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Abstract. When solving hydrodynamic equations in spher-
ical or cylindrical geometry using explicit finite-difference
schemes, a major difficulty is that the time step is greatly
restricted by the clustering of azimuthal cells near the
pole due to the Courant–Friedrichs–Lewy condition. This
paper adapts the azimuthal averaging–reconstruction (ring
average) technique to finite-difference schemes in order to
mitigate the time step constraint in spherical and cylindrical
coordinates. The finite-difference ring average technique
averages physical quantities based on an effective grid
and then reconstructs the solution back to the original
grid in a piecewise, monotonic way. The algorithm is
implemented in a community upper-atmospheric model,
the Thermosphere–Ionosphere Electrodynamics General
Circulation Model (TIEGCM), with a horizontal resolution
up to 0.625◦× 0.625◦ in geographic longitude–latitude
coordinates, which enables the capability of resolving
critical mesoscale structures within the TIEGCM. Numerical
experiments have shown that the ring average technique
introduces minimal artifacts in the polar region of general
circulation model (GCM) solutions, which is a significant
improvement compared to commonly used low-pass filtering
techniques such as the fast Fourier transform method.
Since the finite-difference adaption of the ring average
technique is a post-solver type of algorithm, which requires
no changes to the original computational grid and numerical

algorithms, it has also been implemented in much more
complicated models with extended physical–chemical
modules such as the Coupled Magnetosphere–Ionosphere–
Thermosphere (CMIT) model and the Whole Atmosphere
Community Climate Model with thermosphere and iono-
sphere eXtension (WACCM-X). The implementation of
ring average techniques in both models enables CMIT and
WACCM-X to perform global simulations with a much
higher resolution than that used in the community versions.
The new technique is not only a significant improvement in
space weather modeling capability, but it can also be adapted
to more general finite-difference solvers for hyperbolic
equations in spherical and polar geometries.

Highlights.

– The ring average technique is adapted to solve the issue
of clustered grid cells in polar and spherical coordinates
with a finite-difference method.

– The ring average technique is applied to develop a
0.625◦× 0.625◦ high-resolution TIEGCM and more
complicated geoscientific models with polar and spher-
ical coordinates as well as finite-difference numerical
schemes.
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– The high-resolution TIEGCM shows good capability
in resolving mesoscale structures in the ionosphere–
thermosphere (I–T) system.

1 Introduction

Mesoscale structures with a typical horizontal size of 100–
500 km have gained more and more attention in research on
the dynamics of the upper-atmospheric system. A number of
studies have been carried out to investigate these structures,
including the formation and evolution of polar cap patches
and tongues of ionization (Basu et al., 1995; Foster et al.,
2005; Zhang et al., 2013), dynamics of ionospheric irregu-
larities (Makela and Otsuka, 2012; Sun et al., 2015), varia-
tions of the polar thermospheric density anomaly (Crowley
et al., 2010; Lühr et al., 2004), and the space weather ef-
fects of mesoscale electric field variability (Codrescu et al.,
1995; Matsuo and Richmond, 2008; Zhu et al., 2018; Lotko
and Zhang, 2018). These dynamic mesoscale structures have
shown critical importance in understanding the physics of
the solar–terrestrial system and in space weather predictions,
which challenges the resolution and accuracy of numerical
models of the upper-atmospheric system in resolving these
important mesoscale signatures.

Spherical or cylindrical coordinates are commonly used
in solving geophysical problems, including the modeling of
the upper-atmospheric systems. As a workhorse for space
weather research, a number of general circulation mod-
els (GCMs) for the coupled ionosphere–thermosphere (I–
T) system have been developed based on spherical co-
ordinates using finite-difference schemes (e.g., Richmond
et al., 1992; Fuller-Rowell et al., 1996; Ridley et al., 2006;
Ren et al., 2009). However, restricted by the longitudinal
grid resolution, current horizontal resolutions used in I–
T GCMs are still insufficient for fully resolving mesoscale
atmospheric structures, which are either marginal or sub-
grid. The latest released version of the community code,
the Thermosphere–Ionosphere Electrodynamic General Cir-
culation Model (TIEGCM), has a longitude–latitude resolu-
tion of 2.5◦×2.5◦. The Coupled Thermosphere–Ionosphere–
Plasmasphere (CTIP) model has a latitude resolution of 2◦

and a longitude resolution of 18◦, and the most recent ver-
sion of the Global Ionosphere Thermosphere Model (GITM)
has a flexible grid with a latitudinal resolution up to 0.3125◦,
but the typical longitudinal resolution remains 2.5◦ due to
severe time step restrictions for global-scale calculations.

The major difficulty in increasing longitudinal resolution
in spherical-geometry-based GCMs is that the explicit time
stepping is constrained by the clustering azimuthal cells near
the pole due to the Courant–Friedrichs–Lewy (CFL) condi-
tion (Courant et al., 1928). A number of attempts have been
proposed to address this coordinate singularity issue (e.g.,
Purser, 1988; Bouaoudia and Marcus, 1991; Williamson

et al., 1992; Takacs et al., 1999; Fukagata and Kasagi, 2002;
Prusa, 2018). To use a time step that is larger than the global
minimum requirement from CFL conditions, one common
method used in a spherical GCM is to employ a low-pass
Fourier filter at polar latitudes, which removes nonphysi-
cal, high-frequency zonal waves generated due to numeri-
cal instability caused by the local violation of CFL condi-
tions (e.g., Skamarock et al., 2008). Although the Fourier fil-
ter can maintain computational stability and permit a much
larger temporal step, the applicability of the fast Fourier
transform (FFT) filter method is problem-dependent, which
also creates barriers in moving models forward to finer spa-
tial resolutions. Moreover, the linear filtering of zonal com-
ponents generated through a nonphysical time step may de-
crease the accuracy of the model calculations near the polar
region, which affects physical conservations of, e.g., mass,
momentum, and energy that are essential for the long-term
behavior of the GCM (Williamson and Browning, 1973).

Recently, Zhang et al. (2019) developed a new tech-
nique called the ring average method for hyperbolic equa-
tions to mitigate the CFL restrictions in spherical or polar
geometry on the basis of the method originally proposed
in the Lyon–Fedder–Mobarry (LFM) magnetohydrodynam-
ics (MHD) simulations (Lyon et al., 2004). The method
is a “post-solver” type of algorithm applied after solving
all the physical quantities in the original spherical coordi-
nates; thus, no modification to the numerical solver or the
computational grid is required when applying the ring av-
erage. Test simulation results have shown the effectiveness
of the ring average algorithm in increasing the time step
by a factor of 100 while maintaining the fidelity of the so-
lutions. The original ring average technique was developed
for solving hyperbolic equations in spherical or polar ge-
ometry based on finite-volume schemes, which redistributes
the solution azimuthally through a conservative averaging–
reconstruction algorithm. The finite-volume version of the
ring average technique not only releases the time step con-
straint in spherical geometry, but also keeps the conserva-
tive nature of finite-volume schemes to machine precision.
In this paper, we adapt the ring average technique to finite-
difference schemes for solving hyperbolic equations. De-
fined on an effective reduced polar grid, the finite-difference
adaption of the ring average technique also conducts a post-
solver step of averaging–reconstruction in each azimuthal
ring to maintain the numerical stability and relax the severe
computational time step constraint. To demonstrate the ef-
fectiveness of the finite-difference version of the ring aver-
age technique, we use solutions from both linear advection
equations and the TIEGCM as test beds. The ring average al-
gorithm enables the use of a high-resolution TIEGCM, such
as 0.625◦× 0.625◦ in longitude and latitude, with reason-
able time steps and minimal numerical artifacts. Further ap-
plications of the technique to the Coupled Magnetosphere–
Ionosphere–Thermosphere (CMIT) model and the Whole
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Figure 1. The (a) original and (b) effective 2.5◦× 2.5◦ TIEGCM
polar longitude–latitude grid. For example, the 144 azimuthal cells
in the most inside (highest latitude) grid (a) have been grouped into
9 effective cells (chunks), with 16 original cells in each chunk. In
the effective grid, the numbers of chunks from inside to outside
are 9, 9, 18, 18, 36, 36, 72, 72, 72, and 72.

Atmosphere Community Climate Model with thermosphere
and ionosphere extension (WACCM-X) are also addressed.

This paper is organized as follows: in Sect. 2, we describe
the details of the model and the ring average technique to
solve the problem of clustering of polar grid cells. A hydro-
dynamic convection experiment with the ring average tech-
nique has also been conducted to test the capability of the
method. Section 3 shows the preliminary results of the high-
resolution TIEGCM with the ring average technique imple-
mented and the further applications of the technique. The
findings of this work are summarized in Sect. 4.

2 Methodology

2.1 Ring average in the finite-difference form

An example of standard polar grids with a horizontal resolu-
tion of 2.5◦× 2.5◦ (longitude× latitude) in the TIEGCM is
shown in Fig. 1. It is evident that in Fig. 1a, the azimuthal
(longitudinal) computational nodes in the standard polar grid
are significantly clustered near the pole, even with 144 cells
in the azimuthal direction, resulting in very “thin” cells with
small azimuthal extensions, which restricts the explicit time
step for the advection equations. This azimuthal clustering
becomes even worse when grid resolution increases; the time
step drops to 1/4 while the grid resolution doubles, corre-
sponding to an increase in computational resources of at least
32 times, which becomes expensive, especially for global
simulations with high spatial resolutions, in order to resolve
mesoscale structures.

The finite-difference adaption of the ring average algo-
rithm is based on a similar averaging–reconstruction process
over a predefined “effective” azimuthal grid as used in the
finite-volume version of the algorithm. Figure 1b shows an
example of an effective polar grid for applying the finite-
difference ring average technique. In the polar grid shown in

Fig. 1b, since the reconstructed solution is monotonic within
each effective computational cell, a much larger time step
is allowed compared to the original grid shown in Fig. 1a.
As shown in Fig. 1b, the effective longitudinal grid resolu-
tions have been reduced and are less clustered towards the
pole. For the most inside (highest latitude) grids, the 144 az-
imuthal cells (Fig. 1a) have been grouped into 9 effective
cells (chunks), with 16 original cells in each chunk. Moving
away from the pole, more chunks are employed. As an ex-
ample, the numbers of chunks from inside to outside shown
in Fig. 1b in the effective grid are 9, 9, 18, 18, 36, 36, 72, 72,
72, and 72, allowing a relatively smooth transition in the size
of the cells going radially outward. Note that the choice of
the number of chunks in each ring is non-unique. Numerical
tests with finite-volume solvers have shown that the compu-
tational solution, under both smooth and discontinuous flow
conditions, is insensitive to small changes in the chunk con-
figuration (Zhang et al., 2019).

We use the following example of solving the linear advec-
tion equation to illustrate the averaging–reconstruction pro-
cess within each chunk. Consider the following linear ad-
vection equation of an incompressible fluid in the azimuthal
direction as an example:

∂ρ

∂t
+ v

∂ρ

∂x
= 0, (1)

where v is the advection velocity, ρ is the density pro-
file, and x is the azimuthal dimension (x ∈ [0 2π ]) along
one ring. Assuming the x direction is uniformly discretized
into Ntotal computational cells with 1x = 2π

Ntotal
, a central-

difference forward Euler form of Eq. (1) for density ρ in
cell k between time n and n+ 1 is written as

1
1t

(
ρn+1
k − ρnk

)
=−

v

21x

(
ρnk+1− ρ

n
k−1

)
, (2)

where k denotes the index of an individual thin cell in the
original azimuthal grid. 1t is the time step regulated by the
CFL condition. Without a ring average type of treatment, the
time step 1t is restricted by the fact that thin azimuthal cells
cluster near the pole. The ring average technique takes the
average solution within a chunk m that contains 2s cells in
the original grid as shown in Fig. 2. Summing over the finite-
difference form of Eq. (1) within chunk m gives

i+s∑
k=i−s+1

1
1t

(
ρn+1
k − ρnk

)
=−

v

21x

i+s∑
k=i−s+1

(
ρnk+1− ρ

n
k−1

)
. (3)

Then, summing over the k indices within chunk m, Eq. (3)
becomes
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Figure 2. Schematic of grid cells within effective chunks.

1
1t

(
i+s∑

k=i−s+1
ρn+1
k −

i+s∑
k=i−s+1

ρnk

)
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v

21x
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[(
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n
k

)
+
(
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n
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)]
, (4)

=−
v

21x

[(
ρni+s+1− ρ

n
i−s+1

)
+
(
ρni+s − ρ

n
i−s

)]
, (5)

=−
v

1x

(
ρni+s+1+ ρ

n
i+s

2
−
ρni−s+1+ ρ

n
i−s

2

)
, (6)

=−
v

1x

(
ρn
i+s+ 1

2
− ρn

i−s+ 1
2

)
, (7)

where ρn
i−s+ 1

2
and ρn

i+s+ 1
2

are the left and right values on

the boundary of chunk m, as indicated by the red triangles in
Fig. 2. The left-hand side of Eq. (7) is basically the time rate
of the change in terms of the chunk density %m:

1
1t

(
%n+1
m − %nm

)
, (8)

where %n+1
m =

i+s∑
k=i−s+1

ρn+1
k and %nm =

i+s∑
k=i−s+1

ρnk . If assum-

ing smoothness of the solution, which applies to typical
upper-atmospheric flow conditions, and using a piecewise
linear reconstruction for the two interface values at time
level n,

ρn
i+s+ 1

2
=
%m+1+ %m

2
, (9)

ρn
i−s+ 1

2
=
%m+ %m−1

2
, (10)

the right-hand side of Eq. (7) is in the form of a central-
difference approximation of the spatial derivative ∂%

∂x
in

chunk m:

−
v

1x

%nm+1− %
n
m−1

2
. (11)

Equating Eqs. (8) and (11) and considering the fact that the
1X in computing the chunk derivative is actually 2s1x, we
obtain

1
1T

(
%n+1
m − %nm

)
=−v

%nm+1− %
n
m−1

21X
, (12)

where 1T = 2s1t . Equation (12) is in the same numerical
differential form of the advection equation in terms of the
chunk density % in the effective grid within the same order of
finite-difference approximation:

∂%

∂t
=−v

∂%

∂x
+O

(
1X2

)
. (13)

Equation (12) also suggests that in principle the ring average
method is capable of using a time step that is approximately
2s times larger than the original1t restricted by the thin cells
(assuming the CFL condition is dominated by the azimuthal
direction in the innermost ring). Note that the above deriva-
tion of the finite-difference version of the ring average algo-
rithm is independent of the numerical schemes solving the
linear advection equation (Eq. 1). Thus, the ring average al-
gorithm requires no modifications to the existing hydrody-
namic equations solved by GCMs. Furthermore, since the
ring average algorithm is applied after all the variables are
solved on the original spherical grid, it requires no changes
to the existing computational grid.

In the reconstruction step, the above algorithm uses the
piecewise linear method (PLM) to reconstruct solutions
within each chunk for the next time step of the GCM calcula-
tions, resulting in second-order accuracy. To achieve higher
accuracy in the reconstruction step, a piecewise parabolic re-
construction method (PPM) (Colella and Woodward, 1984)
may be used in the algorithm, which provides fourth-order
accuracy for the reconstruction step. In the following sec-
tion when applying the ring average algorithm in a GCM, we
use both PPM and PLM for different variables. The criteria
for using PPM or PLM here depend on their spatial gradient
from the fluid calculations. For variables that have a rela-
tively greater spatial gradient, we use the PPM to reach high
accuracy and maintain stability; otherwise, the PLM is used
for the calculations.

The algorithm shown in Fig. 3 illustrates the steps of ap-
plying the ring average technique using either PLM or PPM.
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Figure 3. The ring average algorithm with both the PLM and PPM.

The steps consist of chunk division, chunk averaging, and
reconstruction. The averaging–reconstruction process (ring
average) in this study is similar to Zhang et al. (2019), with
modifications to the reconstruction method (PPM or PLM)
adapted to finite-difference schemes. The detailed proce-
dures of the ring average technique in this study are described
as follows.

2.1.1 For variables using the PLM reconstruction

– Step 1. Divide the azimuthal grid cells into chunks and
pull data into the chunks.

– Step 2. Calculate the average value FA, left interface
value FL, and right interface value FR at chunk m (m is
the index of the chunk number in an azimuthal ring).
FL and FR are the interface values in each chunk deter-
mined by the following parabola functions:

FL = (−Fm−2+ 7Fm−1+ 7Fm−Fm+1)/12, (14)
FR = (−Fm−1+ 7Fm+ 7Fm+1−Fm+2)/12, (15)

where Fm−2, Fm−1, Fm, Fm+1, and Fm+2 are the aver-
age values FA at chunks with an index of m− 2, m− 1,
m, m+ 1, and m+ 2, respectively.

– Step 3. Reconstruct the variables by interpolating the
average data linearly in each chunk:

Fk =

(
1−

k

N

)
FL+

k

N
FR, (16)

where N is the number of cells within each chunk and
k is the local index ranging from 1 to N .

– Step 4. Re-do the above procedures for the next az-
imuthal ring until the ring average is not needed.

2.1.2 For variables using the PPM reconstruction

The procedures in PPM are the same with PLM except for
Step 3.

Step 3. Reconstruct the variables parabolically in each
chunk using the following function:

Fk =
A

3N2 (3k
2
− 3k+ 1)+

B

2N
(2k− 1)+C, (17)

where A, B, and C are constants representing the parabolic
function, which connects FL and FR:

A= 3(FL−FR− 2FA) ,

B = 2(3FA− 2FL−FR) ,

C = FL. (18)

2.1.3 For vector variables using the PLM
reconstruction and Fourier reduction

Step 0 in Fig. 3 corresponds to a Fourier expansion (reduc-
tion) step that is required for vector GCM variables in spher-
ical coordinates before applying the ring average process.
The main purpose of the Fourier reduction step is to main-
tain the direction of vectors after ring averaging, especially
for the neutral meridional and zonal wind across the pole.
Thus, only the second and higher Fourier components of the
data in the azimuthal cell are smoothed using the ring av-
erage filter, while the zero and first Fourier components are
kept unchanged. Here are the details of the Fourier expansion
process.

Step 0. Calculate the Fourier components of the azimuthal
data:

Pi = A0+A1 cos(2πi/Ntotal)+B1 sin(2πi/Ntotal)+Fi, (19)

where i is the thin cell index along the azimuthal direction
ranging from 1 to Ntotal, Ntotal is the total thin cell number in
the azimuthal direction, Fi represents the second and higher
Fourier components that will be later reconstructed, and A0,
A1, and B1 are the zero and first Fourier coefficients:

A0 =
1
L

i=L∑
i=1

Pi,

A1 =
1
L

i=L∑
i=1

Pi cos(2πi/L),

B1 =
2
L

i=L∑
i=1

Pi sin(2πi/L). (20)

The higher Fourier components Fi are pulled into chunks for
the ring average processes.

Step 1–4. The steps are the same as the above PLMs, ex-
cept that the reconstructed data, F ′i , are brought back together
with the first two Fourier components after the reconstruc-
tion:

Pi = A0+A1 cos(2πi/L)+B1 sin(2πi/L)+F ′i . (21)

2.2 Ring average for the advection equation

In this section, in order to illustrate the implementation of the
ring average algorithm in a finite-difference code, we solve
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Figure 4. The distribution of density at three simulation snapshots (t = 0, 0.75, and 1.5). The first three panels from the top show the results
with the ring average technique, with an FFT filter, and without any filter. The latitude boundaries of the ring average and FFT filter are
marked by white circles in the upper two panels. The bottom panels show the comparison of distributions of density along the line x = 0.15
(star) with the ring average technique, (blue dot) with an FFT filter, and (red circle) without a filter at the three snapshots. The number of
averaging chunks for the ring average technique in each azimuthal ring near the pole is set to be [18 18 18 18 36 36 36 36 72 72 72 72 144
144 144 144].

the two-dimensional (2D) linear advection equation in the
polar geometry as an example. The code used in the 2D lin-
ear advection solver is a main subroutine used in the ring
average module for GCMs. This two-dimensional advection
test in polar geometry is also useful to demonstrate the ef-
fectiveness of the finite-difference ring average technique in
handling a strong, narrow shear flow near the pole. A fourth-
order central-finite-difference scheme is used to solve the fol-
lowing mass continuity equation under the incompressible
assumption:

∂ρ

∂t
+u · ∇ρ = 0, (22)

where ρ is the density, and u is the time-stationary flow ve-
locity defined in polar coordinates (r , θ ). The polar geome-
try of this test is defined with a resolution of 0.625◦ in both
longitude and latitude, with 144 cells in the r direction uni-
formly distributed within (0, 1) and 576 cells in the θ direc-
tion uniformly distributed within (0, 2π ).

Figure 4a shows the initial state (t = 0) of ρ, ranging lin-
early along the y direction from a magnitude of 2 at the top-
side to 0.01 at the bottom side:

ρ =

{
2 y ≥ 0.65
(y− 0.65)/(0.65+ 1) · (2− 0.01)+ 2 y < 0.65 . (23)
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The time-independent flow velocity u is set as a Gaussian-
distributed shear flow towards −y and centered at x = 0.15
with a peak velocity of −1 and a half-width of 0.01:

u=−exp
[
−
(x− 0.15)2

0.01

]
. (24)

As simulation time evolves, a large density gradient occurs
near the pole driven by the time-stationary shear flow, with its
pattern following the analytical distribution of the flow veloc-
ity u. Figure 4a–c show three snapshots of the density in the
linear advection experiment at t = 0, t = 0.75, and t = 1.5
using the finite-difference version of the ring average tech-
nique with PPM reconstructions, as described in Sect. 2.1.
For comparison, Fig. 4d–f show the corresponding snapshots
derived from another simulation using an FFT filter, and
Fig. 4g–i show the results at the same simulation time cal-
culated from the fourth-order finite-difference scheme with-
out applying any filtering technique. In the simulation using
the ring average, the number of averaging chunks in each az-
imuthal ring near the pole is set to be [18 18 18 18 36 36 36
36 72 72 72 72 144 144 144 144] from the first ring to the
16th ring, as indicated by the white circles in the top pan-
els around 80◦ N. For the FFT filter, a Fourier expansion is
applied in the azimuthal direction at each time step to the
fluid density. Waves with frequencies that are higher than the
cutoff frequencies are eliminated from the Fourier spectra of
prognostic variables. The values of prognostic variables are
then reconstructed through an inverse Fourier transform us-
ing the modified Fourier spectra. Each latitude grid has its
own cutoff frequency, and the wave number to be cut off in
this experiment near the pole is set to be [1 1 2 2 2 2 4 4 4
4 8 8 8 8 10 10], which is similar to the TIEGCM FFT filter
spectrum (Wang, 1998).

As shown in Fig. 4b and c, density structures with a large
spatial gradient flow across the pole as time progresses. Com-
pared with the non-filter case in Fig. 4h and i, no evident nu-
merical instability or artificial structure occurred when ap-
plying the ring average technique. In contrast, the density
structure using an FFT filter in Fig. 4d–f exhibits numeri-
cal oscillations in the radial direction, together with an arti-
ficial depletion of density near the pole. This density deple-
tion is due to the non-conservative nature of the FFT method
by truncating high-spatial-frequency wave modes in a linear
way. Figure 4j–l show a one-dimensional comparison of the
density profiles along x = 0.15, with the region of averaging
chunks denoted by yellow. The comparisons suggest that the
density flow is not noticeably affected by the implementation
of the ring average technique in the finite-difference solver.
Note that the time step used after applying the ring average
technique is 0.0001 s, which is 25 times larger than that used
in the simulation without the ring average (dt = 0.000004 s).
Although the FFT filter can result in non-oscillatory solu-
tions in the finite-difference solver, as shown by the one-
dimensional profiles in Fig. 4l, evident density oscillations
occur near the pole due to numerical instability caused by

the FFT method. The cutoff frequency of the FFT filter is
case-dependent and has a problem of mass loss compared
to the ring average method. The advection experiment illus-
trates that the ring average technique is capable of relaxing
the severe time step constraint and resolving large density
gradients when passing through the clustered grid cells near
the pole.

2.3 Ring average for GCMs

We use the NCAR TIEGCM to demonstrate the effective-
ness of the ring average technique in resolving mesoscale
upper-atmospheric structures. TIEGCM is a physics-based
3D global model that solves the coupled equations of mo-
mentum, energy, and continuity for neutral and ion species
in the upper-atmospheric I–T system using a fourth-order
and centered finite-difference scheme to evolve the advection
terms on each pressure surface with a staggered vertical grid
(Qian et al., 2014; Roble et al., 1988; Richmond et al., 1992).
The TIEGCM utilizes a spherical coordinate system fixed
with respect to the rotating Earth, with geographic latitude
and longitude as the horizontal coordinates and the pressure
surface as the vertical coordinate. The following is a brief
introduction of the basic equations in the TIEGCM.

The thermospheric energy equation is

∂Tn

∂t
=−U ·OTn+

geZ

P0Cp

∂

∂Z

{
KT

H

∂Tn

∂Z

+KEH
2CPρ

[
g

CP
+

1
H

∂Tn

∂Z

]}
−w

(
∂Tn

∂Z
+
R∗T

Cpm

)
+
Q−L

CP
, (25)

with temperature Tn, time t , the vertical coordinate Z =
ln(P0/P ), the pressure P , and the reference pressure P0; g is
gravity, KT is the molecular thermal conductivity, CP is the
specific heat per unit mass, H is the pressure scale height,
KE is the eddy diffusion coefficient, ρ is the atmospheric
mass density, U is the horizontal neutral velocity with the
zonal and meridional components un and vn, w is the verti-
cal velocity defined by w = dZ/dt , R∗ is the universal gas
constant, m is the mean atmospheric mass, and Q and L are
the heating and cooling rates. The mean molecular massm is
determined by

m=

[
9O2

mO2

+
9O

mO
+
9N2

mN2

]
, (26)

where 9 and m represent the mass mixing ratio and the
molecular mass, respectively, for the three thermospheric
major species O2, O, and N2.

The zonal momentum equation is expressed as
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∂un

∂t
=−U ·Oun+

geZ

P0

∂

∂Z

(
µ

H

∂un

∂Z

)
+

(
f +

un

RE
tanλ

)
vn+ λxx (ui − un)

+ λxy (vi − vn)−w
∂un

∂Z
−

1
RE cosλ

∂φ

∂ϕ
, (27)

and the meridional momentum equation is

∂vn

∂t
=−U ·Ovn+

geZ

P0

∂

∂Z

(
µ

H

∂vn

∂Z

)
−

(
f +

un

RE
tanλ

)
un+ λyy (vi − vn)

+ λyx (ui − un)−w
∂vn

∂Z
−

1
RE

∂φ

∂λ
, (28)

where λ and ϕ represent the geographic latitude and longi-
tude, respectively. RE is the radius of the Earth, µ is the vis-
cosity coefficient, which is the sum of eddy and molecular
viscosity coefficients, f is the Coriolis parameter, φ is the
geopotential, H is the pressure scale height, vi and ui are
the meridional and zonal E×B ion drift velocities, and λxx ,
λxy , λyx , and λyy are the ion-drag tensor coefficients. The
TIEGCM “vertical velocity” w = dZ/dt is determined by
solving the continuity equation:

1
RE cosλ

∂

∂λ
(vn cosλ)+

1
RE cosλ

∂un

∂ϕ
+ eZ

∂

∂Z

(
e−Zw

)
= 0. (29)

The real vertical velocity is obtained by first integrating the
continuity equation (Eq. 29) over Z to get w and then multi-
plying w by the neutral pressure scale height to get the right
unit.

The thermospheric major species in the TIEGCM in-
clude O2, O, and N2. The continuity equation for the mass
mixing ratio of O2 and O is given by

∂9̃

∂t
=−U ·O9̃ −

eZ

τ

∂

∂Z

[
m

mN2

(
T00

Tn

)0.25

α̃−1L9̃

]

+ eZ
∂

∂Z

[
K(Z)e−Z

∂

∂Z

(
1+

1
m

∂m

∂Z

)
9̃

]
+ S̃− R̃−w

∂9̃

∂Z
, (30)

where 9̃ = (9O2 , 9O), τ is the diffusion timescale equal to
1.86× 103 s, mN2 is the molecular mass for molecular nitro-
gen, T00 = 273 K is the standard temperature, α̃ is the matrix
operator of the diffusion coefficients, K(Z) is the eddy dif-
fusion coefficient, and S̃ and R̃ are the production and loss
terms for these two species. The diagonal matrix operator L
has elements of the form

Lii =
∂

∂Z
−

(
1−

mi

m
−

1
m

∂m

∂Z

)
, (31)

where i = 1 and i = 2 denote O2 and O, respectively. The
N2 mass mixing ratio is determined by

9N2 = 1−9O2 −9O. (32)

The minor species in the TIEGCM are N(4S), N(2D),
and NO. The timescale of N(4S) is relatively short and is
thus considered to be in photochemical equilibrium. N(4S)
and NO have longer lifetimes, so the transport effects must
be taken into account. The governing equation for these two
species is

∂9̃

∂t
=−U ·O9̃ − eZ

∂

∂Z

[
Ã

(
∂

∂Z
− Ẽ

)
9̃

]
+ eZ

∂

∂Z

[
e−ZKE(Z)

(
∂

∂Z
+

1
m

∂m

∂Z

)
9̃

]
−w

∂9̃

∂Z
+ S̃− R̃, (33)

where

Ẽ =

(
1−

m

m
−

1
m

∂m

∂Z

)
− α̃

1
Tn

∂Tn

∂Z
+ F̃ 9̃, (34)

where 9̃ = (9NO, 9N(4S)), Ã is the vertical molecular dif-
fusion coefficient, and S̃ and R̃ are the production and loss
terms for each species. Terms in Ẽ represent the effects of
gravity, thermal diffusion, and the frictional interaction with
the major species on the vertical profiles of these two species.
F̃ is a matrix operator for the frictional interactions, α̃ is the
thermal diffusion coefficient, and m̃ is the molecular mass for
the two minor species.

The ions of the ionosphere in the TIEGCM include O+,
O+2 , NO+, N+, and N+2 , and the electron density is calcu-
lated by chemical equilibrium of these ions. All major iono-
spheric ions except O+ are assumed to be in photochemical
equilibrium; thus, their densities can be calculated simply by
balancing the loss and production rates. The O+ density is
determined not only by O+ loss and production but also by
transport due toE×B drifts, neutral winds, and field-aligned
ambipolar diffusion. The O+ continuity equation can be ex-
pressed as

∂n

∂t
=−O · (nV)+Q−Ln, (35)

where n is the O+ density, Q is the production rate, L is the
loss rate, and O·(nV) is the transport term. The ion velocity V
is given by

V= V‖+V⊥, (36)

V‖ =
{
b ·

1
νin

[
g−

1
ρi
O(Pi+Pe)

]
+ b ·Un

}
b, (37)

V⊥ =
E×B
|B|2

, (38)

where V‖ (caused by ambipolar diffusion and neutral winds)
and V⊥ (caused by E×B drifts) are the parallel and per-
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pendicular velocities with respect to the magnetic field line,
respectively, b is a unit vector along the magnetic field, νin is
the ion-neutral collision frequency, g is the acceleration due
to gravity, ρi is the ion mass density, Pi and Pe are the ion
and electron pressures, respectively, Un is the neutral veloc-
ity, B is the magnetic field, and E is the electric field.

By assuming a thermal quasi-steady state, the electron en-
ergy equation is

sin2I
∂

H∂Z

(
Ke ∂Te

H∂Z

)
+

∑
Qe−

∑
Le = 0, (39)

with I the geomagnetic dip angle, Ke the electron thermal
conductivity parallel to the magnetic field,

∑
Qe the sum of

all local electron heating rates, and
∑
Le the sum of all local

cooling rates.
For the electrodynamics, i.e., the “neutral wind dy-

namo process”, TIEGCM assumes steady-state electrody-
namics with a divergence-free current density J for longer
timescales:

O · [σPb× (E+Un×B)× b+ σHb× (E+Un×B)
+J||+ JM

]
= 0, (40)

where σP and σH are the Pedersen and Hall conductivities,
respectively. J|| and JM are the ohmic component of current
density parallel to the magnetic field and the non-ohmic mag-
netospheric component, respectively.

The ionospheric convection pattern for computing the
plasma advection velocity V⊥ at high latitudes is specified
by either the Heelis et al. (1982) or the Weimer (2005) em-
pirical model, while at the bottom boundary the migrating
tides are specified using the Global Scale Wave Model (Ha-
gan and Forbes, 2002, 2003). The current standard version
of TIEGCM (TIEGCM v2.0) provides two spatial resolu-
tion options: (1) 5◦× 5◦ in horizontal geographic latitude–
longitude grid and 1/2 scale height in the vertical direction
or (2) 2.5◦×2.5◦ in horizontal geographic latitude–longitude
grid and 1/4 scale height in the vertical direction.

In this study, the ring average technique is implemented in
the TIEGCM v2.0 to solve the issue of clustering grid cells
near the poles in the development of a high-resolution ver-
sion of the TIEGCM. This technique is applied as a post-
processing treatment of the fluid variables including oxy-
gen ion density O+, neutral temperature Tn, thermospheric
compositions 9, and meridional, zonal, and vertical winds
(Un, Vn, w) at each time step, with different reconstruction
methods (PPM or PLM) for different variables (Table 1).
Due to the use of MPI parallelization in the TIEGCM in su-
percomputers, the ring average technique firstly collects the
azimuthal data in the root thread, conducts the averaging–
reconstruction process, and finally redistributes data into
each MPI thread. Figure 5 illustrates ring average filters
used in the main algorithms of the TIEGCM, including the
thermosphere solvers in Equations (25)–(34), the ionosphere
solver for O+ in Eqs. (35)–(39), and the dynamo solver for

Table 1. The basic ring average settings of variables (column 1)
and the corresponding reconstruction method (column 2), Fourier
reduction (column 3), and sub-cycling (column 4) in the TIEGCM.

Variables Reconstruction Fourier Sub-
method reduction cycling

9O, 9O2 , 9NO, 9N(4S), w, Tn PLM No No
Un, Vn PLM Yes No
O+ PPM No Yes

electrodynamic coupling in the Eq. (40). For neutral vari-
ables in the thermosphere solver, the ring average technique
with the PLM reconstruction is utilized. Specifically, for the
meridional and zonal neutral winds, the second and higher
Fourier components are processed with the PLM ring aver-
age filter to maintain the direction of vectors across the pole,
as displayed in Fig. 5. The oxygen ion (O+) in the ionosphere
usually has much sharper gradients than the neutral variables,
e.g., tongue of ionization (TOI) structures; thus, the PPM is
used in the reconstruction process to provide high-order ac-
curacy and handle the larger local gradient. Meanwhile, to
balance the numerical stability and computational speed, a
sub-cycling technique, which has a smaller time step for O+

than neutral variables, has been applied in the O+ solver
because the ions can move much faster than the neutrals
with the E×B drifts, especially during major geomagnetic
storms.

On the basis of the ring average technique, a new high-
resolution version of TIEGCM with a horizontal longitude–
latitude resolution as high as 0.625◦× 0.625◦ is developed.
Table 2 lists the ring average setup used in different TIEGCM
resolutions. The third column in Table 2 represents the num-
ber of averaging chunks in each azimuthal ring near the pole
from the first innermost to the outermost rings. For example,
in the first azimuthal ring near the pole of the 0.625◦×0.625◦

grid resolution, 64 longitude grids (576/9= 64) and 40 lon-
gitude degrees (360◦/9= 40◦) are grouped into a chunk. In
the outermost filtered ring (around 71.25◦ latitude), one aver-
aging chunk only contains two longitude grids. Table 3 sum-
marizes the information on different spatial resolutions of the
TIEGCM, including the current version of the 2.5◦× 2.5◦

TIEGCM with the default FFT filter and the 2.5◦× 2.5◦,
1.25◦×1.25◦, and 0.625◦×0.625◦ resolution TIEGCM with
the ring average filter. As the resolution doubles, the time
step decreases approximately linearly rather than quadrati-
cally. In practice, the 0.625◦× 0.625◦ resolution of the code
runs about 2 times faster than real time with 256 proces-
sors on the NCAR/CISL Cheyenne supercomputer system
(12 h for a 1 d geomagnetic storm simulation), which is at
fairly low computational cost for mesoscale-resolving global
simulations. The preliminary results of the high-resolution
TIEGCM will be shown in the following section.
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Figure 5. The main ring average algorithm in the TIEGCM.

Figure 6. The simulated polar maps of electron densities using (a) an FFT filter and (b) ring average at pressure surface 2 (near the F2-region
peak, ∼ 300 km) at 10:50 UT on 17 March 2013 as a function of geographic latitude and local time. Both simulations have a horizontal
resolution of 2.5◦× 2.5◦. The outer boundary is at 45◦ N geographic latitude.

3 Applications

To show the capability of the new high-resolution TIEGCM
based on the ring average technique in resolving mesoscale
I–T structures, we have simulated the ionospheric and ther-
mospheric variations during the 17 March 2013 major geo-
magnetic storm as an example. Figure 6 displays the com-
parison of polar maps of electron densities between different
filter techniques with the 2.5◦× 2.5◦ horizontal resolution.
The electron density is plotted on pressure surface 2, which
is near the F2-region peak (∼ 300 km of altitude). Figure 6a
corresponds to the standard TIEGCM with the FFT filter,
while Fig. 6b is the result using the ring average technique.
Generally, the electron densities in the two simulations in
Fig. 6a and b are similar below 60◦ N, with an evident elec-
tron density enhancement seen in the afternoon sector and

negative storm effects in the morning at 10:50 UT during the
storm. The dense ionospheric plasma in the afternoon sec-
tor is transported in the anti-sunward direction into the polar
cap region by the dusk cell of the convection pattern. Con-
sequently, prominent polar tongue of ionization (TOI) fea-
tures can be seen as a narrow density plume on the dayside,
which stretches from 65◦ N at noon to latitudes greater than
80◦ N inside the polar cap. Those TOI features agree well
with the polar Global Position System (GPS) total electron
content (TEC) observations (e.g., Foster et al., 2005; Thomas
et al., 2013). It is evident that, in Fig. 6a, the TOI cannot go
through the polar cap region and generates an artificial “hole”
structure above 80◦ N. This nonphysical depletion is associ-
ated with the loss of electron density induced by the removal
of high frequency in the FFT filter, as also indicated in the
advection experiment in Fig. 4f. Consequently, the plasma
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Table 2. The ring average setup for different TIEGCM horizontal resolutions (column 1) associated with the number of longitude grids
(column 2) and the number of averaging chunks in each azimuthal ring near the pole (column 3).

Horizontal Number of Number
resolution longitude of chunks

grids

2.5◦× 2.5◦ 144 [9, 18, 36, 36, 72, 72, 72, 72]

1.25◦× 1.25◦ 288 [9, 9, 18, 18, 36, 36, 36, 36, 72, 72, 72, 72, 144, 144, 144, 144,
144, 144, 144, 144]

0.625◦× 0.625◦ 576 [9, 9, 9, 9, 18, 18, 18, 18, 36, 36, 36, 36, 36, 36, 36, 36, 72, 72, 72,
72, 72, 72, 72, 72, 144, 144, 144, 144, 144, 144, 144, 144, 288,
288, 288, 288, 288, 288, 288, 288]

Table 3. Comparisons of horizontal resolution in a geographic
latitude–longitude grid (column 1), vertical resolution (column 2),
time step (column 3), O+ sub-cycling time step (column 4), and
polar filter (column 5) between different TIEGCM versions∗.

Horizontal Vertical Time O+ sub- Polar filter
resolution resolution step cycling

(scale (s) time step
height) (s)

2.5◦× 2.5◦ 1/4 60 – FFT
2.5◦× 2.5◦ 1/4 60 5 ring average
1.25◦× 1.25◦ 1/4 20 2 ring average
0.625◦× 0.625◦ 1/4 10 0.1 ring average
∗ In columns 3 and 4, the time step corresponds to the cases of geomagnetic storms. The
time step and sub-cycling time step would be more relaxed when the geomagnetic activity
is quiet.

within the TOI accumulates around the hole and a “ring-like”
structure appears at about 70◦ N. In contrast, for the ring av-
erage technique, the electron densities in Fig. 6b can success-
fully flow through the polar cap and arrive at the nightside,
which is consistent with Fig. 4c. Thus, using the ring average,
the artificial structures no longer exist in the polar cap re-
gion, indicating the advantage of the ring average technique
in handling numerical instability by causing fewer artificial
structures and preserving the real mesoscale structures.

Figure 7 shows the comparison of the polar maps of elec-
tron densities between simulations with different spatial res-
olutions using the TIEGCM bolstered by the ring average
technique. The simulation results after using the ring average
technique are generally similar among different simulations,
with finer structures at higher spatial resolutions. Besides the
ionospheric parameters, we have also tested the performance
of the ring average in thermospheric simulations (not shown
here), which indicates that the thermospheric variables gen-
erally converge between different spatial resolutions. The
thermospheric temperature, O/N2, and thermospheric den-
sity simulated by two kinds of filters do not show distinct
differences compared with the ionospheric simulations due
to the relatively smoother variations of neutral parameters.

Only slight deviation exists locally on a smaller scale in the
polar thermosphere. The results from Figs. 6 and 7 demon-
strate that the ring average technique can be applied in the
finite-difference method, which is usually considered to be
less stable than the finite-volume scheme. The ring average
method can successfully maintain numerical stability, even
with the structures of large spatial gradients, and conserve
true mesoscale structures. Meanwhile, the ring average tech-
nique shows advantages of inexpensive computational cost
and easy implementation, as indicated by Table 3. By us-
ing the ring average, the time step has been greatly relaxed
in the ideal advection experiment and the high-resolution
TIEGCM, which would maintain the computational cost at
an acceptable level. Furthermore, ring averaging can be ap-
plied as a post-filter after each simulation step and would
not require a modification of the underlying code; this would
make the technique easily applied.

Benefiting from the ring average technique, the newly de-
veloped high-resolution TIEGCM has been applied to ex-
plore the mesoscale variations in the I–T system during space
weather events. For instance, based on the 0.625◦× 0.625◦

high-resolution TIEGCM simulations and satellite observa-
tions, Dang et al. (2019) reported the occurrence of double
TOIs and carried out a comprehensive study on the dynamic
evolution and formation mechanism of double TOIs. Lu et al.
(2020) used the high-resolution model to study ionospheric
disturbances such as traveling ionospheric disturbances and
enhanced storm density during geomagnetic disturbances.
The high-resolution TIEGCM has also been utilized to sim-
ulate the sub-auroral polarization stream (Lin et al., 2019),
neutral wind variabilities (Wu et al., 2019), and the responses
of the I–T system to solar eclipses (Dang et al., 2018a, b; Lei
et al., 2018; Wang et al., 2019). These works highlight the
enhanced capability of the high-resolution TIEGCM in re-
solving ionospheric and thermospheric mesoscale structures
enabled by the ring average technique.

Simulating the mesoscale structures also requires a more
realistic input from the upper boundary, corresponding to
the electric field and auroral precipitation from the mag-
netosphere, and the bottom boundary, corresponding to the

https://doi.org/10.5194/gmd-14-859-2021 Geosci. Model Dev., 14, 859–873, 2021



870 T. Dang et al.: Azimuthal averaging–reconstruction filtering techniques

Figure 7. The polar maps of electron densities at pressure surface 2 (near the F2-region peak, ∼ 300 km) at 10:50 UT on 17 March 2013 as a
function of geographic latitude and local time for (a) 2.5◦×2.5◦, (b) 1.25◦×1.25◦, and (c) 0.625◦×0.625◦ TIEGCM horizontal resolutions
using the ring average technique.

Figure 8. Polar maps of the (a) total electron content (TEC) and (b) neutral temperature simulated by CMIT as a function of geographic
latitude and local time at 17:30 UT on 17 March 2013. The vectors represent the (a) E×B drifts and (b) horizontal neutral winds.

upward propagation of tides and waves from the lower at-
mosphere, of the I–T system. In the TIEGCM, these inputs
are directly adopted from two empirical models, the Weimer
model and the Global Scale Wave Model (GSWM), which
might not necessarily represent the complexity of the actual
physical processes from the boundaries. To obtain a more
physical upper boundary condition, the CMIT has been de-
veloped (Wang et al., 2004; Wiltberger et al., 2004), which
couples the LFM global magnetosphere model with the I–
T model TIEGCM. The LFM provides the TIEGCM with
high-latitude electric fields and auroral electron precipitation,
and the TIEGCM feeds ionospheric height-integrated con-
ductance back to the LFM. The standard resolution of the
ionosphere and thermosphere in CMIT is 2.5◦× 2.5◦, which
is the same as the standard TIEGCM. By implementing
the high-resolution TIEGCM in CMIT, the thermosphere–
ionosphere part in CMIT has a horizontal resolution of
1.25◦ in both latitude and longitude, which is comparable
to the magnetospheric resolution of 100 km mapped to the
ionospheric reference altitude. Figure 8 shows an example

CMIT simulation of the ionosphere and thermosphere at
17:30 UT during the 17 March 2013 geomagnetic storm. The
TEC in Fig. 8a shows more dynamic and finer TOI varia-
tions driven by the magnetospheric convection during the
storm time. Meanwhile, the thermospheric temperature in
Fig. 8b also exhibits distinct mesoscale structures associated
with changes in the neutral wind circulation and ion col-
lisional heating. The results illustrate that, with the imple-
mentation of the ring average technique, the high-resolution
CMIT show advantages in resolving the dynamic evolu-
tion of mesoscale structures in the coupled magnetosphere–
ionosphere–thermosphere system.

Furthermore, the ring average technique has also been
applied in the WACCM-X, which can provide a relatively
more realistic bottom boundary for the I–T simulation. The
WACCM-X is a whole-atmosphere chemistry–climate gen-
eral circulation model spanning the range of altitude from
the Earth’s surface to the upper thermosphere to simulate
the entire atmosphere and ionosphere (Liu et al., 2018).
The ionosphere and electrodynamo parts in WACCM-X are
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Figure 9. Polar map of the electron density in the Southern Hemi-
sphere at 14:00 UT on 17 March 2013 from the WACCM-X 1◦ sim-
ulation.

the same as in the TIEGCM. The ring average scheme has
been successfully implemented in the O+ transport module
of the WACCM-X to get a higher spatial resolution for the
ionosphere. Figure 9 shows the simulation results for the
17 March 2013 geomagnetic storm from WACCM-X. For
this simulation, the horizontal resolution is 1.25◦× 0.9◦ in
longitude and latitude directions, respectively, and the ver-
tical resolution in the upper atmosphere is 1/4 of the scale
height. Detailed analyses and exploration of the CMIT and
WACCM-X results are beyond the scope of this study and
will be studied in the future. Ongoing efforts also include im-
proving the resolution of the vertical direction and the elec-
trodynamo of the TIEGCM as well as applying the ring aver-
age technique to high-resolution data assimilation and space
weather prediction.

4 Summary

In summary, a post-processing technique with an averaging–
reconstruction (ring average) algorithm is developed to solve
the problem of clustering of azimuthal cells in a spherical
coordinate with the finite-difference method. The ring aver-
age technique is applied based on a reduced effective po-
lar grid by first averaging quantities within azimuthal ef-
fective “chunks” and then reconstructing them within each
chunk. The ring average technique shows the advantages of
inexpensive computational cost, easy implementation, time
step relaxation, and maintenance of the mesoscale structures
without introducing artifacts, which allows for the develop-
ment of high-resolution GCMs to resolve mesoscale struc-
tures. We have developed a new version of the TIEGCM,
which has a horizontal resolution of 0.625◦×0.625◦ in a ge-
ographic longitude–latitude grid, by implementing the ring

average technique as a post-processing step. The nonphys-
ical “hole” and “ring” structures, which are induced by an
FFT filter in the previous TIEGCM version, no longer exist
in the high-resolution TIEGCM associated with the ring aver-
age technique. The simulation results illustrate that the high-
resolution TIEGCM is capable of resolving the mesoscale
structures in the I–T system during a geomagnetic storm
event. Moreover, the ring average scheme has also been im-
plemented in CMIT and WACCM-X to enable high-spatial-
resolution self-consistent simulations of the whole geospace
from the ground to the magnetosphere.
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