Articles | Volume 14, issue 2
https://doi.org/10.5194/gmd-14-859-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-14-859-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Azimuthal averaging–reconstruction filtering techniques for finite-difference general circulation models in spherical geometry
Tong Dang
CAS Key Laboratory of Geospace Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China
Mengcheng National Geophysical Observatory, University of Science and Technology of China, Hefei, China
CAS Center for Excellence in Comparative Planetology, Hefei, China
High Altitude Observatory, National Center for Atmospheric Research, Boulder, CO, USA
Binzheng Zhang
Department of Earth Sciences, the University of Hong Kong, Pokfulam, Hong Kong SAR, China
High Altitude Observatory, National Center for Atmospheric Research, Boulder, CO, USA
Jiuhou Lei
CORRESPONDING AUTHOR
CAS Key Laboratory of Geospace Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China
Mengcheng National Geophysical Observatory, University of Science and Technology of China, Hefei, China
CAS Center for Excellence in Comparative Planetology, Hefei, China
Wenbin Wang
High Altitude Observatory, National Center for Atmospheric Research, Boulder, CO, USA
Alan Burns
High Altitude Observatory, National Center for Atmospheric Research, Boulder, CO, USA
Han-li Liu
High Altitude Observatory, National Center for Atmospheric Research, Boulder, CO, USA
Kevin Pham
High Altitude Observatory, National Center for Atmospheric Research, Boulder, CO, USA
Kareem A. Sorathia
Applied Physics Laboratory, Johns Hopkins University, Laurel, MD, USA
Related authors
No articles found.
Guochun Shi, Hanli Liu, Masaki Tsutsumi, Njål Gulbrandsen, Alexander Kozlovsky, Dimitry Pokhotelov, Mark Lester, Christoph Jacobi, Kun Wu, and Gunter Stober
Atmos. Chem. Phys., 25, 9403–9430, https://doi.org/10.5194/acp-25-9403-2025, https://doi.org/10.5194/acp-25-9403-2025, 2025
Short summary
Short summary
Concerns about climate change are growing due to its widespread impacts, including rising temperatures, extreme weather events, and disruptions to ecosystems. To address these challenges, urgent global action is needed to monitor the distribution of trace gases and understand their effects on the atmosphere.
Ales Kuchar, Gunter Stober, Dimitry Pokhotelov, Huixin Liu, Han-Li Liu, Manfred Ern, Damian Murphy, Diego Janches, Tracy Moffat-Griffin, Nicholas Mitchell, and Christoph Jacobi
EGUsphere, https://doi.org/10.5194/egusphere-2025-2827, https://doi.org/10.5194/egusphere-2025-2827, 2025
This preprint is open for discussion and under review for Annales Geophysicae (ANGEO).
Short summary
Short summary
We studied how the healing of the Antarctic ozone layer is affecting winds high above the South Pole. Using ground-based radar, satellite data, and computer models, we found that winds in the upper atmosphere have become stronger over the past two decades. These changes appear to be linked to shifts in the lower atmosphere caused by ozone recovery. Our results show that human efforts to repair the ozone layer are also influencing climate patterns far above Earth’s surface.
Masaru Kogure, In-Sun Song, Huixin Liu, and Han-Li Liu
EGUsphere, https://doi.org/10.5194/egusphere-2025-3303, https://doi.org/10.5194/egusphere-2025-3303, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
This study examines the impact of increased CO2 on the migrating diurnal tide (DW1), which is generated by solar absorption and latent heating. Using WACCM-X under the RCP 8.5 scenario, we find a +1 %/decade trend in DW1 amplitude at 20–70 km and a −2 %/decade trend at 90–110 km. The increase is likely due to reduced density and stronger convection near the equator, while the decrease may result from enhanced eddy diffusion in the mesosphere that suppresses tidal growth.
Miriam Sinnhuber, Christina Arras, Stefan Bender, Bernd Funke, Hanli Liu, Daniel R. Marsh, Thomas Reddmann, Eugene Rozanov, Timofei Sukhodolov, Monika E. Szelag, and Jan Maik Wissing
EGUsphere, https://doi.org/10.5194/egusphere-2024-2256, https://doi.org/10.5194/egusphere-2024-2256, 2024
Short summary
Short summary
Formation of nitric oxide NO in the upper atmosphere varies with solar activity. Observations show that it starts a chain of processes in the entire atmosphere affecting the ozone layer and climate system. This is often underestimated in models. We compare five models which show large differences in simulated NO. Analysis of results point out problems related to the oxygen balance, and to the impact of atmospheric waves on dynamics. Both must be modeled well to reproduce the downward coupling.
Qinzeng Li, Jiyao Xu, Aditya Riadi Gusman, Hanli Liu, Wei Yuan, Weijun Liu, Yajun Zhu, and Xiao Liu
Atmos. Chem. Phys., 24, 8343–8361, https://doi.org/10.5194/acp-24-8343-2024, https://doi.org/10.5194/acp-24-8343-2024, 2024
Short summary
Short summary
The 2022 Hunga Tonga–Hunga Ha’apai (HTHH) volcanic eruption not only triggered broad-spectrum atmospheric waves but also generated unusual tsunamis which can generate atmospheric gravity waves (AGWs). Multiple strong atmospheric waves were observed in the far-field area of the 2022 HTHH volcano eruption in the upper atmosphere by a ground-based airglow imager network. AGWs caused by tsunamis can propagate to the mesopause region; there is a good match between atmospheric waves and tsunamis.
Cornelius Csar Jude H. Salinas, Dong L. Wu, Jae N. Lee, Loren C. Chang, Liying Qian, and Hanli Liu
Atmos. Chem. Phys., 23, 1705–1730, https://doi.org/10.5194/acp-23-1705-2023, https://doi.org/10.5194/acp-23-1705-2023, 2023
Short summary
Short summary
Upper mesospheric carbon monoxide's (CO) photochemical lifetime is longer than dynamical timescales. This work uses satellite observations and model simulations to establish that the migrating diurnal tide and its seasonal and interannual variabilities drive CO primarily through vertical advection. Vertical advection is a transport process that is currently difficult to observe. This work thus shows that we can use CO as a tracer for vertical advection across seasonal and interannual timescales.
Qinzeng Li, Jiyao Xu, Hanli Liu, Xiao Liu, and Wei Yuan
Atmos. Chem. Phys., 22, 12077–12091, https://doi.org/10.5194/acp-22-12077-2022, https://doi.org/10.5194/acp-22-12077-2022, 2022
Short summary
Short summary
We use ground-based airglow network observations, reanalysis data, and satellite observations to explore the propagation process of concentric gravity waves (CGWs) excited by a typhoon between the troposphere, stratosphere, mesosphere, and thermosphere. We find that CGWs in the mesosphere are generated directly by the typhoon but the CGW observed in the thermosphere may be excited by CGW dissipation in the mesosphere, rather than directly excited by a typhoon and propagated to the thermosphere.
Jianfei Wu, Wuhu Feng, Han-Li Liu, Xianghui Xue, Daniel Robert Marsh, and John Maurice Campbell Plane
Atmos. Chem. Phys., 21, 15619–15630, https://doi.org/10.5194/acp-21-15619-2021, https://doi.org/10.5194/acp-21-15619-2021, 2021
Short summary
Short summary
Metal layers occur in the MLT region (80–120 km) from the ablation of cosmic dust. The latest lidar observations show these metals can reach a height approaching 200 km, which is challenging to explain. We have developed the first global simulation incorporating the full life cycle of metal atoms and ions. The model results compare well with lidar and satellite observations of the seasonal and diurnal variation of the metals and demonstrate the importance of ion mass and ion-neutral coupling.
Gunter Stober, Ales Kuchar, Dimitry Pokhotelov, Huixin Liu, Han-Li Liu, Hauke Schmidt, Christoph Jacobi, Kathrin Baumgarten, Peter Brown, Diego Janches, Damian Murphy, Alexander Kozlovsky, Mark Lester, Evgenia Belova, Johan Kero, and Nicholas Mitchell
Atmos. Chem. Phys., 21, 13855–13902, https://doi.org/10.5194/acp-21-13855-2021, https://doi.org/10.5194/acp-21-13855-2021, 2021
Short summary
Short summary
Little is known about the climate change of wind systems in the mesosphere and lower thermosphere at the edge of space at altitudes from 70–110 km. Meteor radars represent a well-accepted remote sensing technique to measure winds at these altitudes. Here we present a state-of-the-art climatological interhemispheric comparison using continuous and long-lasting observations from worldwide distributed meteor radars from the Arctic to the Antarctic and sophisticated general circulation models.
Bingkun Yu, Xianghui Xue, Christopher J. Scott, Jianfei Wu, Xinan Yue, Wuhu Feng, Yutian Chi, Daniel R. Marsh, Hanli Liu, Xiankang Dou, and John M. C. Plane
Atmos. Chem. Phys., 21, 4219–4230, https://doi.org/10.5194/acp-21-4219-2021, https://doi.org/10.5194/acp-21-4219-2021, 2021
Short summary
Short summary
A long-standing mystery of metal ions within Es layers in the Earth's upper atmosphere is the marked seasonal dependence, with a summer maximum and a winter minimum. We report a large-scale winter-to-summer transport of metal ions from 6-year multi-satellite observations and worldwide ground-based stations. A global atmospheric circulation is responsible for the phenomenon. Our results emphasise the effect of this atmospheric circulation on the transport of composition in the upper atmosphere.
Minna Palmroth, Maxime Grandin, Theodoros Sarris, Eelco Doornbos, Stelios Tourgaidis, Anita Aikio, Stephan Buchert, Mark A. Clilverd, Iannis Dandouras, Roderick Heelis, Alex Hoffmann, Nickolay Ivchenko, Guram Kervalishvili, David J. Knudsen, Anna Kotova, Han-Li Liu, David M. Malaspina, Günther March, Aurélie Marchaudon, Octav Marghitu, Tomoko Matsuo, Wojciech J. Miloch, Therese Moretto-Jørgensen, Dimitris Mpaloukidis, Nils Olsen, Konstantinos Papadakis, Robert Pfaff, Panagiotis Pirnaris, Christian Siemes, Claudia Stolle, Jonas Suni, Jose van den IJssel, Pekka T. Verronen, Pieter Visser, and Masatoshi Yamauchi
Ann. Geophys., 39, 189–237, https://doi.org/10.5194/angeo-39-189-2021, https://doi.org/10.5194/angeo-39-189-2021, 2021
Short summary
Short summary
This is a review paper that summarises the current understanding of the lower thermosphere–ionosphere (LTI) in terms of measurements and modelling. The LTI is the transition region between space and the atmosphere and as such of tremendous importance to both the domains of space and atmosphere. The paper also serves as the background for European Space Agency Earth Explorer 10 candidate mission Daedalus.
Xiao Liu, Jiyao Xu, Jia Yue, and Hanli Liu
Atmos. Chem. Phys., 20, 14437–14456, https://doi.org/10.5194/acp-20-14437-2020, https://doi.org/10.5194/acp-20-14437-2020, 2020
Short summary
Short summary
Large wind shears in the mesosphere and lower thermosphere are recognized as a common phenomenon. Simulation and ground-based observations show that the main contributor of large wind shears is gravity waves. We present a method of deriving wind shears induced by gravity waves according to the linear theory and using the global temperature observations by SABER (Sounding of the Atmosphere using Broadband Emission Radiometry). Our results agree well with observations and model simulations.
Cited articles
Basu, S., Basu, S., Sojka, J. J., Schunk, R. W., and MacKenzie, E.: Macroscale modeling and mesoscale observations of plasma density structures in the polar cap, Geophys. Res. Lett., 22, 881–884, 1995. a
Bouaoudia, S. and Marcus, P.: Fast and accurate spectral treatment of
coordinate singularities, J. Comput. Phys., 96, 217–223, 1991. a
Codrescu, M. V., Fuller-Rowell, T. J., and Foster, J. C.: On the importance of E-field variability for Joule heating in the high-latitude thermosphere,
Geophys. Res. Lett., 22, 2393–2396, 1995. a
Colella, P. and Woodward, P. R.: The Piecewise Parabolic Method (PPM) for
gas-dynamical simulations, J. Comput. Phys., 54, 174–201, 1984. a
Courant, R., Friedrichs, K., and Lewy, H.: Über die partiellen
Differenzengleichungen der mathematischen Physik, Math. Annal., 100, 32–74, 1928. a
Crowley, G., Knipp, D. J., Drake, K. A., Lei, J., Sutton, E., and Lühr, H.: Thermospheric density enhancements in the dayside cusp region during strong BY conditions, Geophys. Res. Lett., 37, L07110,
https://doi.org/10.1029/2009GL042143, 2010. a
Dang, T.: Supplementary Material for the paper “Azimuthal averaging–reconstruction filtering techniques for finite-difference general circulation models in spherical geometry”, Zenodo, https://doi.org/10.5281/zenodo.4506273, 2021a. a
Dang, T.: High-resolution TIEGCM code, Zenodo, https://doi.org/10.5281/zenodo.4506230, 2021b. a
Dang, T., Lei, J., Wang, W., Burns, A., Zhang, B., and Zhang, S.-R.:
Suppression of the polar tongue of ionization during the 21 August 2017 solar
eclipse, Geophys. Res. Lett., 45, 2918–2925, 2018a. a
Dang, T., Lei, J., Wang, W., Zhang, B., Burns, A., Le, H., Wu, Q., Ruan, H.,
Dou, X., and Wan, W.: Global responses of the coupled thermosphere and
ionosphere system to the August 2017 Great American Solar Eclipse, J. Geophys. Res.-Space, 123, 7040–7050, 2018b. a
Dang, T., Lei, J., Wang, W., Wang, B., Zhang, B., Liu, J., Burns, A., and
Nishimura, Y.: Formation of double tongues of ionization during the 17 March 2013 geomagnetic storm, J. Geophys. Res.-Space, 124, 10619–10630,
https://doi.org/10.1029/2019JA027268, 2019. a
Foster, J. C., Coster, A. J., Erickson, P. J., Holt, J. M., Lind, F. D.,
Rideout, W., McCready, M., van Eyken, A., Barnes, R. J., Greenwald, R. A.,
and Rich, F. J.: Multiradar observations of the polar tongue of ionization, J. Geophys. Res.-Space, 110, A09S31, https://doi.org/10.1029/2004JA010928, 2005. a, b
Fukagata, K. and Kasagi, N.: Highly energy-conservative finite difference
method for the cylindrical coordinate system, J. Comput. Phys., 181, 478–498, 2002. a
Fuller‐Rowell, T. J., Rees, D., Quegan, S., Moffett, R. J., Codrescu, M. V., and Millward, G. H.: A coupled thermosphere‐ionosphere model (CTIM), in: Handbook of ionospheric models, edited by: Schunk, R. W., State Univ., Logan, Utah, 217–238, 1996. a
Hagan, M. E. and Forbes, J. M.: Migrating and nonmigrating diurnal tides in the middle and upper atmosphere excited by tropospheric latent heat release,
J. Geophys. Res., 107, 4754, https://doi.org/10.1029/2001JD001236, 2002. a
Hagan, M. E. and Forbes, J. M.: Migrating and nonmigrating semidiurnal tides in the upper atmosphere excited by tropospheric latent heat release, J. Geophys. Res., 108, 1062, https://doi.org/10.1029/2002JA009466, 2003. a
Heelis, R. A., Lowell, J. K., and Spiro, R. W.: A model of the high-latitude
ionospheric convection pattern, J. Geophys. Res.-Space, 87, 6339–6345, 1982. a
Lei, J., Dang, T., Wang, W., Burns, A., Zhang, B., and Le, H.: Long‐lasting
response of the global thermosphere and ionosphere to the 21 August 2017 solar eclipse, J. Geophys. Res.-Space Physics, 123, 4309–4316, 2018. a
Lin, D., Wang, W., Scales, W. A., Pham, K., Liu, J., Zhang, B., Merkin, V.,
Shi, X., Kunduri, B., and Maimaiti, M.: SAPS in the 17 March 2013 Storm Event: Initial Results From the Coupled Magnetosphere-Ionosphere-Thermosphere
Model, J. Geophys. Res.-Space, 124, 6212–6225, 2019. a
Liu, H.-L., Bardeen, C. G., Foster, B. T., Lauritzen, P., Liu, J., Lu, G.,
Marsh, D. R., Maute, A., McInerney, J. M., Pedatella, N. M., Qian, L., Richmond, A. ., Roble, R. G., Solomon, S. C., Vitt, F. M., and Wang, W.:
Development and Validation of the Whole Atmosphere Community Climate Model
With Thermosphere and Ionosphere Extension (WACCM-X 2.0), J. Adv. Model. Earth Syst., 10, 381–402, 2018. a
Lotko, W. and Zhang, B.: Alfvénic Heating in the Cusp Ionosphere-Thermosphere, J. Geophys. Res.-Space, 123, 10368–10383, 2018. a
Lu, G., Zakharenkova, I., Cherniak, I., and Dang, T.: Large‐scale ionospheric
disturbances during the 17 March 2015 storm: A model-data comparative study,
J. Geophys. Res.-Space, 125, e2019JA027726, https://doi.org/10.1029/2019JA027726, 2020. a
Lühr, H., Rother, M., Köhler, W., Ritter, P., and Grunwaldt, L.:
Thermospheric up-welling in the cusp region: Evidence from CHAMP observations, Geophys. Res. Lett., 31, L06805, https://doi.org/10.1029/2003GL019314, 2004. a
Lyon, J. G., Fedder, J. A., and Mobarry, C. M.: The Lyon–Fedder–Mobarry (LFM) global MHD magnetospheric simulation code, J. Atmos. Sol.-Terr. Phy., 66, 1333–1350, 2004. a
Makela, J. J. and Otsuka, Y.: Overview of Nighttime Ionospheric Instabilities
at Low- and Mid-Latitudes: Coupling Aspects Resulting in Structuring at the
Mesoscale, Space Sci. Rev., 168, 419–440, 2012. a
Matsuo, T. and Richmond, A. D.: Effects of high-latitude ionospheric electric
field variability on global thermospheric Joule heating and mechanical energy
transfer rate, J. Geophys. Res.-Space, 113, A07309, https://doi.org/10.1029/2007JA012993, 2008. a
Prusa, J. M.: Computation at a coordinate singularity, J. Comput. Phys., 361, 331–352, 2018. a
Purser, J.: Degradation of numerical differencing caused by Fourier filtering
at high latitudes, Mon. Weather Rev., 116, 1057–1066, 1988. a
Qian, L., Burns, A. G., Emery, B. A., Foster, B., Lu, G., Maute, A., Richmond, A. D., Roble, R. G., Solomon, S. C., and Wang, W.: The NCAR TIE-GCM: A community model of the coupled thermosphere/ionosphere system,
American Geophysical Union, Washington, D.C., 73–83, 2014. a
Ren, Z., Wan, W., and Liu, L.: GCITEM-IGGCAS: A new global coupled
ionosphere–thermosphere-electrodynamics model, J. Atmos. Sol.-Terr. Phy., 71, 2064–2076, 2009. a
Ridley, A. J., Deng, Y., and Tóth, G.: The global ionosphere–thermosphere model, J. Atmos. Sol.-Terr. Phy., 68, 839–864, 2006. a
Roble, R. G., Ridley, E. C., Richmond, A. D., and Dickinson, R. E.: A coupled
thermosphere/ionosphere general circulation model, Geophys. Res. Lett., 15, 1325–1328, 1988. a
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. D., Barker, D. M., Duda, M. G., Huang, X.-Y., Wang, W., and Powers, J. G.: A description of the advanced research WRF version 3, NCAR Technical Note NCAR/TN475+STR, Nat. Cent. Atmos. Res., Boulder, CO, 113 pp., 2008. a
Sun, L., Xu, J., Wang, W., Yue, X., Yuan, W., Ning, B., Zhang, D., and M., D.: Mesoscale field‐aligned irregularity structures (FAIs) of airglow associated with medium‐scale traveling ionospheric disturbances (MSTIDs), J. Geophys. Res.-Space, 120, 9839–9858, 2015. a
Takacs, L., Sawyer, W., Suarez, M. J., and Fox-Rabinowitz, M. S.: Filtering Techniques on a Stretched Grid General Circulation Model, NASA/TM-1999-104606, Tech. Rept. Ser., vol. 16, Global Modeling Data Assimilation, Goddard SFC, Greenbelt, MD, 1999. a
Thomas, E. G., Baker, J. B. H., Ruohoniemi, J. M., Clausen, L. B. N., Coster,
A. J., Foster, J. C., and Erickson, P. J.: Direct observations of the role of
convection electric field in the formation of a polar tongue of ionization
from storm enhanced density, J. Geophys. Res.-Space, 118, 1180–1189, 2013. a
Wang, W.: A thermosphere‐ionsopehre nested grid (ting) model, PhD thesis,
University of Michigan, Ann Arbor, 1998. a
Wang, W., Wiltberger, M., Burns, A. G., Solomon, S. C., Killeen, T. L.,
Maruyama, N., and Lyon, J. G.: Initial results from the coupled
magnetosphere–ionosphere–thermosphere model: thermosphere–ionosphere responses, J. Atmos. Sol.-Terr. Phy., 66, 1425–1441, 2004. a
Wang, W., Dang, T., Lei, J., Zhang, S.-R., Zhang, B., and Burns, A.: Physical
Processes Driving the Response of the F2 Region Ionosphere to the 21 August 2017 Solar Eclipse at Millstone Hill, J. Geophys. Res.-Space, 124, 2978–2991, 2019. a
Weimer, D. R.: Improved ionospheric electrodynamic models and application to
calculating Joule heating rates, J. Geophys. Res.-Space, 110, A05306, https://doi.org/10.1029/2004JA010884, 2005. a
Williamson, D. L. and Browning, G. L.: Comparison of Grids and Difference
Approximations for Numerical Weather Prediction Over a Sphere, J. Appl. Meteorol., 12, 264–274, 1973. a
Williamson, D. L., Drake, J. B., Hack, J. J., Jakob, R., and Swarztrauber, P. N.: A standard test set for numerical approximations to the shallow water
equations in spherical geometry, J. Comput. Phys., 102, 211–224, 1992. a
Wiltberger, M., Wang, W., Burns, A. G., Solomon, S. C., Lyon, J. G., and
Goodrich, C. C.: Initial results from the coupled magnetosphere ionosphere
thermosphere model: magnetospheric and ionospheric responses, J. Atmos. Sol.-Terr. Phy., 66, 1411–1423, 2004. a
Wu, Q., Knipp, D., Liu, J., Wang, W., Varney, R., Gillies, R., Erickson, P.,
Greffen, M., Reimer, A., Häggström, I., Jee, G., and Kwak, Y.: HIWIND
Observation of Summer Season Polar Cap Thermospheric Winds, J. Geophys. Res.-Space, 124, 9270–9277, 2019. a
Zhang, Q. H., Zhang, B., Lockwood, M., Hu, H., Moen, J., Ruohoniemi, J. M.,
Thomas, E. G., Zhang, S.-R., Yang, H., Liu, R., McWilliams, K. A., and Baker,
J. B. H.: Direct Observations of the Evolution of Polar Cap Ionization Patches, Science, 339, 1597–1600, 2013. a
Zhu, Q., Deng, Y., Richmond, A., and Maute, A.: Small-Scale and Mesoscale
Variabilities in the Electric Field and Particle Precipitation and Their
Impacts on Joule Heating, J. Geophys. Res.-Space., 123, 9862–9872, 2018. a
Short summary
This paper describes a numerical treatment (ring average) to relax the time step in finite-difference schemes when using spherical and cylindrical coordinates with axis singularities. The ring average is used to develop a high-resolution thermosphere–ionosphere coupled community model. The technique is a significant improvement in space weather modeling capability, and it can also be adapted to more general finite-difference solvers for hyperbolic equations in spherical and polar geometries.
This paper describes a numerical treatment (ring average) to relax the time step in...