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Abstract. In this study, we developed a data assimilation
(DA) system for chemical transport model (CTM) simula-
tions using an ensemble Kalman filter (EnKF) technique.
This DA technique is easy to implement in an existing system
without seriously modifying the original CTM and can pro-
vide flow-dependent corrections based on error covariance
by short-term ensemble propagations. First, the PM2.5 obser-
vations at ground stations were assimilated in this DA system
every 6 h over South Korea for the period of the KORUS–
AQ campaign from 1 May to 12 June 2016. The DA per-
formances with the EnKF were then compared to a control
run (CTR) without DA and a run with three-dimensional
variational (3D-Var) DA. Consistent improvements owing to
the initial conditions (ICs) assimilated with the EnKF were
found in the DA experiments at a 6 h interval compared to
the CTR run and to the run with 3D-Var. In addition, we at-
tempted to assimilate the ground observations from China to
examine the impacts of improved boundary conditions (BCs)
on the PM2.5 predictability over South Korea. The contribu-
tions of the ICs and BCs to improvements in the PM2.5 pre-
dictability were also quantified. For example, the relative re-
ductions in terms of the normalized mean bias (NMB) were
found to be approximately 27.2 % for the 6 h reanalysis run.
A series of 24 h PM2.5 predictions were additionally con-
ducted each day at 00:00 UTC with the optimized ICs. The
relative reduction of the NMB was 17.3 % for the 24 h pre-
diction run when the updated ICs were applied at 00:00 UTC.
This means that after the application of the updated BCs, an

additional 9.0 % reduction in the NMB was achieved for 24 h
PM2.5 predictions in South Korea.

1 Introduction

Among many air pollutants, particular attention has been
paid to the issue of atmospheric aerosols in East Asia and
South Korea, where large anthropogenic emissions from
growing economic activities cause frequent episodes of high
air pollution. Several environmental and epidemiological
studies have suggested that continual exposure to particu-
late matter with aerodynamic diameter smaller than 2.5 µm
(PM2.5) has critical effects on human mortality and mor-
bidity (Pope and Dockery, 2006; Cohen et al., 2017; De-
hghani et al., 2017). Because of the severity of the influ-
ences of PM2.5 on human health, the accuracy of PM2.5 fore-
casts has become a central issue in South Korea. To achieve
the goal of improving PM2.5 predictability, the National In-
stitute of Environmental Research (NIER) of South Korea
has implemented daily operational air quality forecast since
2014 using a 3-D chemical transport model (CTM) (Chang
et al., 2016), while the Korean Ministry of the Environment
(KMoE) provides real-time observations of PM2.5, together
with the concentrations of five other criteria air pollutants
(PM10, O3, CO, SO2, and NO2) via a website named “Air Ko-
rea” (https://www.airkorea.or.kr, last access: 22 March 2022
). Although in general the CTM simulation can overcome
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the spatial and temporal limitations of ground observations,
it has large uncertainties that are due to imperfect emissions,
initial conditions (ICs), boundary conditions (BCs), meteoro-
logical fields, and physical and photochemical mechanisms
(Carmichael et al., 2008; Solazzo et al., 2012).

To improve the accuracy of short-term predictions via
CTM simulations, chemical data assimilation (DA) has been
proposed as an effective method to reduce the uncertainties
in the CTM parameters (e.g., Sandu and Chai, 2011; Zhang
et al., 2012a, b; Bocquet et al., 2015; Menut and Bessag-
net, 2019). Chemical DA is a technique for integrating infor-
mation provided by noisy observations and imperfect back-
ground estimations from CTM simulations. This integration
of the two groups of information can theoretically better rep-
resent the true state of the chemical atmosphere. DA tech-
niques have been predominantly applied in the numerical
weather prediction (NWP) (Kalnay, 2002), such as optimal
interpolation (OI: Lorenc, 1981), the three-dimensional vari-
ational method (3D-Var: Lorenc, 1986; Parrish and Derber,
1992; Rabier et al., 1998), the four-dimensional variational
method (4D-Var: Talagrand and Courtier, 1987; Courtier et
al., 1994; Rabier et al., 2000), and the ensemble Kalman fil-
ter (EnKF: Evensen, 2003). While the utilization of DA tech-
niques in air quality predictions has been limited, these tech-
niques have more recently started to be used for air quality
prediction as well. To date, several DA methods have been
applied to optimize the uncertainties in model input parame-
ters, including ICs (e.g., Elbern and Schmidt, 2001; Park et
al., 2016), BCs (e.g., Roustan and Bocquet, 2006), and emis-
sion fluxes (e.g., Elbern et al., 2007).

For the past 2 decades, various DA algorithms have been
applied, especially to aerosol prediction studies. Several
studies have focused on assimilating aerosol observations via
OI (Lee et al., 2013; Park et al., 2011, 2014; Tang et al., 2015,
2017; Chai et al., 2017; Lee et al., 2020), 3D-Var (Pagowski
et al., 2010; Liu et al., 2011; Schwartz et al., 2012; Saide et
al., 2013; Jiang et al., 2013; Li et al., 2013; Pang et al., 2018;
Ha et al., 2020), and 4D-Var (Benedetti et al., 2019; Mor-
crette et al., 2009). All the previous studies mentioned above
have reported that the OI, 3D-Var, and 4D-Var assimilations
using satellite-retrieved or ground-based observations led to
improved aerosol predictability.

Even so, each of these DA methods has its own limitations.
OI and 3D-Var usually employ isotropic corrections due to
a static (i.e., time-invariant) background error covariance
(BEC) based on model climatological profiles. Although 4D-
Var has been reported to show better performance than OI
and 3D-Var, it requires constant development and mainte-
nance of a tangent linear and adjoint model, which may be
a time-consuming and labor-intensive task (Skachko et al.,
2014). On the other hand, EnKF is relatively easy to imple-
ment without requiring a tangent linear or adjoint model and
can easily compute flow-dependent BEC from short-term
ensemble predictions. This flow dependence of the BEC is
one of the main reasons behind the possible success of the

EnKF method compared to other DA methods. Several stud-
ies (Tang et al., 2011; Pagowski and Grell, 2012; Yumimoto
and Takemura, 2015; Rubin et al., 2016; Yumimoto et al.,
2016; Peng et al., 2017, 2018; Lopez-Restrepo et al., 2020)
applied the EnKF DA approach to improve the accuracy of
air quality prediction via assimilating surface and/or satellite
observations. For example, Yumimoto et al. (2016) applied
the EnKF method with satellite-retrieved aerosol observa-
tions to evaluate the effectiveness of the DA on dust forecasts
and found improved agreement between the predictions and
observations. More recently, Peng et al. (2017) reported sig-
nificant improvements in PM2.5 prediction via the joint op-
timization of ICs and emissions using the EnKF method by
assimilating ground-based PM2.5.

To optimize the ICs, two studies (Lin et al., 2008; Can-
diani et al., 2013) carried out assimilation using ground-
based aerosol observations with different variants of EnKF
DA algorithms. However, few studies have applied the EnKF
method to examine the importance of BCs. When long-range
transport is an important issue, BCs can provide important
information. For example, Constantinescu et al. (2007a) ex-
tended the EnKF method to consider lateral BCs and cor-
rect emission flux factors in the assimilation process by solv-
ing the state parameter estimation problem. Other than this
study, no prior study has applied the EnKF method to this
type of research, particularly with the Community Multiscale
Air Quality (CMAQ) model.

This work is a new endeavor to develop an EnKF DA sys-
tem for the CMAQ model. The period of the KORUS–AQ
campaign 2016 (1 May to 11 June 2016) was chosen to be the
target period to test the developed EnKF DA system, since
this period includes well-defined and various types of air pol-
lution episodes, e.g., yellow dust events, stagnant high-PM
episodes, long-range transport events, and rainy days (Peter-
son et al., 2019; Jordan et al., 2020). To improve the pre-
dictability of PM2.5 in South Korea for this period, ground-
based PM2.5 data were assimilated to update the IC and BC
fields. Since this is our first attempt to develop an EnKF DA
system, we also compared the performances of the EnKF DA
system with the existing 3D-Var DA algorithm (Lee et al.,
2022).

We believe that this study can be distinguishable from
other EnKF studies in three aspects: (i) the EnKF chemi-
cal DA system was first developed to assimilate PM2.5 for
or with the CMAQ model. In particular, this study intended
to enhance the accuracy of PM2.5 prediction via assimilating
ground-observed PM2.5 in South Korea (nearly 150 stations)
and China (nearly 850 stations). The advantages of the as-
similation of ground-observed PM2.5 are also discussed in
the text. (ii) The first developed EnKF DA system was ap-
plied to PM2.5 predictions in South Korea, where air qual-
ity is frequently influenced by long-range transport from the
eastern, northern, and northeastern parts of China (EC, NC,
and NEC in Fig. 1). (iii) To evaluate the influences of inflow
from China on air quality in South Korea more quantitatively,
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this study assimilated the ground observations from China
and South Korea separately.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the methodology of this study, including
the DA algorithm, CTM, observations, and experimental set-
tings. Section 3.1 discusses the effects of assimilation of
ground-based observations and then compares the results
with those from 3D-Var based on the reanalysis results. Sec-
tion 3.2 provides the results of improved BCs in 1 d pre-
diction simulations. Section 3.3 quantifies the contributions
of updating ICs and BCs with statistical analysis. Finally,
Sect. 4 concludes the paper.

2 Methods

2.1 Ensemble Kalman filter (EnKF)

The EnKF is a DA technique first introduced by Evensen
(1994), which was an approximate version of the Kalman
filter (KF) (Kalman, 1960). The basic principle of the KF is
to estimate a true state, while minimizing the variances of
the state with a linear combination of the best estimates of
the model and the observations. The optimal state estimated
from the KF shows less uncertainty than the model predic-
tions and observations. This optimal state is called the “anal-
ysis”. To apply the KF to a nonlinear model, a tangent linear
model needs to be constructed, as does its adjoint. However,
the EnKF requires neither a tangent linear model nor its ad-
joint, since it employs Monte Carlo approximation that can
estimate the model error covariances using finite ensemble
simulations (Evensen, 1994). In particular, the model error
covariances used in the EnKF technique are flow-dependent,
which is one of the major differences from other DA meth-
ods.

The theoretical foundation of the EnKF method proposed
by Evensen (2003) is briefly presented below.
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Here, the subscripts i and k represent the ith ensemble mem-
ber and the time sequence, respectively. In this set of equa-
tions, the first information to estimate the true state is the
forecast state xf

i,k in Eq. (1). This is the predicted state esti-
mated from the model simulation (M) using the updated ini-
tial state, xa, of the previous time step (k−1). Here, xa

i,k−1 is
obtained via DA. The model predictions also include pseudo-
random model error, q, drawn from a Gaussian probability
distribution function (PDF) with zero mean value and covari-
ance, Pf, [q ∼N(0,Pf)]. The second piece of information is
the observations, yo

i , at time k, which are randomly sampled

from the PDF of the observations. The PDF of the obser-
vations can be generated based on error information from
the observed values. Each ensemble member is generated
with the assimilation of perturbed observations (yo

i ). The
new analyses are then conducted following Eq. (3). These
analyses are used for the next ensemble predictions (we term
them “propagations”). H is a linear operator that transforms
the model space into the observation space. K is the Kalman
gain matrix at a specific time that includes both model and
observation errors shown in Eq. (4). The observation error
covariance matrix, R, contains measurement and representa-
tion errors and can be calculated from the defined observa-
tion error, εo, [R= εo(εo)T]. Pf is the model error covari-
ance matrix that explains the spatial error correlations and
error correlations among the model variables. This can be
estimated via the ensemble approach formulated in Eqs. (5)
and (6) shown below.
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The overbar represents the ensemble mean. One of the ad-
vantages of the EnKF method is that instead of storing a full
covariance matrix (Pf), the error statistics can be computed
by Eqs. (5) and (6) using ensembles of model states with the
assumption that the ensemble mean can be the best estimate
of the true state.

The practical approaches to implement Eqs. (1)–(6) are
described as follows. First, through multiple pre-sensitivity
tests with the considerations of both model performances and
computational costs, the total number of ensembles (N ) was
determined to be 40. Although the results of these sensitivity
tests are not presented in this paper, this number of ensemble
members (N = 40) has generally been used in many other
EnKF applications (e.g., Schutgens et al., 2010; Coman et
al., 2012; Dai et al., 2014).

Second, the diagonal components in the observation er-
ror covariance matrix, R, were calculated based on the as-
sumption that no errors are correlated among observation
locations. The components of R matrix have been esti-
mated, while considering the contributions from measure-
ment and representation errors in several previous studies
(e.g., Schwartz et al., 2014; Peng et al., 2017; Chen et al.,
2019). The application of this method to the observation data
resulted in average observation errors of around 5 % of the
observed values. Therefore, for simplicity, in this study the
observation errors were set to be 5 % of the observations. To
generate perturbed observations (yo

i,k) at a specific time in
Eq. (2), 40 random samples (εo

i ) were drawn from the Gaus-
sian distribution having 0 mean value and standard deviations
of 5 % of the observation values.
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Figure 1. Simulation domains with nested modeling. D1 and D2 represent the mother and daughter domain, respectively. The locations of
ground stations in China (D1) and South Korea (D2) are marked on the maps with green dots. In D1 (left), the northeastern China (NEC),
northern China (NC), and eastern China (EC) regions that frequently influence air quality in South Korea are grouped with olive, violet, and
coral colors, respectively. The red star symbol indicates Baekryeong-do observatory, where the evaluation of boundary inflow was made. Jeju
Island in D2 (right) is an ideal location to see the flow-dependent correction by the EnKF DA. The total number of available stations used in
EnKF data assimilation is also shown in both domains.

Because almost no observation locations exactly match
the uniform model grid points, an observation operator, H,
is required to interpolate the model grid point concentra-
tions to the observation locations. Thus, H was constructed
in the form of a matrix with weighting factors proportional
to the inverse distances from the four edge points of the
model grid that surrounds the observation location. Because
the CMAQ model does not provide PM2.5 directly, we calcu-
lated the PM2.5 using a post-processing tool (https://github.
com/USEPA/CMAQ/tree/main/POST/combine, last access:
22 March 2022) rather than considering all the aerosol
species for the H matrix. After assimilating the observed
PM2.5, we applied the increment ratio to all the PM2.5-related
aerosol species based on the original contributions because
the PM2.5 is a single control variable in this study.

Third, the method to generate the ensemble spread for the
model (xf

i) is as follows: in the CTM runs, the state vector x
is propagated from time k−1 to time k. This can be expressed
in the following discrete form:

xf
i (k)=M

(
xb
i (k− 1) ,ηb

i (k− 1)
)
. (7)

Here, the superscripts f and b denote forecast and back-
ground, respectively, while M denotes the model dynamic
operator. The subscript k, representing time in the previous
section, is replaced by (k) here. The state vector x defined
in our study represents the PM2.5 IC to be updated, and η
represents the model parameters that are perturbed but not
updated through EnKF. This indicates that the multivariate
covariances among the aerosol species are not considered. In
this study, emissions and BCs were considered to be η. The
approaches to generate initial ensembles, emissions, and BCs
via random perturbation are described below.

The initial ensembles were created by perturbing the back-
ground values of state vector, xb, at time t = 0 following the

equation below:

xb
i (0)= x

b (0)+ δxi (0) , i = 1,2, . . .,N, (8)

where δxi represents the N number of random samples se-
lected from the Gaussian distribution with zero mean and
standard deviations of 50 % of the background concentra-
tion at each corresponding model grid. This magnitude of
perturbation was applied to all the layers vertically. Because
the PM2.5 at higher altitudes (e.g., above 2 km) was less than
5 µg m−3 on average, there was less chance of vertical error
correlation. Following this process, we prepared 40 ensem-
ble members (N = 40) for the initial ensemble. These 40 ICs
propagated over time through the CTM (M) with another
perturbed parameter (η).

For perturbing BCs and emission rates, we took time-
correlated noise into account to maintain the temporal evolu-
tion of those parameters. In addition, avoiding the rapid fluc-
tuations of perturbations is another reason for the use of time-
correlated noise (colored noise). The method of adding col-
ored noise is the same as that described in Tang et al. (2011).

ηb
i (k)= η

b(k)+ δηi(k) (9)

δηi (k)= αδηi (k− 1)+
√

1−α2σωi(k− 1),

i = 1,2, . . .,N (10)
α = exp(−1/τ) (11)

Here, ηb is the background emission field or BCs, δηi de-
notes the random perturbation samples obtained from the
previous time step, and α represents the smoothing coeffi-
cient, which is a function of time decorrelation scale (τ ), for
which we used 24 h. ωi(k− 1) is the random sample drawn
in the previous time step from the Gaussian distribution with
zero mean and a standard deviation of 1. For the standard
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deviations (σ ), we used 30 % of the boundary inflow con-
centrations for PM2.5 and 50 % of the background emission
rates. These perturbation ranges for constructing ensemble
spreads were also used in all vertical layers, similar to the
perturbation of ICs.

In theory, an ensemble of infinite model states can provide
the most realistic estimation of the model error. However, be-
cause of the limitations of the computational cost, ensembles
with finite sizes are used to provide an approximation to the
error covariance matrix. A limited ensemble size causes sam-
pling errors. A small ensemble size may lead to underestima-
tion of the prediction error covariances, which is called “fil-
ter divergence” (Houtekamer and Mitchell, 1998), and makes
spurious corrections in regions remote from the observation
locations, which is called “spurious correlation” (Constanti-
nescu et al., 2007b). To avoid such filter divergence and spu-
rious correlation, we applied covariance inflation and local-
ization. The Gaspari–Cohn piecewise polynomial (Gaspari
and Cohn, 1999) with a horizontal width of 100 km and a ver-
tical width of 2 km was used to prevent spurious correlation
by localizing the model error covariances. By conducting a
sensitivity test, we determined these horizontal and vertical
limits, which were small enough to remove the spurious cor-
relation but large enough to encompass the spatial error cor-
relation estimated by ensemble predictions (Eqs. 5 and 6).
In addition, the relaxation-to-prior-spread (RTPS) inflation
(Whitaker and Hamill, 2012) method was applied against the
filter divergence by inflating the ensemble spread before and
after the DA. The inflation factor 1.0 was chosen through ex-
perimentation, while Pagowski and Grell (2012) applied the
inflation factor 1.2 for both meteorological and aerosol vari-
ables, and Schwartz et al. (2014) used the inflation factors
1.12 and 1.2 for meteorological variables and aerosol species,
respectively. Because we did not perturb any meteorological
variables to retain the dynamic balances (i.e., assuming no
uncertainty in the meteorological model), the spreads in the
predicted (or propagated) ensemble were occasionally less
than the observation spread. Therefore, we inflated the en-
semble spreads before and after the DA rather than using an
inflation factor larger than 1.0. To inflate the predicted en-
semble (before DA), we used the spread at the previous anal-
ysis time (e.g., 6 h before propagation).

2.2 Three-dimensional variational data assimilation
(3D-Var)

An analysis state generated by 3D-Var is obtained by mini-
mization of the cost function as follows:
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Most of the notations in Eq. (12) are the same as those in
Eq. (3), except for the time-invariant (static) BEC matrix, B.

The National Centers for Environmental Prediction (NCEP)
grid point statistical interpolation (GSI) provides the 3D-Var
DA algorithm. Based on the GSI version 3.6 (Shao et al.,
2016), Lee et al. (2022) modified it, developing an interface
with the CMAQ model. The National Meteorological Cen-
tre (NMC) method (Parrish and Derber, 1992) was used to
provide the B matrix that contains the standard deviations, as
well as the vertical and horizontal length scales of the model
errors. In the NMC method, the model errors were approx-
imated from a set of differences between the model predic-
tions with different lengths of time window. We used a total
of 42 pairs of 12 and 24 h model predictions for the BEC
calculations, following the method of Schwartz et al. (2012).
Including uncertainty in emissions, Lee et al. (2022) showed
that the averaged error standard deviation in the first layer
was 8.73 µg m−3, and the horizontal and vertical length scale
estimated from the B matrix were 119.7 km and 8.7 grids,
respectively (refer to Fig. 3 in Lee et al., 2022). The details
of the 3D-Var development, including the minimization al-
gorithm, observation operator, and observation error covari-
ances, can be found in Lee et al. (2022).

2.3 Numerical models and input data

In this study, the EnKF DA algorithm was developed for the
Weather Research and Forecasting (WRF)–CMAQ modeling
system. The WRF–CMAQ system was run in offline mode,
which means that the CMAQ model runs were performed
sequentially after the meteorological fields were generated
by the WRF model. This section briefly describes the two
numerical models, input fields (e.g., emission and meteorol-
ogy), simulation domains, and observation data used for the
DA.

The WRF version 3.8.1 (Skamarock et al., 2008) with
the Advanced Research WRF (ARW) dynamical core was
used to produce meteorological fields for the CMAQ model
simulations. The ARW dynamical core employs fully com-
pressible and nonhydrostatic Euler equations, together with
Arakawa C-grid staggering. In the WRF simulations, the fi-
nal (FNL) operational global analyses data produced by the
NCEP (Saha et al., 2010) were used for the ICs and BCs.
Temporal and spatial resolutions of the FNL data are 6 h
and 0.25◦, respectively. To minimize the uncertainty in the
meteorological fields, the ground measurements and vertical
radiosonde data were also assimilated with 3 and 6 h inter-
vals, respectively, with the Newtonian relaxation (or nudg-
ing) method (Stauffer and Seaman, 1990). The hourly mete-
orological fields were provided by the WRF model simula-
tions, and they were then converted into CMAQ-ready format
via the Meteorology–Chemistry Interface Processor (MCIP
v4.3; Otte and Pleim, 2010). Table 1 summarizes the detailed
model configurations of the WRF model simulations.

The CMAQ model v5.1 (Byun and Ching, 1999; Byun and
Schere, 2006) was used in this study to simulate the atmo-
spheric photochemistries, aerosol dynamics, aerosol thermo-
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Table 1. WRF model configurations selected in this study.

Parametrization WRF option

Planetary boundary layer Yonsei University (YSU) scheme (Hong et al., 2006)
Microphysics WRF single-moment six-class (WSM6) scheme (Hong and Lim, 2006)
Cumulus parameterization Grell–Freitas ensemble scheme (Grell and Freitas, 2014)
Land surface model Noah-MP (Niu et al., 2011; Yang et al., 2011)
Shortwave/longwave options Rapid Radiative Transfer Model for Global Circulation Models (RRTMG) (Iacono et al., 2008)
Surface layer options Revised MM5 scheme for Jiménez et al. (2012)

dynamics, and transport of atmospheric species. The CMAQ
runs have two domains in accordance with our experimen-
tal purposes. The horizontal resolutions of the mother do-
main (D1) and daughter domain (D2) are 27 and 9 km, re-
spectively, with 15 vertical layers, while the model top is at
20 km. Table 2 lists the CMAQ model configuration.

The mother domain (D1) for the CMAQ model simula-
tions covers northeastern Asia including China, the Korean
Peninsula, and Japan, and the daughter domain (D2) nested
in the D1 targets South Korea (refer to Fig. 1). With this
nesting configuration, we intended to examine how the BCs
provided by D1 affect the PM2.5 predictability in D2. Be-
cause the PM2.5 predictability in South Korea is the focus of
this study, most of the experiments were carried out in D2,
while model simulations over D1 were used to provide D2
with BCs. Table 3 summarizes the domain descriptions for
the WRF and CMAQ model runs.

For another important input field into the CMAQ model
simulations, emission data were prepared. KORUS v2.0
emission fields (Jang et al., 2020) were employed for an-
thropogenic emissions in the two domains. This emission
inventory also supported official CTM simulations for the
KORUS–AQ field campaign in 2016. To prepare biogenic
emissions, the Model of Emissions of Gases and Aerosols
from Nature (MEGAN v2.1; Guenther et al., 2006, 2012)
was run with MODIS land cover data (Friedl et al., 2010), to-
gether with MODIS-derived leaf area index (LAI) (Myneni et
al., 2002; Yuan et al., 2011). For the MEGAN runs, the same
meteorological fields generated from the WRF model simu-
lations were used. For the considerations of fire emissions,
the Fire Inventory from NCAR (FINN) was used (Wiedin-
myer et al., 2006, 2011).

The observation data used in the EnKF DA experiments
were PM2.5 data obtained from ground stations located in
China and South Korea. We acquired the PM2.5 data over
China from the China urban air quality real-time data re-
lease platform (http://106.37.208.233:20035, last access: 3
March 2020) managed by the Chinese Ministry of Ecology
and Environment, along with another complementary web-
site (http://www.pm25.in, last access: 3 March 2020). For
the PM2.5 data over South Korea, the data were downloaded
from the National Ambient air quality Monitoring Informa-
tion System (NAMIS) of Korea (https://www.airkorea.or.kr,

last access: 3 March 2020). The maximum available observa-
tions for PM2.5 throughout the period of KORUS–AQ cam-
paign were 866 and 165 in China and South Korea, respec-
tively. Figure 1 shows the locations of those ground stations
in D1 and D2.

2.4 Experimental setup

For the control run (CTR) without DA, hourly predictions
were conducted in D1 by the CMAQ model simulations to
generate the BCs for D2. After that, using the BCs we im-
plemented 24 h CMAQ predictions over D2 each day from
25 April to 12 June 2016, with the first 5 d for spin-up and
the sixth day for adapting times for the EnKF DA. To pro-
vide the meteorological inputs into the CMAQ model runs
over D2, the WRF model simulations were initialized each
day 12 h before the CMAQ initialization. In this case, the
first 12 h simulations were regarded as the spin-up times of
the meteorological model. To initialize the next 24 h predic-
tions, the CMAQ model utilized the last hour outputs from
the previous 24 h predictions.

The initial ensemble of 40 runs was made based on the
CTR output obtained at 00:00 UTC on 30 April by perturb-
ing ICs, as described in Sect. 2.1. The ensemble propagations
of the CMAQ model simulations started at 00:00 UTC on
30 April. The DA interval for reanalysis purposes was deter-
mined to be 6 h. At the end of the first 6 h prediction (or prop-
agation) of this initial ensemble, the first EnKF DA of PM2.5
was conducted at 06:00 UTC on 30 April, and the updated
initial fields from the EnKF DA are termed the “analysis en-
semble” (xa

i,k). These analysis states were again propagated
until the next EnKF DA step (12:00 UTC) and were then used
as the background state (xf

i,k+1) in the next DA step (Eq. 3).
Following this process, the analysis–prediction cycle was re-
peated in the DA sequences to correct the ICs using the EnKF
method. Note that the last DA was carried out at 18:00 UTC
on 11 June, and the first three cycles were considered to
be an adapting time for EnKF. Consequently, the analysis–
prediction outputs acquired from the four time cycles a day
are considered to be a reanalysis run (“ANL”) rather than pre-
dictions. Meanwhile, 24 h predictions (i.e., 24 h DA interval)
were also carried out every day, starting from 00:00 UTC on
1 May to 11 June, with the mean state of the analysis fields
(xa). A total of 42 d predictions are performed for the predic-
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Table 2. CMAQ model configurations selected in this study.

Parametrization CMAQ option

Aerosol thermodynamics AERO6 (Appel et al., 2013)
Gas-phase chemistry SAPRC07tc (Hutzell et al., 2012)
Chemistry solver Euler backward iterative (EBI) chemistry solver (Hertel et al., 1993)
Dry deposition M3DRY (Pleim and Xiu, 2003)
Horizontal advection Yamo global mass-conserving scheme (Yamartino, 1993)
Vertical advection Vwrf-piecewise parabolic method (Colella and Woodward, 1984)
Horizontal diffusion Multiscale (Louis, 1979)
Vertical diffusion Asymmetric Convective Model version 2 (ACM2; Pleim, 2007a, b)

Table 3. Domain descriptions for WRF and CMAQ models.

Model WRF v3.8.1 CMAQ v5.1

Domain D1 D2 D1 D2

Horizontal grids 153× 114 109× 109 144× 105 100× 100
Grid resolution 27 km 9 km 27 km 9 km
Vertical layers 33 layers (top: 50 hPa) 15 layers∗ (top: 20 km)
ICs and BCs NCEP FNL 0.25◦ data Predefined clean profiles

Target periods 00:00 UTC 1 May 2016–00:00 UTC 12 June 2016

∗ The 15 mid-layer heights correspond to 16, 57, 123, 206, 332, 503, 676, 963, 1468, 2174,
3071, 4119, 5614, 8337, and 13 636 m of altitude above ground level.

Figure 2. Schematic flowchart for the experiments performed in
this study. To evaluate PM2.5 predictability in South Korea, (a) the
DA_ic experiment updates the initial conditions (ICs) only within
D2, while (b) the DA_icbc experiment provides D2 with updated
boundary conditions (BCs) via assimilating ground observations in
China (CHN obs.) and also updating the ICs for D2 using Korean
ground observations (KOR obs.).

tion run (“PRD”) in this study. Figure S1 of the Supplement
shows a schematic of these prediction cycles.

In addition to the CTR run, the two experiments labeled
DA_ic (Fig. 2a) and DA_icbc (Fig. 2b) were also made over
South Korea (D2). In both the DA_ic and DA_icbc runs,
ground-level PM2.5 collected in D2 was assimilated to update
the ICs. The only difference between the two experiments is

the process of acquiring the BCs. In the DA_ic experiment,
the BCs were obtained from the CTR run over D1, while in
the DA_icbc experiment, the BCs were obtained from the
runs with the EnKF DA using ground-measured PM2.5 col-
lected in China. The technical methods to run the ANL and
PRD simulations were the same in both the DA_icbc and
DA_ic experiments.

In the DA_ic experiment, we updated only ICs, while in
the DA_icbc experiment, we updated both the ICs and the
BCs. The goals of this experimental setup are to make it pos-
sible to evaluate how much and to what degree the EnKF
DA technique could enhance the PM2.5 prediction skills and
to separately estimate the contributions of the improved ICs
and BCs to the predictabilities of PM2.5 over South Korea.

3 Results and discussion

3.1 Impact of the improved initial fields

Figure 3 shows the daily variations of surface PM2.5 from
1 May to 12 June 2016 (KORUS–AQ period). In Fig. 3, the
observations (OBS), denoted by open circles, were obtained
by averaging all the ground PM2.5 available in South Korea
(we call this the “aggregation plot”). The simulation results
(CTR, ANL with the 3D-Var, and ANL with the EnKF) were
also calculated by averaging the model outputs at the corre-
sponding observation locations. Figure 3 shows that the con-
trol run (CTR) without DA (solid blue line) tended to con-
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sistently underestimate the daily averaged PM2.5 throughout
the simulation period. The ANL simulation with the EnKF
(solid red line) showed the best agreement with the obser-
vations. The performances of the EnKF are also found to be
better than those of the 3D-Var (dashed purple line).

Figure 4a and b present the horizontal distributions of sur-
face PM2.5 for the background and analysis fields at a specific
EnKF DA sequence, respectively. Here, the “analysis field”
indicates the ICs updated by the EnKF method. Figure 4a and
b also plot the observed PM2.5 used in the DA with the same
color scale. Figure 4c gives the analysis increments repre-
senting the extent of the corrections of PM2.5 by the EnKF
data assimilation. Again, the background fields tended to un-
derestimate the PM2.5 over the inland areas. As discussed
in Sect. 2.4, Fig. 4b was obtained using an average of 40
analysis ensembles. It can be seen how the estimated back-
ground error covariance with a short-term ensemble propa-
gation could correct the model background by assimilating
observations. At a relatively isolated ground station, such as
Jeju Island (the location is shown in Fig. 1), the analysis in-
crements occurred largely in the downwind area (Fig. 4c).
This provides a clear example of flow-dependent correction
of the EnKF technique. As another example for clearly show-
ing flow-dependent behavior, the increment comparison be-
tween 3D-Var and EnKF is presented in Fig. S2 of the Sup-
plement.

Figure 5 presents the average diurnal variations generated
by aggregating the PM2.5 data during 42 d from all the ob-
servation sites. The vertical bars indicate 1 standard devia-
tion of the averaged samples. Figure 5 shows a clear pattern
of the results from each simulation, showing distinct diur-
nal variations. This pattern appears to be caused mainly by
the changes in meteorological fields during the day. During
daytime, relatively high mixing height due to the thermal and
mechanical development of boundary layers could lead to de-
creased PM2.5 within the boundary layers. In contrast, after
sunset, PM2.5 started to increase because the mixing height
became shallow due to the stable atmospheric conditions
caused by sunset and the weak wind speeds. This diurnal pat-
tern was also found in the observation data, but their varia-
tions are weaker than those from the model simulations. The
CTR experiment again consistently underestimated the diur-
nal PM2.5 throughout a day. However, quite good agreement
with the observed PM2.5 was found in the ANL simulations
with the EnKF (solid red line). Focusing on the mean values
only at each DA time (00:00, 06:00, 12:00, and 18:00 UTC),
the updated concentrations for the 3D-Var simulations (pur-
ple triangles) are always closer to the observations than those
for the EnKF simulations (red triangles). This indicates that
the 3D-Var used larger model errors with higher uncertain-
ties than those of the EnKF when the DA process was car-
ried out. However, the EnKF showed better performance
than the 3D-Var simulations in the following time, especially
during the daytime (e.g., 01:00 to 06:00 UTC and 07:00 to
12:00 UTC), although its correction strength by assimilation

is lower than the 3D-Var. We believe this is because the flow-
dependent characteristics of model errors in the EnKF tech-
nique improve the model fields more realistically than those
in 3D-Var. In contrast, 3D-Var uses a “static” climatologi-
cal BEC, which usually represents a semi-Gaussian distribu-
tion. The better results from the EnKF method (than the 3D-
Var method) can also be attributed to the realistic considera-
tions of vertical mixing within the boundary layer in the BEC
(Pagowski and Grell, 2012). More sophisticated comparisons
in the configurations, such as error variances, observation op-
erator, and vertical length scale of the BEC, are necessary
in future study for a direct comparison of the two DA al-
gorithms. To more quantitatively evaluate the performances
of the 3D-Var and EnKF techniques, Table 4 also summa-
rizes the statistical metrics based on the reanalysis outputs
(ANL). Section 3.4 below discusses the quantitative evalua-
tion in more detail.

3.2 Impact of the improved boundary conditions

In the previous section, we examined the effects of the ini-
tial fields (the DA_ic experiment) in South Korea. The influ-
ences of the updated ICs tend to quickly disappear with time
over the relatively small domain (D2), particularly when at-
mospheric flows are fast. In this section, we conducted addi-
tional assimilation with the ground observations from China
in D1, in addition to the data assimilation with ground ob-
servations from South Korea (the DA_icbc experiment). The
DA_ic and DA_icbc experimental results were again com-
pared in South Korea, which is our main domain of interest.
Although the prediction strategy (refer to Fig. S1 of the Sup-
plement) was the same in the DA_icbc experiment, only PRD
runs are shown in this section for simplicity.

Figure 6 shows the averaged PM2.5 used for the four lat-
eral boundaries of domain 2 in both the DA_ic and DA_icbc
experiments. At the four lateral boundaries, PM2.5 was aver-
aged over 6 weeks, and Fig. S3 of the Supplement shows the
south, east, north, and west boundaries of domain 2 (D2). The
color-filled contours on the vertical planes correspond to the
longitudinal direction from west to east (latitudinal direction
from south to north) and the vertical direction for the south-
ern and northern (western and eastern) boundaries of domain
2. Together with the PM2.5, Fig. 6 also plots the mean wind
velocity across the four boundaries to show the inflow into
D2 and outflow from D2 with positive (solid) and negative
(dashed) contour lines, respectively. In the upper panels of
Fig. 6, the western part of the north boundary and north-
ern part of the west boundary show relatively high PM2.5
(>15 µg m−3) within 1 km of altitude. Although long-range
transport of air pollutants from China to South Korea some-
times occurs in the upper layers, the averaged PM2.5 at the
northwest boundaries were high within the boundary layer.
We should also note in Fig. 6 that the northwestern boundary
had a strong inflow that could result in high PM2.5 in D2.
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Figure 3. Daily variations of surface PM2.5 for the DA_ic experiment. Observations (OBS) are represented by a black solid line with
open circles. Model results for the control (CTR) run without DA, the reanalysis (ANL) run with 3D-Var, and reanalysis ANL with EnKF
are plotted with a blue solid line, purple dashed line, and red solid line, respectively. Values were prepared from daily averages at all the
observation sites in South Korea (D2).

Figure 4. Snapshots of the horizontal distributions of PM2.5 before (a background) and after (b analysis) the application of the EnKF
technique at 00:00 UTC on 22 May 2016. The observed concentrations are also shown on the map with the same color scales as contour
values. In the right-hand panel (c), the analysis increments are also presented, and flow-dependent corrections are visible when the wind
vectors are overlaid with the analysis increments. The big island in the Southern Sea of the Korean Peninsula is Jeju Island, where the
flow-dependent behavior can be noticed.

The middle and bottom panels of Fig. 6 show that at all the
boundaries, the DA_icbc experiment exhibited higher PM2.5
than the DA_ic experiment. This indicates that the con-
trol simulation without assimilation (CTR) over D1 under-
calculated PM2.5 in China. Figure 6c shows that there are
small changes in PM2.5 above 2 km of altitude, while the
changes become larger within the boundary layers. To quan-
tify the amounts transported into and out of D2, we calcu-
lated the PM2.5 fluxes by multiplying PM2.5 by wind ve-
locities and then averaged them over the simulation period
(refer to Fig. S4 of the Supplement). The cross-sectionally
averaged PM2.5 flux at the west boundary increased from
19.2 to 26.6 µg m−2 s−1 from the DA_ic to DA_icbc experi-
ments. This indicates that larger amounts of PM2.5 were ac-
tually transported long distances from China to South Korea,

mainly through the northwestern boundary of domain 2 dur-
ing the KORUS–AQ period.

A ground station where the influence of the BCs can be
checked is Baekryeong-do, South Korea (shown with a star
symbol in Fig. 1). This is because Baekryeong-do is located
at the west end of domain 2 (nearby the western boundary of
D2) and is also minimally affected by local inland emissions
(i.e., there are no major industries and only a small popula-
tion living on the island). Figure 7a shows the averaged di-
urnal variations of PM2.5 at Baekryeong-do evaluated from
D1. Hence, the results with (solid red line with triangles) and
without (blue dashed line with rectangles) the DA can be per-
ceived as the BCs in D2 for the DA_icbc and DA_ic exper-
iments (refer to Fig. 2), respectively. The averaged diurnal
variation of PM2.5 without the DA is in the range between
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Table 4. Statistical metrics for the experiments of DA_ic and DA_icbc. Experiments were evaluated for the 6-hourly assimilated analysis run
(ANL) and for the 1 d prediction run (PRD). The ANL run using 3D-Var in the DA_ic experiment is included for comparison.

Experiments and simulations MEAN∗ (µg m−3) R IOA RMSE (µg m−3) MB (µg m−3) NMB (%)

CTR 17.9 0.421 0.610 20.8 −10.2 −36.2

ANL (3D-Var) 22.1 0.618 0.761 15.6 −5.8 −20.8
DA_ic ANL 25.4 0.646 0.795 14.3 −2.5 −9.0

PRD 22.9 0.464 0.665 18.8 −5.3 −18.9

DA_icbc
ANL 26.5 0.656 0.804 14.1 −1.4 −5.1
PRD 25.5 0.484 0.685 18.3 −2.5 −9.9

∗ Mean concentration in observed data is 27.9 µg m−3.

Figure 5. Average diurnal variations of PM2.5 aggregated from all
ground stations in South Korea (D2) for the DA_ic experiment. The
color labels are the same as in Fig. 1, except for symbols. The error
bars with gray, cyan, purple, and pink indicate 1 standard deviation
(±σ ) for OBS, CTR, ANL by 3D-Var, and ANL by EnKF simula-
tions, respectively.

10 and 20 µg m−3, which is approximately 10 µg m−3 lower
than the observed PM2.5. However, when the assimilation of
the observations in China was applied, almost the same levels
of PM2.5 as the observations were reproduced. We found that
the 24 h predictions that were evaluated at the same location
in D2 were greatly improved (Fig. 7b). This is confirmed by
the results from the DA_icbc experiment in Fig. 7b. Since the
observed PM2.5 at the Baekryeong-do site was assimilated to
improve the ICs in both the DA_ic and DA_icbc experiments,
the predictions started from a similar PM2.5 as the observed
PM2.5. However, the predictions for the DA_icbc experiment
agreed greatly with the observed PM2.5 owing to the appli-
cation of accurate BCs, while the prediction for the DA_ic
experiment rapidly converged to the CTR run because of the
same BCs as the CTR run. It should also be noted that anal-
ysis increments by assimilating Baekryeong-do data for the
DA_icbc experiment in D2 would be minimal, as the back-
ground PM2.5 was already close to the observed PM2.5 be-
cause of the updated BCs.

Figure 8 presents the daily variations of PM2.5 like in
Fig. 3, except for the results from the “PRD runs” for the
DA_ic and DA_icbc experiments. The PRD runs are tech-
nically the same as the ANL runs except for the prediction
lead time (of 24 and 6 h, respectively). Again, significant
improvements in the DA_ic and DA_icbc experiments were
found compared to the results from the CTR run. When the
dominant synoptic wind directions were southerly or easterly
(e.g., on 2 to 4 June), there were only small differences be-
tween the DA_icbc and DA_ic experiment, and thus limited
improvements were achieved. Similarly, no improvements
for updating the boundary condition in the DA_icbc exper-
iment were found during the precipitation days on 10 and
24 May and on 1 and 6 June. However, large improvements
could be made when the yellow dust event occurred from 4
to 7 May and when the westerly winds prevailed over D2 be-
tween 20 and 27 May (except on 24 May). An example of
the impact of the updated BCs for the DA_icbc experiment
is shown in Fig. S5 of the Supplement, which explains the
higher transboundary PM2.5 after assimilating ground PM2.5
observations in China. Therefore, to improve the predictabil-
ity of PM2.5 in South Korea, it is of great importance to pro-
vide appropriate BCs by assimilating the ground observation
data in the upwind area (i.e., EC, NC, and NEC region, refer
to Fig. 1).

To evaluate the PM2.5 predictability in South Korea, Fig. 9
also displays the averaged diurnal variations and compares
the prediction runs (PRD) for the two experiments, DA_ic
and DA_icbc. The performances of 24 h predictions were
launched every 00:00 UTC. The predicted PM2.5 for the PRD
runs shows better performances than the CTR run with re-
duced errors and biases, although the biases are larger than
those for the ANL runs (shown in Fig. 3). Again, the aver-
aged diurnal PM2.5 for the DA_icbc experiment is closer to
the observations than that for the DA_ic experiment. This
is because the enhanced boundary information was repeat-
edly provided at the everyday prediction sequence. Also, the
negative biases found in the DA_ic experiment were greatly
alleviated with the DA_icbc experiment, even if the same
emissions and meteorological fields were applied for the 24 h
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Figure 6. Averaged PM2.5 distributions in the four lateral boundaries of the domain 2 (D2: south, east, north, and west from the left to the
right, refer to Fig. S4 of the Supplement). Each panel includes black contour lines that explain the inflow (solid lines) and outflow (dashed
lines) wind vector with 1 m s−1 intervals. The thick black lines indicate zero wind speed. In (a) DA_ic and (b) DA_icbc, the averaged
lateral boundary conditions are provided into D2 without and with the EnKF data assimilation in China (D1), respectively. The increments
in DA_icbc experiment are also presented in the bottom panel (c). Note that the y axis for altitude is presented in log scale to emphasize the
results below the boundary layer.

predictions. Immediate improvements could be seen after the
predictions started at 00:00 UTC. As time progressed, the bi-
ases and errors were also propagated. However, the biases
in the DA_icbc experiment became about half of those in
the DA_ic experiment. Also note that the slightly overpre-
dicted PM2.5 for the DA_icbc experiment between 18:00 and
23:00 UTC was caused by insufficient information about ver-
tical mixing during nighttime. Simulated nocturnal boundary
layer heights were lower than real boundary layer heights.
This is a critical problem in meteorological modeling and
has been discussed in many previous publications (Eder et
al., 2006; Hong, 2010).

3.3 Statistical evaluations: quantification of
contributions by updating the initial and boundary
conditions

Table 4 summarizes the statistical performance metrics that
were calculated to evaluate the model performance. Table S1
of the Supplement provides the mathematical definitions for
the performance metrics. Because the evaluations were con-
ducted using hourly data, including the prediction hours, we
did not consider a spatially independent observation. More-
over, it is difficult to randomly select sparse observation sites

(D2 in Fig. 2). Therefore, the statistical metrics were calcu-
lated including the same observation data as those used in
DA and were compared under the same conditions for all
the experiments. The average PM2.5 over the entire simu-
lation period was 27.9 µg m−3, and the CTR run produced
an underestimated PM2.5 of 17.9 µg m−3. The application of
the updated ICs (the DA_ic experiment) improved the av-
erage PM2.5, which was 25.4 and 22.9 µg m−3 for the ANL
and PRD runs, respectively. The results for the DA_icbc ex-
periment were even closer to the observations than those of
the DA_ic. The average PM2.5 from the ANL and PRD runs
for the DA_icbc experiment was 26.5 and 25.5 µg m−3, re-
spectively. All the statistical metrics for the DA_icbc exper-
iment were improved compared to the DA_ic experiment.
Focusing on the PRD runs, the IOA increased significantly
from 0.610 to 0.665 (for the DA_ic experiment) and then to
0.685 (for the DA_icbc experiment). The root mean square
error (RMSE) was reduced from 20.8 to 18.3 µg m−3 for the
DA_icbc experiment, while it was 18.8 µg m−3 for the DA_ic
experiment. This small reduction in the averaged RMSE be-
tween the DA_ic and the DA_icbc experiments can be at-
tributed to the overprediction of PM2.5 during the nighttime,
as Fig. 9 shows. On the other hand, remarkable improve-
ments were found in the MBs. In the DA_ic experiment,
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Figure 7. Averaged diurnal variations of PM2.5 aggregated at the
Baekryeong-do site from the results obtained in (a) D1 and (b) D2.
The line colors and symbols are the same as in Fig. 5, except for the
prediction runs in D2, which are plotted by dashed and solid green
lines for the DA_ic and DA_icbc experiments, respectively, in panel
(b).

the averaged MB was drastically reduced from −10.2 to
−5.3 µg m−3. Another large reduction in the averaged MB
was found from −5.3 to −2.5 µg m−3 from the DA_ic ex-
periment to the DA_icbc experiment. The normalized MB
(NMB) was also reduced by 17.3 % in the DA_ic experiment
from 36.2 % for the CTR run. In addition, the DA_icbc ex-
periment led to another considerable decrease in the NMB
by 9.0 % compared to the DA_ic experiment.

To investigate the quantitative contributions of the ICs and
BCs to the model performance, we calculated the “rate of
improvement (ROI)” with respect to the PRD results (see Ta-
ble 5). The ROIs are defined by the ratios of enhanced (R
and IOA) or reduced (RMSE and MB) corresponding statis-
tical metrics to those calculated from the CTR run. Based
on the ROI for the DA_ic and DA_icbc experiments, we can
estimate the ROIs associated with the initial correction (the
DA_ic) and the boundary correction (the DA_bc). The ROIs
for the DA_ic and DA_icbc experiments were 10.2 % and
15.0 % in terms of R (Pearson’s correlation coefficient), re-

spectively. Therefore, the estimated ROI due to the DA_bc
might be 4.8 %. The contributions in MB can also be esti-
mated quantitatively in terms of the ROIs. Updated BCs re-
sulted in an improvement of 27 % in the MB in terms of ROI.
In the case of the applications of the DA_ic and the DA_bc,
the ROIs showed a 9.0 and 3.3 % increase in terms of IOA
and a 9.6 % and 2.4 % decrease in terms of RMSE, respec-
tively.

4 Conclusions

To improve PM2.5 prediction in South Korea, we devel-
oped and applied an EnKF data assimilation method to the
WRF–CMAQ modeling system. For data assimilation, we
employed two groups of ground observations from China and
South Korea. We found that when we updated the ICs via
the EnKF data assimilation, the PM2.5 predictions in South
Korea could be greatly improved. In a comparative analy-
sis between EnKF and 3D-Var, the EnKF technique showed
better performance than 3D-Var in short-term PM2.5 predic-
tions. These results indicate that the BEC used in this study
can realistically reflect the current state of the atmosphere,
particularly in the boundary layer.

This study also highlighted the importance of updating
BCs to further enhance the PM2.5 predictability over South
Korea. Long-range transport from China directly impacts the
air quality in South Korea, particularly during high-PM2.5
episodes. Because effects to implement DA with ground ob-
servations inside South Korea are restrictive in terms of im-
provement in analysis fields and predictions, we updated the
inflow BCs via the EnKF DA that uses observations in China.
A comparison of the studies with and without the updated
BCs suggested that improved ICs (the DA_ic experiment)
reduced the NMBs from −36.2 to −18.9 % compared to the
control run, and even further updating the ICs and BCs (the
DA_icbc experiment) improved the NMBs from −36.2 to
−9.9 % in terms of the 24 h PM2.5 prediction over South Ko-
rea. In terms of IOA (in terms of MB), the contributions of
updating the ICs and BCs to 24 h predictability were esti-
mated to be 73 and 27 % (63 and 37 %), respectively. How-
ever, caution should be exercised in that these estimations are
made only for a specific period (KORUS–AQ campaign) and
can vary with atmospheric conditions. A longer test period is
needed for general quantification.

Recently, the EnKF has also been used to assimilate
satellite-retrieved aerosol observations (e.g., Sekiyama et al.,
2010; and Yin et al., 2016). Other groups also used the EnKF
method for the joint optimization of ICs and emission scaling
factors (e.g., Tang et al., 2011; Peng et al., 2017 and 2018).
As we have shown that the consideration of transboundary
air pollution is of significance in the PM2.5 predictions over
South Korea, assimilating aerosol optical depth (AOD) data
from satellites over the Yellow Sea (where no ground obser-
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Figure 8. Daily averaged variations of PM2.5. The lines and colors are the same as in Fig. 3, except for the 1 d prediction runs (PRD). The
1 d predictions only with updated initial conditions (DA_ic) and with initial and boundary conditions (DA_icbc) are presented by the dashed
and solid green lines, respectively.

Table 5. Rate of improvement (ROI) by EnKF data assimilation in 1 d predictions. The ROI is the ratio of the enhanced (R and IOA) or
reduced (RMSE and MB) statistical metrics to those for the CTR simulation. The ROI by updating boundary conditions (DA_bc) can be
estimated from the difference between that obtained by the DA_ic and DA_icbc experiments.

DA_ic DA_icbc Estimated DA_bc

R 10.2 % 15.0 % 4.8 %
IOA 9.0 % 12.3 % 3.3 %
RMSE 9.6 % 12.0 % 2.4 %
MB 48 % 75 % 27 %

Figure 9. Averaged diurnal variations of PM2.5 aggregated from all
ground stations in South Korea (D2). The color and symbols are the
same for observations (OBS) and the control run (CTR) as in Fig. 5.
The 1 d predictions only with updated initial conditions (DA_ic) and
with initial and boundary conditions (DA_icbc) are presented by
dashed and solid green lines, respectively. 1 standard deviation (σ )
is also plotted for each case using vertical bars. The left and right
vertical bars indicate ±σ for DA_ic and DA_icbc, respectively.

vations are available) is expected to provide the PM2.5 pre-
diction system with important information.

Throughout this study, the DA method of “perturbed ob-
servation EnKF” (first proposed by Evensen, 2003) was em-
ployed. However, there are some popular variants of the
EnKF method that obviate the need to perturb observations,
such as the ensemble square root filter (EnSRF; Whitaker and
Hamill, 2002), ensemble adjustment Kalman filter (EAKF;
Anderson, 2001), and local ensemble transform Kalman fil-
ter (LETKF; Hunt et al., 2007). Two of these EnKF variants
are also being tested to alleviate the sampling errors in the
observation ensemble, and the results will also be reported
in the near future in the context of further development of
the ensemble data assimilations and the Korean air quality
prediction system.

Code and data availability. The WRF model v3.8.1 (DOI: https:
//doi.org/10.5065/D6MK6B4K, WRF Users Page, 2022) is avail-
able after user registration through the web page (https://www2.
mmm.ucar.edu/wrf/users/download/get_source.html, last access:
22 March 2022). The CMAQ model v5.1 (DOI: https://doi.org/
10.5281/zenodo.1079909, US EPA Office of Research and Devel-
opment, 2015) is open-source and can be downloaded at https:
//github.com/USEPA/CMAQ (last access: 22 March 2022). The
EnKF method and related processes written in IDL language are
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available at https://doi.org/10.5281/zenodo.5376214 (Park, 2021a).
We uploaded the model outputs for the ensemble mean with the
NetCDF binary format and all the assimilated observation data at
https://doi.org/10.5281/zenodo.5566441 (Park, 2021b).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-15-2773-2022-supplement.
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