Articles | Volume 15, issue 7
https://doi.org/10.5194/gmd-15-2773-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-2773-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Implementation of an ensemble Kalman filter in the Community Multiscale Air Quality model (CMAQ model v5.1) for data assimilation of ground-level PM2.5
Soon-Young Park
School of Earth Sciences and Environmental Engineering, Gwangju
Institute of Science and Technology (GIST), Gwangju, 61005, Republic of
Korea
Institute of Environmental Studies, Pusan National University, Busan,
46241, Republic of Korea
Uzzal Kumar Dash
School of Earth Sciences and Environmental Engineering, Gwangju
Institute of Science and Technology (GIST), Gwangju, 61005, Republic of
Korea
Jinhyeok Yu
School of Earth Sciences and Environmental Engineering, Gwangju
Institute of Science and Technology (GIST), Gwangju, 61005, Republic of
Korea
Keiya Yumimoto
Research Institute for Applied Mechanics, Kyushu University, Fukuoka,
816-8580, Japan
Itsushi Uno
Research Institute for Applied Mechanics, Kyushu University, Fukuoka,
816-8580, Japan
Chul Han Song
CORRESPONDING AUTHOR
School of Earth Sciences and Environmental Engineering, Gwangju
Institute of Science and Technology (GIST), Gwangju, 61005, Republic of
Korea
Related authors
No articles found.
Kiyeon Kim, Chul Han Song, Kyung Man Han, Greg Yarwood, Ross Beardsley, and Saewung Kim
Atmos. Chem. Phys., 25, 10293–10314, https://doi.org/10.5194/acp-25-10293-2025, https://doi.org/10.5194/acp-25-10293-2025, 2025
Short summary
Short summary
Despite the crucial role of halogen radicals in the atmosphere, current chemical transport models (CTMs) do not account for multi-phase halogen processes. To address this issue, we incorporated 177 halogen reactions, together with anthropogenic and natural halogen emissions into the CTMs. Our findings reveal that incorporation of these halogen processes significantly improves model performances compared to observations. In addition, we emphasize the influence of halogen radicals on air quality.
Kiyeon Kim, Kyung Man Han, Chul Han Song, Hyojun Lee, Ross Beardsley, Jinhyeok Yu, Greg Yarwood, Bonyoung Koo, Jasper Madalipay, Jung-Hun Woo, and Seogju Cho
Atmos. Chem. Phys., 24, 12575–12593, https://doi.org/10.5194/acp-24-12575-2024, https://doi.org/10.5194/acp-24-12575-2024, 2024
Short summary
Short summary
We incorporated each HONO process into the current CMAQ modeling framework to enhance the accuracy of HONO mixing ratio predictions. These results expand our understanding of HONO photochemistry and identify crucial sources of HONO that impact the total HONO budget in Seoul, South Korea. Through this investigation, we contribute to resolving discrepancies in understanding chemical transport models, with implications for better air quality management and environmental protection in the region.
Peng Xian, Jeffrey S. Reid, Melanie Ades, Angela Benedetti, Peter R. Colarco, Arlindo da Silva, Tom F. Eck, Johannes Flemming, Edward J. Hyer, Zak Kipling, Samuel Rémy, Tsuyoshi Thomas Sekiyama, Taichu Tanaka, Keiya Yumimoto, and Jianglong Zhang
Atmos. Chem. Phys., 24, 6385–6411, https://doi.org/10.5194/acp-24-6385-2024, https://doi.org/10.5194/acp-24-6385-2024, 2024
Short summary
Short summary
The study compares and evaluates monthly AOD of four reanalyses (RA) and their consensus (i.e., ensemble mean). The basic verification characteristics of these RA versus both AERONET and MODIS retrievals are presented. The study discusses the strength of each RA and identifies regions where divergence and challenges are prominent. The RA consensus usually performs very well on a global scale in terms of how well it matches the observational data, making it a good choice for various applications.
Bok H. Baek, Rizzieri Pedruzzi, Minwoo Park, Chi-Tsan Wang, Younha Kim, Chul-Han Song, and Jung-Hun Woo
Geosci. Model Dev., 15, 4757–4781, https://doi.org/10.5194/gmd-15-4757-2022, https://doi.org/10.5194/gmd-15-4757-2022, 2022
Short summary
Short summary
The Comprehensive Automobile Research System (CARS) is an open-source Python-based automobile emissions inventory model designed to efficiently estimate high-quality emissions. The CARS is designed to utilize the local vehicle activity database, such as vehicle travel distance, road-link-level network information, and vehicle-specific average speed by road type, to generate a temporally and spatially enhanced inventory for policymakers, stakeholders, and the air quality modeling community.
Mizuo Kajino, Makoto Deushi, Tsuyoshi Thomas Sekiyama, Naga Oshima, Keiya Yumimoto, Taichu Yasumichi Tanaka, Joseph Ching, Akihiro Hashimoto, Tetsuya Yamamoto, Masaaki Ikegami, Akane Kamada, Makoto Miyashita, Yayoi Inomata, Shin-ichiro Shima, Pradeep Khatri, Atsushi Shimizu, Hitoshi Irie, Kouji Adachi, Yuji Zaizen, Yasuhito Igarashi, Hiromasa Ueda, Takashi Maki, and Masao Mikami
Geosci. Model Dev., 14, 2235–2264, https://doi.org/10.5194/gmd-14-2235-2021, https://doi.org/10.5194/gmd-14-2235-2021, 2021
Short summary
Short summary
This study compares performance of aerosol representation methods of the Japan Meteorological Agency's regional-scale nonhydrostatic meteorology–chemistry model (NHM-Chem). It indicates separate treatment of sea salt and dust in coarse mode and that of light-absorptive and non-absorptive particles in fine mode could provide accurate assessments on aerosol feedback processes.
Mayumi Yoshida, Keiya Yumimoto, Takashi M. Nagao, Taichu Y. Tanaka, Maki Kikuchi, and Hiroshi Murakami
Atmos. Chem. Phys., 21, 1797–1813, https://doi.org/10.5194/acp-21-1797-2021, https://doi.org/10.5194/acp-21-1797-2021, 2021
Short summary
Short summary
We developed a new aerosol satellite retrieval algorithm combining a numerical aerosol forecast. This is the first study that utilizes the assimilated model forecast of aerosol as an a priori estimate of the retrieval. Aerosol retrievals were improved by effectively incorporating both model and satellite information. By using the assimilated forecast as an a priori estimate, information from previous observations can be propagated to future retrievals, thus leading to better retrieval accuracy.
Cited articles
Anderson, J. L.: An Ensemble Adjustment Kalman Filter for Data
Assimilation, Mon. Weather Rev., 129, 2884–2903,
https://doi.org/10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2, 2001.
Appel, K. W., Pouliot, G. A., Simon, H., Sarwar, G., Pye, H. O. T., Napelenok, S. L., Akhtar, F., and Roselle, S. J.: Evaluation of dust and trace metal estimates from the Community Multiscale Air Quality (CMAQ) model version 5.0, Geosci. Model Dev., 6, 883–899, https://doi.org/10.5194/gmd-6-883-2013, 2013.
Benedetti, A., Di Giuseppe, F., Jones, L., Peuch, V.-H., Rémy, S., and Zhang, X.: The value of satellite observations in the analysis and short-range prediction of Asian dust, Atmos. Chem. Phys., 19, 987–998, https://doi.org/10.5194/acp-19-987-2019, 2019.
Bocquet, M., Elbern, H., Eskes, H., Hirtl, M., Žabkar, R., Carmichael, G. R., Flemming, J., Inness, A., Pagowski, M., Pérez Camaño, J. L., Saide, P. E., San Jose, R., Sofiev, M., Vira, J., Baklanov, A., Carnevale, C., Grell, G., and Seigneur, C.: Data assimilation in atmospheric chemistry models: current status and future prospects for coupled chemistry meteorology models, Atmos. Chem. Phys., 15, 5325–5358, https://doi.org/10.5194/acp-15-5325-2015, 2015.
Byun, D. and Schere, K. L.: Review of the Governing Equations, Computational
Algorithms, and Other Components of the Models-3 Community Multiscale Air
Quality (CMAQ) Modeling System, Appl. Mech. Rev., 59, 51–77,
https://doi.org/10.1115/1.2128636, 2006.
Byun, D. W. and Ching, J. K. S.: Science algorithms of the EPA models-3
community multiscale air quality (CMAQ) modeling system, U.S. Environmental
Protection Agency, EPA/600/R- 99/030 (NTIS PB2000-100561), 1999.
Candiani, G., Carnevale, C., Finzi, G., Pisoni, E., and Volta, M.: A
comparison of reanalysis techniques: Applying optimal interpolation and
Ensemble Kalman Filtering to improve air quality monitoring at mesoscale,
Sci. Total Environ., 458–460, 7–14, https://doi.org/10.1016/j.scitotenv.2013.03.089, 2013.
Carmichael, G. R., Sakurai, T., Streets, D., Hozumi, Y., Ueda, H., Park, S.
U., Fung, C., Han, Z., Kajino, M., Engardt, M., Bennet, C., Hayami, H.,
Sartelet, K., Holloway, T., Wang, Z., Kannari, A., Fu, J., Matsuda, K.,
Thongboonchoo, N., and Amann, M.: MICS-Asia II: The model intercomparison
study for Asia Phase II methodology and overview of findings, Atmos.
Environ., 42, 3468–3490, https://doi.org/10.1016/j.atmosenv.2007.04.007, 2008.
Chai, T., Kim, H.-C., Pan, L., Lee, P., and Tong, D.: Impact of Moderate
Resolution Imaging Spectroradiometer Aerosol Optical Depth and AirNow
PM2.5 assimilation on Community Multi-scale Air Quality aerosol
predictions over the contiguous United States, J. Geophys.
Res.-Atmos., 122, 5399–5415, https://doi.org/10.1002/2016JD026295, 2017.
Chang, L.-S., Cho, A., Park, H., Nam, K., Kim, D., Hong, J.-H., and Song,
C.-K.: Human-model hybrid Korean air quality forecasting system, J. Air Waste Manage., 66, 896–911,
https://doi.org/10.1080/10962247.2016.1206995, 2016.
Chen, D., Liu, Z., Ban, J., Zhao, P., and Chen, M.: Retrospective analysis of 2015–2017 wintertime PM2.5 in China: response to emission regulations and the role of meteorology, Atmos. Chem. Phys., 19, 7409–7427, https://doi.org/10.5194/acp-19-7409-2019, 2019.
Cohen, A. J., Brauer, M., Burnett, R., Anderson, H. R., Frostad, J., Estep,
K., Balakrishnan, K., Brunekreef, B., Dandona, L., Dandona, R., Feigin, V.,
Freedman, G., Hubbell, B., Jobling, A., Kan, H., Knibbs, L., Liu, Y.,
Martin, R., Morawska, L., Pope, C. A., Shin, H., Straif, K., Shaddick, G.,
Thomas, M., van Dingenen, R., van Donkelaar, A., Vos, T., Murray, C. J. L.,
and Forouzanfar, M. H.: Estimates and 25-year trends of the global burden of
disease attributable to ambient air pollution: an analysis of data from the
Global Burden of Diseases Study 2015, The Lancet, 389, 1907–1918, https://doi.org/10.1016/S0140-6736(17)30505-6, 2017.
Colella, P. and Woodward, P. R.: The Piecewise Parabolic Method (PPM) for
gas-dynamical simulations, J. Comput. Phys., 54, 174–201,
https://doi.org/10.1016/0021-9991(84)90143-8, 1984.
Coman, A., Foret, G., Beekmann, M., Eremenko, M., Dufour, G., Gaubert, B., Ung, A., Schmechtig, C., Flaud, J.-M., and Bergametti, G.: Assimilation of IASI partial tropospheric columns with an Ensemble Kalman Filter over Europe, Atmos. Chem. Phys., 12, 2513–2532, https://doi.org/10.5194/acp-12-2513-2012, 2012.
Constantinescu, E. M., Sandu, A., Chai, T., and Carmichael, G. R.:
Assessment of ensemble-based chemical data assimilation in an idealized
setting, Atmos. Environ., 41, 18–36, https://doi.org/10.1016/j.atmosenv.2006.08.006, 2007a.
Constantinescu, E. M., Sandu, A., Chai, T., and Carmichael, G. R.:
Ensemble-based chemical data assimilation. II: Covariance localization,
Q. J. Roy. Meteor. Soc., 133, 1245–1256,
https://doi.org/10.1002/qj.77, 2007b.
Courtier, P., Thépaut, J. N., and Hollingsworth, A.: A strategy for
operational implementation of 4D-Var, using an incremental approach,
Q. J. Roy. Meteor. Soc., 120, 1367–1387,
https://doi.org/10.1002/qj.49712051912, 1994.
Dai, T., Schutgens, N. A. J., Goto, D., Shi, G., and Nakajima, T.:
Improvement of aerosol optical properties modeling over Eastern Asia with
MODIS AOD assimilation in a global non-hydrostatic icosahedral aerosol
transport model, Environ. Pollut., 195, 319–329, https://doi.org/10.1016/j.envpol.2014.06.021, 2014.
Dehghani, M., Keshtgar, L., Javaheri, M. R., Derakhshan, Z., Oliveri Conti,
G., Zuccarello, P., and Ferrante, M.: The effects of air pollutants on the
mortality rate of lung cancer and leukemia, Mol. Med. Rep., 15, 3390–3397,
https://doi.org/10.3892/mmr.2017.6387, 2017.
Eder, B., Kang, D., Mathur, R., Yu, S., and Schere, K.: An operational
evaluation of the Eta–CMAQ air quality forecast model, Atmos.
Environ., 40, 4894–4905, https://doi.org/10.1016/j.atmosenv.2005.12.062, 2006.
Elbern, H. and Schmidt, H.: Ozone episode analysis by four-dimensional
variational chemistry data assimilation, J. Geophys. Res.-Atmos., 106, 3569–3590, https://doi.org/10.1029/2000JD900448, 2001.
Elbern, H., Strunk, A., Schmidt, H., and Talagrand, O.: Emission rate and chemical state estimation by 4-dimensional variational inversion, Atmos. Chem. Phys., 7, 3749–3769, https://doi.org/10.5194/acp-7-3749-2007, 2007.
Evensen, G.: Sequential data assimilation with a nonlinear quasi-geostrophic
model using Monte Carlo methods to forecast error statistics, J.
Geophys. Res.-Oceans, 99, 10143–10162, https://doi.org/10.1029/94JC00572, 1994.
Evensen, G.: The Ensemble Kalman Filter: theoretical formulation and
practical implementation, Ocean Dynam., 53, 343–367,
https://doi.org/10.1007/s10236-003-0036-9, 2003.
Friedl, M. A., Sulla-Menashe, D., Tan, B., Schneider, A., Ramankutty, N.,
Sibley, A., and Huang, X.: MODIS Collection 5 global land cover: Algorithm
refinements and characterization of new datasets, Remote Sens.
Environ., 114, 168–182, https://doi.org/10.1016/j.rse.2009.08.016, 2010.
Gaspari, G. and Cohn, S. E.: Construction of correlation functions in two
and three dimensions, Q. J. Roy. Meteor. Soc.,
125, 723–757, https://doi.org/10.1002/qj.49712555417, 1999.
Grell, G. A. and Freitas, S. R.: A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling, Atmos. Chem. Phys., 14, 5233–5250, https://doi.org/10.5194/acp-14-5233-2014, 2014.
Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., and Geron, C.: Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature), Atmos. Chem. Phys., 6, 3181–3210, https://doi.org/10.5194/acp-6-3181-2006, 2006.
Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K., and Wang, X.: The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions, Geosci. Model Dev., 5, 1471–1492, https://doi.org/10.5194/gmd-5-1471-2012, 2012.
Ha, S., Liu, Z., Sun, W., Lee, Y., and Chang, L.: Improving air quality forecasting with the assimilation of GOCI aerosol optical depth (AOD) retrievals during the KORUS-AQ period, Atmos. Chem. Phys., 20, 6015–6036, https://doi.org/10.5194/acp-20-6015-2020, 2020.
Hertel, O., Berkowicz, R., Christensen, J., and Hov, Ø.: Test of two
numerical schemes for use in atmospheric transport-chemistry models,
Atmos. Environ. A.-Gen., 27, 2591–2611, https://doi.org/10.1016/0960-1686(93)90032-T, 1993.
Hong, S.-Y.: A new stable boundary-layer mixing scheme and its impact on the
simulated East Asian summer monsoon, Q. J. Roy.
Meteor. Soc., 136, 1481–1496, https://doi.org/10.1002/qj.665, 2010.
Hong, S.-Y. and Lim, J.-O. J.: The WRF Single-Moment 6-Class Microphysics
Scheme (WSM6), Asia-Pac. J. Atmos. Sci., 42, 129–151,
2006.
Hong, S.-Y., Noh, Y., and Dudhia, J.: A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes, Mon. Weather Rev., 134, 2318–2341, https://doi.org/10.1175/MWR3199.1, 2006.
Houtekamer, P. L. and Mitchell, H. L.: Data Assimilation Using an Ensemble Kalman Filter Technique, Mon. Weather Rev., 126, 3, 796–811, https://doi.org/10.1175/1520-0493(1998)126<0796:DAUAEK>2.0.CO;2, 1998.
Hunt, B. R., Kostelich, E. J., and Szunyogh, I.: Efficient data assimilation
for spatiotemporal chaos: A local ensemble transform Kalman filter, Physica
D, 230, 112–126, https://doi.org/10.1016/j.physd.2006.11.008, 2007.
Hutzell, W. T., Luecken, D. J., Appel, K. W., and Carter, W. P. L.:
Interpreting predictions from the SAPRC07 mechanism based on regional and
continental simulations, Atmos. Environ., 46, 417–429, https://doi.org/10.1016/j.atmosenv.2011.09.030, 2012.
Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S.
A., and Collins, W. D.: Radiative forcing by long-lived greenhouse gases:
Calculations with the AER radiative transfer models, J. Geophys.
Res.-Atmos., 113, D13103, https://doi.org/10.1029/2008JD009944, 2008.
Jang, Y., Lee, Y., Kim, J., Kim, Y., and Woo, J.-H.: Improvement China Point
Source for Improving Bottom-Up Emission Inventory, Asia-Pac. J.
Atmos. Sci., 56, 107–118, https://doi.org/10.1007/s13143-019-00115-y, 2020.
Jiang, Z., Liu, Z., Wang, T., Schwartz, C. S., Lin, H.-C., and Jiang, F.:
Probing into the impact of 3DVAR assimilation of surface PM10 observations
over China using process analysis, J. Geophys. Res.-Atmos., 118, 6738–6749, https://doi.org/10.1002/jgrd.50495, 2013.
Jiménez, P. A., Dudhia, J., González-Rouco, J. F., Navarro, J.,
Montávez, J. P., and García-Bustamante, E.: A Revised Scheme for
the WRF Surface Layer Formulation, Mon. Weather Rev., 140, 898–918,
https://doi.org/10.1175/MWR-D-11-00056.1, 2012.
Jordan, C. E., Crawford, J. H., Beyersdorf, A. J., Eck, T. F., Halliday, H.
S., Nault, B. A., Chang, L.-S., Park, J., Park, R., Lee, G., Kim, H., Ahn,
J.-y., Cho, S., Shin, H. J., Lee, J. H., Jung, J., Kim, D.-S., Lee, M., Lee,
T., Whitehill, A., Szykman, J., Schueneman, M. K., Campuzano-Jost, P.,
Jimenez, J. L., DiGangi, J. P., Diskin, G. S., Anderson, B. E., Moore, R.
H., Ziemba, L. D., Fenn, M. A., Hair, J. W., Kuehn, R. E., Holz, R. E.,
Chen, G., Travis, K., Shook, M., Peterson, D. A., Lamb, K. D., and Schwarz,
J. P.: Investigation of factors controlling PM2.5 variability across
the South Korean Peninsula during KORUS-AQ, Elementa: Science of the
Anthropocene, 8, 28, https://doi.org/10.1525/elementa.424, 2020.
Kalman, R. E.: A New Approach to Linear Filtering and Prediction Problems,
Journal of Basic Engineering, 82, 35–45, https://doi.org/10.1115/1.3662552, 1960.
Kalnay, E.: Atmospheric Modeling, Data Assimilation and Predictability,
Cambridge University Press, Cambridge, https://doi.org/10.1017/CBO9780511802270, 2002.
Lee, E.-H., Ha, J.-C., Lee, S.-S., and Chun, Y.: PM10 data assimilation over
south Korea to Asian dust forecasting model with the optimal interpolation
method, Asia-Pac. J. Atmos. Sci., 49, 73–85,
https://doi.org/10.1007/s13143-013-0009-y, 2013.
Lee, K., Yu, J., Lee, S., Park, M., Hong, H., Park, S. Y., Choi, M., Kim, J., Kim, Y., Woo, J.-H., Kim, S.-W., and Song, C. H.: Development of Korean Air Quality Prediction System version 1 (KAQPS v1) with focuses on practical issues, Geosci. Model Dev., 13, 1055–1073, https://doi.org/10.5194/gmd-13-1055-2020, 2020.
Lee, S., Song, C. H., Han, K. M., Henze, D. K., Lee, K., Yu, J., Woo, J. H.,
Jung, J., Choi, Y., Saide, P. E., and Carmichael, G. R.: Impacts of
uncertainties in emissions on aerosol data assimilation and short-term
PM2.5 predictions over Northeast Asia, Atmos. Environ., 271, 11921,
https://doi.org/10.1016/j.atmosenv.2021.118921, 2022.
Li, Z., Zang, Z., Li, Q. B., Chao, Y., Chen, D., Ye, Z., Liu, Y., and Liou, K. N.: A three-dimensional variational data assimilation system for multiple aerosol species with WRF/Chem and an application to PM2.5 prediction, Atmos. Chem. Phys., 13, 4265–4278, https://doi.org/10.5194/acp-13-4265-2013, 2013.
Lin, C., Wang, Z., and Zhu, J.: An Ensemble Kalman Filter for severe dust storm data assimilation over China, Atmos. Chem. Phys., 8, 2975–2983, https://doi.org/10.5194/acp-8-2975-2008, 2008.
Liu, Z., Liu, Q., Lin, H.-C., Schwartz, C. S., Lee, Y.-H., and Wang, T.:
Three-dimensional variational assimilation of MODIS aerosol optical depth:
Implementation and application to a dust storm over East Asia, J.
Geophys. Res.-Atmos., 116, D23206, https://doi.org/10.1029/2011JD016159, 2011.
Lopez-Restrepo, S., Yarce, A., Pinel, N., Quintero, O. L., Segers, A., and
Heemink, A. W.: Forecasting PM10 and PM2.5 in the Aburrá Valley
(Medellín, Colombia) via EnKF based data assimilation, Atmos.
Environ., 232, 117507, https://doi.org/10.1016/j.atmosenv.2020.117507, 2020.
Lorenc, A. C.: A Global Three-Dimensional Multivariate Statistical
Interpolation Scheme, Mon. Weather Rev., 109, 701–721,
https://doi.org/10.1175/1520-0493(1981)109<0701:AGTDMS>2.0.CO;2, 1981.
Lorenc, A. C.: Analysis methods for numerical weather prediction, Q.
J. Roy. Meteor. Soc., 112, 1177–1194,
https://doi.org/10.1002/qj.49711247414, 1986.
Louis, J.-F.: A parametric model of vertical eddy fluxes in the atmosphere,
Bound.-Lay. Meteorol., 17, 187–202, https://doi.org/10.1007/BF00117978, 1979.
Menut, L. and Bessagnet, B.: What Can We Expect from Data Assimilation for
Air Quality Forecast? Part I: Quantification with Academic Test Cases,
J. Atmos. Ocean. Tech., 36, 269–279,
https://doi.org/10.1175/JTECH-D-18-0002.1, 2019.
Morcrette, J. J., Boucher, O., Jones, L., Salmond, D., Bechtold, P.,
Beljaars, A., Benedetti, A., Bonet, A., Kaiser, J. W., Razinger, M., Schulz,
M., Serrar, S., Simmons, A. J., Sofiev, M., Suttie, M., Tompkins, A. M., and
Untch, A.: Aerosol analysis and forecast in the European Centre for
Medium-Range Weather Forecasts Integrated Forecast System: Forward modeling,
J. Geophys. Res.-Atmos., 114, D06206, https://doi.org/10.1029/2008JD011235,
2009.
Myneni, R. B., Hoffman, S., Knyazikhin, Y., Privette, J. L., Glassy, J.,
Tian, Y., Wang, Y., Song, X., Zhang, Y., Smith, G. R., Lotsch, A., Friedl,
M., Morisette, J. T., Votava, P., Nemani, R. R., and Running, S. W.: Global
products of vegetation leaf area and fraction absorbed PAR from year one of
MODIS data, Remote Sens. Environ., 83, 214–231, https://doi.org/10.1016/S0034-4257(02)00074-3, 2002.
Niu, G.-Y., Yang, Z.-L., Mitchell, K. E., Chen, F., Ek, M. B., Barlage, M.,
Kumar, A., Manning, K., Niyogi, D., Rosero, E., Tewari, M., and Xia, Y.: The
community Noah land surface model with multiparameterization options
(Noah-MP): 1. Model description and evaluation with local-scale
measurements, J. Geophys. Res.-Atmos., 116, D12109,
https://doi.org/10.1029/2010JD015139, 2011.
Otte, T. L. and Pleim, J. E.: The Meteorology-Chemistry Interface Processor (MCIP) for the CMAQ modeling system: updates through MCIPv3.4.1, Geosci. Model Dev., 3, 243–256, https://doi.org/10.5194/gmd-3-243-2010, 2010.
Pagowski, M. and Grell, G. A.: Experiments with the assimilation of fine
aerosols using an ensemble Kalman filter, J. Geophys. Res.-Atmos., 117, D21302, https://doi.org/10.1029/2012JD018333, 2012.
Pagowski, M., Grell, G. A., McKeen, S. A., Peckham, S. E., and Devenyi, D.:
Three-dimensional variational data assimilation of ozone and fine
particulate matter observations: some results using the Weather Research and
Forecasting – Chemistry model and Grid-point Statistical Interpolation,
Q. J. Roy. Meteor. Soc., 136, 2013–2024,
https://doi.org/10.1002/qj.700, 2010.
Pang, J., Liu, Z., Wang, X., Bresch, J., Ban, J., Chen, D., and Kim, J.:
Assimilating AOD retrievals from GOCI and VIIRS to forecast surface
PM2.5 episodes over Eastern China, Atmos. Environ., 179,
288–304, https://doi.org/10.1016/j.atmosenv.2018.02.011, 2018.
Park, M. E., Song, C. H., Park, R. S., Lee, J., Kim, J., Lee, S., Woo, J.-H., Carmichael, G. R., Eck, T. F., Holben, B. N., Lee, S.-S., Song, C. K., and Hong, Y. D.: New approach to monitor transboundary particulate pollution over Northeast Asia, Atmos. Chem. Phys., 14, 659–674, https://doi.org/10.5194/acp-14-659-2014, 2014.
Park, R. S., Song, C. H., Han, K. M., Park, M. E., Lee, S.-S., Kim, S.-B., and Shimizu, A.: A study on the aerosol optical properties over East Asia using a combination of CMAQ-simulated aerosol optical properties and remote-sensing data via a data assimilation technique, Atmos. Chem. Phys., 11, 12275–12296, https://doi.org/10.5194/acp-11-12275-2011, 2011.
Park, S.-Y.: Implementation of an Ensemble Kalman Filter in the Community Multiscale Air Quality Model (CMAQ Model v5.1) for Data Assimilation of Ground-level PM2.5: Data Assimilation Codes, Zenodo [code], https://doi.org/10.5281/zenodo.5376214, 2021a.
Park, S.-Y.: Implementation of an Ensemble Kalman Filter in the Community Multiscale Air Quality Model (CMAQ Model v5.1) for Data Assimilation of Ground-level PM2.5: Model Simulation Outputs, Zenodo [data set], https://doi.org/10.5281/zenodo.5566441, 2021b.
Park, S.-Y., Kim, D.-H., Lee, S.-H., and Lee, H. W.: Variational data assimilation for the optimized ozone initial state and the short-time forecasting, Atmos. Chem. Phys., 16, 3631–3649, https://doi.org/10.5194/acp-16-3631-2016, 2016.
Parrish, D. F. and Derber, J. C.: The National Meteorological Center's
Spectral Statistical-Interpolation Analysis System, Mon. Weather Rev.,
120, 1747–1763, https://doi.org/10.1175/1520-0493(1992)120<1747:TNMCSS>2.0.CO;2, 1992.
Peng, Z., Liu, Z., Chen, D., and Ban, J.: Improving PM2.5 forecast over China by the joint adjustment of initial conditions and source emissions with an ensemble Kalman filter, Atmos. Chem. Phys., 17, 4837–4855, https://doi.org/10.5194/acp-17-4837-2017, 2017.
Peng, Z., Lei, L., Liu, Z., Sun, J., Ding, A., Ban, J., Chen, D., Kou, X., and Chu, K.: The impact of multi-species surface chemical observation assimilation on air quality forecasts in China, Atmos. Chem. Phys., 18, 17387–17404, https://doi.org/10.5194/acp-18-17387-2018, 2018.
Peterson, D. A., Hyer, E. J., Han, S.-O., Crawford, J. H., Park, R. J.,
Holz, R., Kuehn, R. E., Eloranta, E., Knote, C., Jordan, C. E., and Lefer,
B. L.: Meteorology influencing springtime air quality, pollution transport,
and visibility in Korea, Elementa: Science of the Anthropocene, 7, 57,
https://doi.org/10.1525/elementa.395, 2019.
Pleim, J. E.: A Combined Local and Nonlocal Closure Model for the
Atmospheric Boundary Layer. Part I: Model Description and Testing, J. Appl. Meteorol. Clim., 46, 1383–1395, https://doi.org/10.1175/JAM2539.1,
2007a.
Pleim, J. E.: A Combined Local and Nonlocal Closure Model for the
Atmospheric Boundary Layer. Part II: Application and Evaluation in a
Mesoscale Meteorological Model, J. Appl. Meteorol.
Clim., 46, 1396–1409, https://doi.org/10.1175/JAM2534.1, 2007b.
Pleim, J. E. and Xiu, A.: Development of a Land Surface Model. Part II: Data
Assimilation, J. Appl. Meteorol., 42, 1811–1822,
https://doi.org/10.1175/1520-0450(2003)042<1811:DOALSM>2.0.CO;2, 2003.
Pope, C. A. and Dockery, D. W.: Health Effects of Fine Particulate Air
Pollution: Lines that Connect, J. Air Waste Manage., 56, 709–742, https://doi.org/10.1080/10473289.2006.10464485, 2006.
Rabier, F., McNally, A., Andersson, E., Courtier, P., Undén, P., Eyre,
J., Hollingsworth, A., and Bouttier, F.: The ECMWF implementation of
three-dimensional variational assimilation (3D-Var). II: Structure
functions, Q. J. Roy. Meteor. Soc., 124,
1809–1829, https://doi.org/10.1002/qj.49712455003, 1998.
Rabier, F., Järvinen, H., Klinker, E., Mahfouf, J. F., and Simmons, A.:
The ECMWF operational implementation of four-dimensional variational
assimilation. I: Experimental results with simplified physics, Q.
J. Roy. Meteor. Soc., 126, 1143–1170,
https://doi.org/10.1002/qj.49712656415, 2000.
Roustan, Y. and Bocquet, M.: Inverse modelling for mercury over Europe, Atmos. Chem. Phys., 6, 3085–3098, https://doi.org/10.5194/acp-6-3085-2006, 2006.
Rubin, J. I., Reid, J. S., Hansen, J. A., Anderson, J. L., Collins, N., Hoar, T. J., Hogan, T., Lynch, P., McLay, J., Reynolds, C. A., Sessions, W. R., Westphal, D. L., and Zhang, J.: Development of the Ensemble Navy Aerosol Analysis Prediction System (ENAAPS) and its application of the Data Assimilation Research Testbed (DART) in support of aerosol forecasting, Atmos. Chem. Phys., 16, 3927–3951, https://doi.org/10.5194/acp-16-3927-2016, 2016.
Saha, S., Moorthi, S., Pan, H.-L., Wu, X., Wang, J., Nadiga, S., Tripp, P.,
Kistler, R., Woollen, J., Behringer, D., Liu, H., Stokes, D., Grumbine, R.,
Gayno, G., Wang, J., Hou, Y.-T., Chuang, H.-Y., Juang, H.-M. H., Sela, J.,
Iredell, M., Treadon, R., Kleist, D., Van Delst, P., Keyser, D., Derber, J.,
Ek, M., Meng, J., Wei, H., Yang, R., Lord, S., van den Dool, H., Kumar, A.,
Wang, W., Long, C., Chelliah, M., Xue, Y., Huang, B., Schemm, J.-K.,
Ebisuzaki, W., Lin, R., Xie, P., Chen, M., Zhou, S., Higgins, W., Zou,
C.-Z., Liu, Q., Chen, Y., Han, Y., Cucurull, L., Reynolds, R. W., Rutledge,
G., and Goldberg, M.: NCEP Climate Forecast System Reanalysis (CFSR)
6-hourly Products, January 1979 to December 2010, Research Data Archive at
the National Center for Atmospheric Research, Computational and Information
Systems Laboratory [data set], https://doi.org/10.5065/D69K487J, 2010.
Saide, P. E., Carmichael, G. R., Liu, Z., Schwartz, C. S., Lin, H. C., da Silva, A. M., and Hyer, E.: Aerosol optical depth assimilation for a size-resolved sectional model: impacts of observationally constrained, multi-wavelength and fine mode retrievals on regional scale analyses and forecasts, Atmos. Chem. Phys., 13, 10425–10444, https://doi.org/10.5194/acp-13-10425-2013, 2013.
Sandu, A. and Chai, T.: Chemical Data Assimilation – An Overview,
Atmosphere, 2, 426–463, https://doi.org/10.3390/atmos2030426, 2011.
Schutgens, N. A. J., Miyoshi, T., Takemura, T., and Nakajima, T.: Applying an ensemble Kalman filter to the assimilation of AERONET observations in a global aerosol transport model, Atmos. Chem. Phys., 10, 2561–2576, https://doi.org/10.5194/acp-10-2561-2010, 2010.
Schwartz, C. S., Liu, Z., Lin, H.-C., and McKeen, S. A.: Simultaneous
three-dimensional variational assimilation of surface fine particulate
matter and MODIS aerosol optical depth, J. Geophys. Res.-Atmos., 117, D13202, https://doi.org/10.1029/2011JD017383, 2012.
Schwartz, C. S., Liu, Z., Lin, H.-C., and Cetola, J. D.: Assimilating
aerosol observations with a “hybrid” variational-ensemble data
assimilation system, J. Geophys. Res.-Atmos., 119,
4043–4069, https://doi.org/10.1002/2013JD020937, 2014.
Sekiyama, T. T., Tanaka, T. Y., Shimizu, A., and Miyoshi, T.: Data assimilation of CALIPSO aerosol observations, Atmos. Chem. Phys., 10, 39–49, https://doi.org/10.5194/acp-10-39-2010, 2010.
Shao, H., Derber, J., Huang, X.-Y., Hu, M., Newman, K., Stark, D., Lueken,
M., Zhou, C., Nance, L., Kuo, Y.-H., and Brown, B.: Bridging Research to
Operations Transitions: Status and Plans of Community GSI, B.
Am. Meteorol. Soc., 97, 1427–1440, https://doi.org/10.1175/BAMS-D-13-00245.1,
2016.
Skachko, S., Errera, Q., Ménard, R., Christophe, Y., and Chabrillat, S.: Comparison of the ensemble Kalman filter and 4D-Var assimilation methods using a stratospheric tracer transport model, Geosci. Model Dev., 7, 1451–1465, https://doi.org/10.5194/gmd-7-1451-2014, 2014.
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D., Duda,
M. G., Huang, X., Wang, W., and Powers, J. G.: A Description of the Advanced
Research WRF Version 3, University Corporation for Atmospheric Research, no.
NCAR/TN-475+STR, https://doi.org/10.5065/D68S4MVH, 2008.
Solazzo, E., Bianconi, R., Pirovano, G., Matthias, V., Vautard, R., Moran,
M. D., Wyat Appel, K., Bessagnet, B., Brandt, J., Christensen, J. H.,
Chemel, C., Coll, I., Ferreira, J., Forkel, R., Francis, X. V., Grell, G.,
Grossi, P., Hansen, A. B., Miranda, A. I., Nopmongcol, U., Prank, M.,
Sartelet, K. N., Schaap, M., Silver, J. D., Sokhi, R. S., Vira, J., Werhahn,
J., Wolke, R., Yarwood, G., Zhang, J., Rao, S. T., and Galmarini, S.:
Operational model evaluation for particulate matter in Europe and North
America in the context of AQMEII, Atmos. Environ., 53, 75–92,
https://doi.org/10.1016/j.atmosenv.2012.02.045, 2012.
Stauffer, D. R. and Seaman, N. L.: Use of Four-Dimensional Data Assimilation
in a Limited-Area Mesoscale Model. Part I: Experiments with Synoptic-Scale
Data, Mon. Weather Rev., 118, 1250–1277,
https://doi.org/10.1175/1520-0493(1990)118<1250:UOFDDA>2.0.CO;2, 1990.
Talagrand, O. and Courtier, P.: Variational Assimilation of Meteorological
Observations With the Adjoint Vorticity Equation. I: Theory, Q.
J. Roy. Meteor. Soc., 113, 1311–1328,
https://doi.org/10.1002/qj.49711347812, 1987.
Tang, X., Zhu, J., Wang, Z. F., and Gbaguidi, A.: Improvement of ozone forecast over Beijing based on ensemble Kalman filter with simultaneous adjustment of initial conditions and emissions, Atmos. Chem. Phys., 11, 12901–12916, https://doi.org/10.5194/acp-11-12901-2011, 2011.
Tang, Y., Chai, T., Pan, L., Lee, P., Tong, D., Kim, H.-C., and Chen, W.:
Using optimal interpolation to assimilate surface measurements and satellite
AOD for ozone and PM2.5: A case study for July 2011, J. Air
Waste Manage., 65, 1206–1216,
https://doi.org/10.1080/10962247.2015.1062439, 2015.
Tang, Y., Pagowski, M., Chai, T., Pan, L., Lee, P., Baker, B., Kumar, R., Delle Monache, L., Tong, D., and Kim, H.-C.: A case study of aerosol data assimilation with the Community Multi-scale Air Quality Model over the contiguous United States using 3D-Var and optimal interpolation methods, Geosci. Model Dev., 10, 4743–4758, https://doi.org/10.5194/gmd-10-4743-2017, 2017.
US EPA Office of Research and Development: CMAQv5.1 (5.1), Zenodo [code], https://doi.org/10.5281/zenodo.1079909, 2015.
Whitaker, J. S. and Hamill, T. M.: Ensemble Data Assimilation without
Perturbed Observations, Mon. Weather Rev., 130, 1913–1924,
https://doi.org/10.1175/1520-0493(2002)130<1913:EDAWPO>2.0.CO;2, 2002.
Whitaker, J. S. and Hamill, T. M.: Evaluating Methods to Account for System
Errors in Ensemble Data Assimilation, Mon. Weather Rev., 140,
3078–3089, https://doi.org/10.1175/MWR-D-11-00276.1, 2012.
Wiedinmyer, C., Quayle, B., Geron, C., Belote, A., McKenzie, D., Zhang, X.,
O'Neill, S., and Wynne, K. K.: Estimating emissions from fires in North
America for air quality modeling, Atmos. Environ., 40, 3419–3432,
https://doi.org/10.1016/j.atmosenv.2006.02.010, 2006.
Wiedinmyer, C., Akagi, S. K., Yokelson, R. J., Emmons, L. K., Al-Saadi, J. A., Orlando, J. J., and Soja, A. J.: The Fire INventory from NCAR (FINN): a high resolution global model to estimate the emissions from open burning, Geosci. Model Dev., 4, 625–641, https://doi.org/10.5194/gmd-4-625-2011, 2011.
WRF Users Page: WRF Model Users' Page, WRF Users Page [code], https://doi.org/10.5065/D6MK6B4K, 2022.
Yamartino, R. J.: Nonnegative, Conserved Scalar Transport Using
Grid-Cell-centered, Spectrally Constrained Blackman Cubics for Applications
on a Variable-Thickness Mesh, Mon. Weather Rev., 121, 753–763,
https://doi.org/10.1175/1520-0493(1993)121<0753:NCSTUG>2.0.CO;2, 1993.
Yang, Z.-L., Niu, G.-Y., Mitchell, K. E., Chen, F., Ek, M. B., Barlage, M.,
Longuevergne, L., Manning, K., Niyogi, D., Tewari, M., and Xia, Y.: The
community Noah land surface model with multiparameterization options
(Noah-MP): 2. Evaluation over global river basins, J. Geophys.
Res.-Atmos., 116, D12110, https://doi.org/10.1029/2010JD015140, 2011.
Yin, X.-M., Dai, T., Xin, J.-Y., Gong, D.-Y., Yang, J., Teruyuki, N., and Shi, G.-Y.: Estimation of aerosol properties over the Chinese desert region with MODIS AOD assimilation in a global model, Adv. Clim. Chang. Res., 7, 90–98, https://doi.org/10.1016/j.accre.2016.04.001, 2016.
Yuan, H., Dai, Y., Xiao, Z., Ji, D., and Shangguan, W.: Reprocessing the
MODIS Leaf Area Index products for land surface and climate modelling,
Remote Sens. Environ., 115, 1171–1187, https://doi.org/10.1016/j.rse.2011.01.001, 2011.
Yumimoto, K. and Takemura, T.: Long-term inverse modeling of Asian dust:
Interannual variations of its emission, transport, deposition, and radiative
forcing, J. Geophys. Res.-Atmos., 120, 1582–1607,
https://doi.org/10.1002/2014JD022390, 2015.
Yumimoto, K., Nagao, T. M., Kikuchi, M., Sekiyama, T. T., Murakami, H.,
Tanaka, T. Y., Ogi, A., Irie, H., Khatri, P., Okumura, H., Arai, K., Morino,
I., Uchino, O., and Maki, T.: Aerosol data assimilation using data from
Himawari-8, a next-generation geostationary meteorological satellite,
Geophys. Res. Lett., 43, 5886–5894, https://doi.org/10.1002/2016GL069298, 2016.
Zhang, Y., Bocquet, M., Mallet, V., Seigneur, C., and Baklanov, A.:
Real-time air quality forecasting, part II: State of the science, current
research needs, and future prospects, Atmos. Environ., 60, 656–676,
https://doi.org/10.1016/j.atmosenv.2012.02.041, 2012a.
Zhang, Y., Bocquet, M., Mallet, V., Seigneur, C., and Baklanov, A.:
Real-time air quality forecasting, part I: History, techniques, and current
status, Atmos. Environ., 60, 632–655,
https://doi.org/10.1016/j.atmosenv.2012.06.031, 2012b.
Short summary
An EnKF was applied to CMAQ for assimilating ground PM2.5 observations from China and South Korea. The EnKF performed better than that without assimilation and even superior to 3D-Var. The reduced MBs in 24 h predictions were 48 % and 27 % by improving ICs and BCs, respectively.
An EnKF was applied to CMAQ for assimilating ground PM2.5 observations from China and South...