
with the CMAQ model, respectively. These results show that
the performance of the DNN-ALL model is superior to that
of the CMAQ model for predicting high concentrations that
affect the health of the people.

Table S7 in the Supplement shows the AQI evaluation re-
sults of the DNN- ALL and RF models. The ACC of the
DNN-ALL model increased by approximately 2 %p– 13 %p
compared with the RF model, and the F1 score decreased by
1 %p at D+ 1 but increased by 1 %p and 9 %p at D+ 0 and
D+ 2, respectively.

5 Conclusion

The DNN model, a kind of machine learning approach, has
been developed for predicting the 6 h average PM2.5 concen-
tration up to 2 subsequent days (D+0 toD+2) using the ob-
servation and forecast data for weather and PM2.5 concentra-
tion to surmount limitations in numerical air quality models
such as uncertainties in physical and chemical parameteriza-
tions, meteorological data, and emission inventory database.
The performance of the DNN model was comparatively eval-
uated against the currently operational CMAQ model, a kind
of numerical air quality model, in South Korea. The effects
of different training data on the PM2.5 prediction of the DNN
model were also analyzed.

Compared with the CMAQ model, the RMSE of the
DNN-OPM and DNN-OBS models increased by 1.0 and
5.0 µg m−3 for D+ 1, and by 0.4 and 3.3 µg m−3 for D+ 2,
even though it decreased by 3.4 and 0.6 µg m−3 for D+ 0,
respectively. On the other hand, the RMSE of the DNN-ALL
model continued to decrease by 4.1, 2.2, and 3.0 µg m−3 for
the 3 consecutive days compared to CMAQ model and also
decreased by 7.2 µg m−3 (D+1) and 6.3 µg m−3 (D+2) com-
pared with DNN-OBS model. These results indicated that
the use of forecasting data as the training data greatly af-
fected the performance of the DNN model as the forecast-
ing days increased. The RMSE of the DNN-ALL model de-
creased within a range of 2.7–8.8 µg m−3 in the 6 h average
PM2.5 prediction compared with CMAQ model. These re-
sults showed that the DNN model outperformed the CMAQ
model when it was simultaneously trained by using the ob-
servation and forecasting data from the numerical air quality
model in both 6 h average and daily forecasting. The DNN-
ALL model showed that the F1 score increased by 3 %p,
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Figure 8. Observations from D+ 0 to D+ 2 and corresponding scatter plots of the DNN-ALL and CMAQ models. Panels (a1)–(a3) show
the scatter plot of the CMAQ model and observation. Panels (b1)–(b3) show the scatter plot of the DNN-ALL model and observation. The
blue dots indicate the observation and prediction values in the AQI category “good”; the green dots, “moderate”; the red dots, “bad”; and the
orange dots, “very bad”.

1 %p, and 7 %p, and FAR decreased by 16.9 %p, 7.5 %p, and
7.6 %p for the 3 consecutive days, indicating that the DNN-
ALL model substantially mitigated the overprediction of the
CMAQ model in high PM2.5 concentrations. Our results sug-
gest that the machine learning approach can be a useful tool
to overcome limitations in numerical air quality models. For
further performance improvement of the DNN model, spa-
tial training data should be expanded to reflect the changes
in PM2.5 concentration induced by the surrounding areas,
and the training duration should be increased to allow learn-
ing pertaining to the varying concentrations. In addition, the
improvement of the numerical models used for generating
weather and air quality prediction data is necessary.

When high PM2.5 concentrations are predicted, mitigation
policies are implemented for the protection of public health
in South Korea. These policies aim to reduce air-polluting
emissions by limiting the power-generation capacity of ther-
mal power plants and operation of vehicles, which are pro-
cesses that involve socioeconomic costs. Consequently, inac-
curate forecasts of high PM2.5 concentrations can result in
socioeconomic losses. Therefore, the use of the DNN model
for forecasting is expected to reduce economic losses and
protect public health.
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