Articles | Volume 14, issue 2
https://doi.org/10.5194/gmd-14-795-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/gmd-14-795-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The Nonhydrostatic ICosahedral Atmospheric Model for CMIP6 HighResMIP simulations (NICAM16-S): experimental design, model description, and impacts of model updates
Japan Agency for Marine-Earth Science and Technology, Yokohama,
236-0001, Japan
Tomoki Ohno
Japan Agency for Marine-Earth Science and Technology, Yokohama,
236-0001, Japan
Tatsuya Seiki
Japan Agency for Marine-Earth Science and Technology, Yokohama,
236-0001, Japan
Hisashi Yashiro
National Institute for Environmental Studies, Tsukuba,
305-8506, Japan
Akira T. Noda
Japan Agency for Marine-Earth Science and Technology, Yokohama,
236-0001, Japan
Masuo Nakano
Japan Agency for Marine-Earth Science and Technology, Yokohama,
236-0001, Japan
Yohei Yamada
Japan Agency for Marine-Earth Science and Technology, Yokohama,
236-0001, Japan
Woosub Roh
Atmosphere and Ocean Research Institute, The University of Tokyo,
Kashiwa, 277-8564, Japan
Masaki Satoh
Atmosphere and Ocean Research Institute, The University of Tokyo,
Kashiwa, 277-8564, Japan
Japan Agency for Marine-Earth Science and Technology, Yokohama,
236-0001, Japan
Tomoko Nitta
Atmosphere and Ocean Research Institute, The University of Tokyo,
Kashiwa, 277-8564, Japan
Daisuke Goto
National Institute for Environmental Studies, Tsukuba,
305-8506, Japan
Hiroaki Miura
Department of Earth and Planetary Science, Graduate School of Science,
The University of Tokyo, Tokyo, 113-0033, Japan
Tomoe Nasuno
Japan Agency for Marine-Earth Science and Technology, Yokohama,
236-0001, Japan
Tomoki Miyakawa
Atmosphere and Ocean Research Institute, The University of Tokyo,
Kashiwa, 277-8564, Japan
Ying-Wen Chen
Atmosphere and Ocean Research Institute, The University of Tokyo,
Kashiwa, 277-8564, Japan
Masato Sugi
Meteorological Research Institute, Tsukuba, 305-0052, Japan
Related authors
Malcolm J. Roberts, Kevin A. Reed, Qing Bao, Joseph J. Barsugli, Suzana J. Camargo, Louis-Philippe Caron, Ping Chang, Cheng-Ta Chen, Hannah M. Christensen, Gokhan Danabasoglu, Ivy Frenger, Neven S. Fučkar, Shabeh ul Hasson, Helene T. Hewitt, Huanping Huang, Daehyun Kim, Chihiro Kodama, Michael Lai, Lai-Yung Ruby Leung, Ryo Mizuta, Paulo Nobre, Pablo Ortega, Dominique Paquin, Christopher D. Roberts, Enrico Scoccimarro, Jon Seddon, Anne Marie Treguier, Chia-Ying Tu, Paul A. Ullrich, Pier Luigi Vidale, Michael F. Wehner, Colin M. Zarzycki, Bosong Zhang, Wei Zhang, and Ming Zhao
Geosci. Model Dev., 18, 1307–1332, https://doi.org/10.5194/gmd-18-1307-2025, https://doi.org/10.5194/gmd-18-1307-2025, 2025
Short summary
Short summary
HighResMIP2 is a model intercomparison project focusing on high-resolution global climate models, that is, those with grid spacings of 25 km or less in the atmosphere and ocean, using simulations of decades to a century in length. We are proposing an update of our simulation protocol to make the models more applicable to key questions for climate variability and hazard in present-day and future projections and to build links with other communities to provide more robust climate information.
Bjorn Stevens, Stefan Adami, Tariq Ali, Hartwig Anzt, Zafer Aslan, Sabine Attinger, Jaana Bäck, Johanna Baehr, Peter Bauer, Natacha Bernier, Bob Bishop, Hendryk Bockelmann, Sandrine Bony, Guy Brasseur, David N. Bresch, Sean Breyer, Gilbert Brunet, Pier Luigi Buttigieg, Junji Cao, Christelle Castet, Yafang Cheng, Ayantika Dey Choudhury, Deborah Coen, Susanne Crewell, Atish Dabholkar, Qing Dai, Francisco Doblas-Reyes, Dale Durran, Ayoub El Gaidi, Charlie Ewen, Eleftheria Exarchou, Veronika Eyring, Florencia Falkinhoff, David Farrell, Piers M. Forster, Ariane Frassoni, Claudia Frauen, Oliver Fuhrer, Shahzad Gani, Edwin Gerber, Debra Goldfarb, Jens Grieger, Nicolas Gruber, Wilco Hazeleger, Rolf Herken, Chris Hewitt, Torsten Hoefler, Huang-Hsiung Hsu, Daniela Jacob, Alexandra Jahn, Christian Jakob, Thomas Jung, Christopher Kadow, In-Sik Kang, Sarah Kang, Karthik Kashinath, Katharina Kleinen-von Königslöw, Daniel Klocke, Uta Kloenne, Milan Klöwer, Chihiro Kodama, Stefan Kollet, Tobias Kölling, Jenni Kontkanen, Steve Kopp, Michal Koran, Markku Kulmala, Hanna Lappalainen, Fakhria Latifi, Bryan Lawrence, June Yi Lee, Quentin Lejeun, Christian Lessig, Chao Li, Thomas Lippert, Jürg Luterbacher, Pekka Manninen, Jochem Marotzke, Satoshi Matsouoka, Charlotte Merchant, Peter Messmer, Gero Michel, Kristel Michielsen, Tomoki Miyakawa, Jens Müller, Ramsha Munir, Sandeep Narayanasetti, Ousmane Ndiaye, Carlos Nobre, Achim Oberg, Riko Oki, Tuba Özkan-Haller, Tim Palmer, Stan Posey, Andreas Prein, Odessa Primus, Mike Pritchard, Julie Pullen, Dian Putrasahan, Johannes Quaas, Krishnan Raghavan, Venkatachalam Ramaswamy, Markus Rapp, Florian Rauser, Markus Reichstein, Aromar Revi, Sonakshi Saluja, Masaki Satoh, Vera Schemann, Sebastian Schemm, Christina Schnadt Poberaj, Thomas Schulthess, Cath Senior, Jagadish Shukla, Manmeet Singh, Julia Slingo, Adam Sobel, Silvina Solman, Jenna Spitzer, Philip Stier, Thomas Stocker, Sarah Strock, Hang Su, Petteri Taalas, John Taylor, Susann Tegtmeier, Georg Teutsch, Adrian Tompkins, Uwe Ulbrich, Pier-Luigi Vidale, Chien-Ming Wu, Hao Xu, Najibullah Zaki, Laure Zanna, Tianjun Zhou, and Florian Ziemen
Earth Syst. Sci. Data, 16, 2113–2122, https://doi.org/10.5194/essd-16-2113-2024, https://doi.org/10.5194/essd-16-2113-2024, 2024
Short summary
Short summary
To manage Earth in the Anthropocene, new tools, new institutions, and new forms of international cooperation will be required. Earth Virtualization Engines is proposed as an international federation of centers of excellence to empower all people to respond to the immense and urgent challenges posed by climate change.
Daniel T. McCoy, Paul R. Field, Gregory S. Elsaesser, Alejandro Bodas-Salcedo, Brian H. Kahn, Mark D. Zelinka, Chihiro Kodama, Thorsten Mauritsen, Benoit Vanniere, Malcolm Roberts, Pier L. Vidale, David Saint-Martin, Aurore Voldoire, Rein Haarsma, Adrian Hill, Ben Shipway, and Jonathan Wilkinson
Atmos. Chem. Phys., 19, 1147–1172, https://doi.org/10.5194/acp-19-1147-2019, https://doi.org/10.5194/acp-19-1147-2019, 2019
Short summary
Short summary
The largest single source of uncertainty in the climate sensitivity predicted by global climate models is how much low-altitude clouds change as the climate warms. Models predict that the amount of liquid within and the brightness of low-altitude clouds increase in the extratropics with warming. We show that increased fluxes of moisture into extratropical storms in the midlatitudes explain the majority of the observed trend and the modeled increase in liquid water within these storms.
Reindert J. Haarsma, Malcolm J. Roberts, Pier Luigi Vidale, Catherine A. Senior, Alessio Bellucci, Qing Bao, Ping Chang, Susanna Corti, Neven S. Fučkar, Virginie Guemas, Jost von Hardenberg, Wilco Hazeleger, Chihiro Kodama, Torben Koenigk, L. Ruby Leung, Jian Lu, Jing-Jia Luo, Jiafu Mao, Matthew S. Mizielinski, Ryo Mizuta, Paulo Nobre, Masaki Satoh, Enrico Scoccimarro, Tido Semmler, Justin Small, and Jin-Song von Storch
Geosci. Model Dev., 9, 4185–4208, https://doi.org/10.5194/gmd-9-4185-2016, https://doi.org/10.5194/gmd-9-4185-2016, 2016
Short summary
Short summary
Recent progress in computing power has enabled climate models to simulate more processes in detail and on a smaller scale. Here we present a common protocol for these high-resolution runs that will foster the analysis and understanding of the impact of model resolution on the simulated climate. These runs will also serve as a more reliable source for assessing climate risks that are associated with small-scale weather phenomena such as tropical cyclones.
Kaori Sato, Hajime Okamoto, Tomoaki Nishizawa, Yoshitaka Jin, Takashi Y. Nakajima, Minrui Wang, Masaki Satoh, Woosub Roh, Hiroshi Ishimoto, and Rei Kudo
Atmos. Meas. Tech., 18, 1325–1338, https://doi.org/10.5194/amt-18-1325-2025, https://doi.org/10.5194/amt-18-1325-2025, 2025
Short summary
Short summary
This study introduces the JAXA EarthCARE Level 2 (L2) cloud product using satellite observations and simulated EarthCARE data. The outputs from the product feature a 3D global view of the dominant ice habit categories and corresponding microphysics. Habit and size distribution transitions from cloud to precipitation are quantified by the L2 cloud algorithms. With Doppler data, the products can be beneficial for further understanding of the coupling of cloud microphysics, radiation, and dynamics.
Malcolm J. Roberts, Kevin A. Reed, Qing Bao, Joseph J. Barsugli, Suzana J. Camargo, Louis-Philippe Caron, Ping Chang, Cheng-Ta Chen, Hannah M. Christensen, Gokhan Danabasoglu, Ivy Frenger, Neven S. Fučkar, Shabeh ul Hasson, Helene T. Hewitt, Huanping Huang, Daehyun Kim, Chihiro Kodama, Michael Lai, Lai-Yung Ruby Leung, Ryo Mizuta, Paulo Nobre, Pablo Ortega, Dominique Paquin, Christopher D. Roberts, Enrico Scoccimarro, Jon Seddon, Anne Marie Treguier, Chia-Ying Tu, Paul A. Ullrich, Pier Luigi Vidale, Michael F. Wehner, Colin M. Zarzycki, Bosong Zhang, Wei Zhang, and Ming Zhao
Geosci. Model Dev., 18, 1307–1332, https://doi.org/10.5194/gmd-18-1307-2025, https://doi.org/10.5194/gmd-18-1307-2025, 2025
Short summary
Short summary
HighResMIP2 is a model intercomparison project focusing on high-resolution global climate models, that is, those with grid spacings of 25 km or less in the atmosphere and ocean, using simulations of decades to a century in length. We are proposing an update of our simulation protocol to make the models more applicable to key questions for climate variability and hazard in present-day and future projections and to build links with other communities to provide more robust climate information.
John Patrick Dunne, Helene T. Hewitt, Julie Arblaster, Frédéric Bonou, Olivier Boucher, Tereza Cavazos, Paul J. Durack, Birgit Hassler, Martin Juckes, Tomoki Miyakawa, Matthew Mizielinski, Vaishali Naik, Zebedee Nicholls, Eleanor O’Rourke, Robert Pincus, Benjamin M. Sanderson, Isla R. Simpson, and Karl E. Taylor
EGUsphere, https://doi.org/10.5194/egusphere-2024-3874, https://doi.org/10.5194/egusphere-2024-3874, 2024
Short summary
Short summary
This manuscript provides the motivation and experimental design for the seventh phase of the Coupled Model Intercomparison Project (CMIP7) to coordinate community based efforts to answer key and timely climate science questions and facilitate delivery of relevant multi-model simulations for: prediction and projection, characterization, attribution and process understanding; vulnerability, impacts and adaptations analysis; national and international climate assessments; and society at large.
Gab Abramowitz, Anna Ukkola, Sanaa Hobeichi, Jon Cranko Page, Mathew Lipson, Martin G. De Kauwe, Samuel Green, Claire Brenner, Jonathan Frame, Grey Nearing, Martyn Clark, Martin Best, Peter Anthoni, Gabriele Arduini, Souhail Boussetta, Silvia Caldararu, Kyeungwoo Cho, Matthias Cuntz, David Fairbairn, Craig R. Ferguson, Hyungjun Kim, Yeonjoo Kim, Jürgen Knauer, David Lawrence, Xiangzhong Luo, Sergey Malyshev, Tomoko Nitta, Jerome Ogee, Keith Oleson, Catherine Ottlé, Phillipe Peylin, Patricia de Rosnay, Heather Rumbold, Bob Su, Nicolas Vuichard, Anthony P. Walker, Xiaoni Wang-Faivre, Yunfei Wang, and Yijian Zeng
Biogeosciences, 21, 5517–5538, https://doi.org/10.5194/bg-21-5517-2024, https://doi.org/10.5194/bg-21-5517-2024, 2024
Short summary
Short summary
This paper evaluates land models – computer-based models that simulate ecosystem dynamics; land carbon, water, and energy cycles; and the role of land in the climate system. It uses machine learning and AI approaches to show that, despite the complexity of land models, they do not perform nearly as well as they could given the amount of information they are provided with about the prediction problem.
Yueming Cheng, Tie Dai, Junji Cao, Daisuke Goto, Jianbing Jin, Teruyuki Nakajima, and Guangyu Shi
Atmos. Chem. Phys., 24, 12643–12659, https://doi.org/10.5194/acp-24-12643-2024, https://doi.org/10.5194/acp-24-12643-2024, 2024
Short summary
Short summary
In March 2021, east Asia experienced an outbreak of severe dust storms after an absence of 1.5 decades. Here, we innovatively used the time-lagged ground-based aerosol size information with the fixed-lag ensemble Kalman smoother to optimize dust emission and reproduce the dust storm. This work is valuable for not only the quantification of health damage, aviation risks, and profound impacts on the Earth's system but also revealing the climatic driving force and the process of desertification.
Hajime Okamoto, Kaori Sato, Tomoaki Nishizawa, Yoshitaka Jin, Shota Ogawa, Hiroshi Ishimoto, Yuichiro Hagihara, EIji Oikawa, Maki Kikuchi, Masaki Satoh, and Wooosub Roh
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-103, https://doi.org/10.5194/amt-2024-103, 2024
Revised manuscript has not been submitted
Short summary
Short summary
The article gives the descriptions of the Japan Aerospace Exploration Agency (JAXA) level 2 (L2) cloud mask and cloud particle type algorithms for CPR and ATLID onboard Earth Clouds, Aerosols and Radiation Explorer (EarthCARE) satellite. The 355nm-multiple scattering polarization lidar was used to develop ATLID algorithm. Evaluations show the agreements for CPR-only, ATLID-only and CPR-ATLID synergy algorithms to be about 80%, 85% and 80%, respectively on average for about two EarthCARE orbits.
Hajime Okamoto, Kaori Sato, Tomoaki Nishizawa, Yoshitaka Jin, Takashi Nakajima, Minrui Wang, Masaki Satoh, Kentaroh Suzuki, Woosub Roh, Akira Yamauchi, Hiroaki Horie, Yuichi Ohno, Yuichiro Hagihara, Hiroshi Ishimoto, Rei Kudo, Takuji Kubota, and Toshiyuki Tanaka
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-101, https://doi.org/10.5194/amt-2024-101, 2024
Publication in AMT not foreseen
Short summary
Short summary
This article gives overviews of the JAXA L2 algorithms and products by Japanese science teams for EarthCARE. The algorithms provide corrected Doppler velocity, cloud particle shape and orientations, microphysics of clouds and aerosols, and radiative fluxes and heating rate. The retrievals by the algorithms are demonstrated and evaluated using NICAM/J-simulator outputs. The JAXA EarthCARE L2 products will bring new scientific knowledge about the clouds, aerosols, radiation and convections.
Woosub Roh, Masaki Satoh, Yuichiro Hagihara, Hiroaki Horie, Yuichi Ohno, and Takuji Kubota
Atmos. Meas. Tech., 17, 3455–3466, https://doi.org/10.5194/amt-17-3455-2024, https://doi.org/10.5194/amt-17-3455-2024, 2024
Short summary
Short summary
The advantage of the use of Doppler velocity in the categorization of the hydrometeors is that Doppler velocities suffer less impact from the attenuation of rain and wet attenuation on an antenna. The ground Cloud Profiling Radar observation of the radar reflectivity for the precipitation case is limited because of wet attenuation on an antenna. We found the main contribution to Doppler velocities is the terminal velocity of hydrometeors by analysis of simulation results.
Bjorn Stevens, Stefan Adami, Tariq Ali, Hartwig Anzt, Zafer Aslan, Sabine Attinger, Jaana Bäck, Johanna Baehr, Peter Bauer, Natacha Bernier, Bob Bishop, Hendryk Bockelmann, Sandrine Bony, Guy Brasseur, David N. Bresch, Sean Breyer, Gilbert Brunet, Pier Luigi Buttigieg, Junji Cao, Christelle Castet, Yafang Cheng, Ayantika Dey Choudhury, Deborah Coen, Susanne Crewell, Atish Dabholkar, Qing Dai, Francisco Doblas-Reyes, Dale Durran, Ayoub El Gaidi, Charlie Ewen, Eleftheria Exarchou, Veronika Eyring, Florencia Falkinhoff, David Farrell, Piers M. Forster, Ariane Frassoni, Claudia Frauen, Oliver Fuhrer, Shahzad Gani, Edwin Gerber, Debra Goldfarb, Jens Grieger, Nicolas Gruber, Wilco Hazeleger, Rolf Herken, Chris Hewitt, Torsten Hoefler, Huang-Hsiung Hsu, Daniela Jacob, Alexandra Jahn, Christian Jakob, Thomas Jung, Christopher Kadow, In-Sik Kang, Sarah Kang, Karthik Kashinath, Katharina Kleinen-von Königslöw, Daniel Klocke, Uta Kloenne, Milan Klöwer, Chihiro Kodama, Stefan Kollet, Tobias Kölling, Jenni Kontkanen, Steve Kopp, Michal Koran, Markku Kulmala, Hanna Lappalainen, Fakhria Latifi, Bryan Lawrence, June Yi Lee, Quentin Lejeun, Christian Lessig, Chao Li, Thomas Lippert, Jürg Luterbacher, Pekka Manninen, Jochem Marotzke, Satoshi Matsouoka, Charlotte Merchant, Peter Messmer, Gero Michel, Kristel Michielsen, Tomoki Miyakawa, Jens Müller, Ramsha Munir, Sandeep Narayanasetti, Ousmane Ndiaye, Carlos Nobre, Achim Oberg, Riko Oki, Tuba Özkan-Haller, Tim Palmer, Stan Posey, Andreas Prein, Odessa Primus, Mike Pritchard, Julie Pullen, Dian Putrasahan, Johannes Quaas, Krishnan Raghavan, Venkatachalam Ramaswamy, Markus Rapp, Florian Rauser, Markus Reichstein, Aromar Revi, Sonakshi Saluja, Masaki Satoh, Vera Schemann, Sebastian Schemm, Christina Schnadt Poberaj, Thomas Schulthess, Cath Senior, Jagadish Shukla, Manmeet Singh, Julia Slingo, Adam Sobel, Silvina Solman, Jenna Spitzer, Philip Stier, Thomas Stocker, Sarah Strock, Hang Su, Petteri Taalas, John Taylor, Susann Tegtmeier, Georg Teutsch, Adrian Tompkins, Uwe Ulbrich, Pier-Luigi Vidale, Chien-Ming Wu, Hao Xu, Najibullah Zaki, Laure Zanna, Tianjun Zhou, and Florian Ziemen
Earth Syst. Sci. Data, 16, 2113–2122, https://doi.org/10.5194/essd-16-2113-2024, https://doi.org/10.5194/essd-16-2113-2024, 2024
Short summary
Short summary
To manage Earth in the Anthropocene, new tools, new institutions, and new forms of international cooperation will be required. Earth Virtualization Engines is proposed as an international federation of centers of excellence to empower all people to respond to the immense and urgent challenges posed by climate change.
Justin L. Willson, Kevin A. Reed, Christiane Jablonowski, James Kent, Peter H. Lauritzen, Ramachandran Nair, Mark A. Taylor, Paul A. Ullrich, Colin M. Zarzycki, David M. Hall, Don Dazlich, Ross Heikes, Celal Konor, David Randall, Thomas Dubos, Yann Meurdesoif, Xi Chen, Lucas Harris, Christian Kühnlein, Vivian Lee, Abdessamad Qaddouri, Claude Girard, Marco Giorgetta, Daniel Reinert, Hiroaki Miura, Tomoki Ohno, and Ryuji Yoshida
Geosci. Model Dev., 17, 2493–2507, https://doi.org/10.5194/gmd-17-2493-2024, https://doi.org/10.5194/gmd-17-2493-2024, 2024
Short summary
Short summary
Accurate simulation of tropical cyclones (TCs) is essential to understanding their behavior in a changing climate. One way this is accomplished is through model intercomparison projects, where results from multiple climate models are analyzed to provide benchmark solutions for the wider climate modeling community. This study describes and analyzes the previously developed TC test case for nine climate models in an intercomparison project, providing solutions that aid in model development.
Daisuke Goto, Tatsuya Seiki, Kentaroh Suzuki, Hisashi Yashiro, and Toshihiko Takemura
Geosci. Model Dev., 17, 651–684, https://doi.org/10.5194/gmd-17-651-2024, https://doi.org/10.5194/gmd-17-651-2024, 2024
Short summary
Short summary
Global climate models with coarse grid sizes include uncertainties about the processes in aerosol–cloud–precipitation interactions. To reduce these uncertainties, here we performed numerical simulations using a new version of our global aerosol transport model with a finer grid size over a longer period than in our previous study. As a result, we found that the cloud microphysics module influences the aerosol distributions through both aerosol wet deposition and aerosol–cloud interactions.
Min Zhao, Tie Dai, Daisuke Goto, Hao Wang, and Guangyu Shi
Atmos. Chem. Phys., 24, 235–258, https://doi.org/10.5194/acp-24-235-2024, https://doi.org/10.5194/acp-24-235-2024, 2024
Short summary
Short summary
During a springtime pollution input from South Asia to the Tibetan Plateau, we combined atmospheric chemistry modeling and data assimilation methods to assimilate and forecast aerosols from South Asia and the Tibetan Plateau. Assimilation of observations over a whole time window leads to a more reasonable distribution of daily variations in the aerosol forecast field. We also find that aerosol assimilation can improve the surface solar energy forecast in the Tibetan Plateau region.
Woosub Roh, Masaki Satoh, Tempei Hashino, Shuhei Matsugishi, Tomoe Nasuno, and Takuji Kubota
Atmos. Meas. Tech., 16, 3331–3344, https://doi.org/10.5194/amt-16-3331-2023, https://doi.org/10.5194/amt-16-3331-2023, 2023
Short summary
Short summary
JAXA EarthCARE synthetic data (JAXA L1 data) were compiled using the global storm-resolving model (GSRM) NICAM (Nonhydrostatic ICosahedral
Atmospheric Model) simulation with 3.5 km horizontal resolution and the Joint-Simulator. JAXA L1 data are intended to support the development of JAXA retrieval algorithms for the EarthCARE sensor before launch of the satellite. The expected orbit of EarthCARE and horizontal sampling of each sensor were used to simulate the signals.
Yuichiro Hagihara, Yuichi Ohno, Hiroaki Horie, Woosub Roh, Masaki Satoh, and Takuji Kubota
Atmos. Meas. Tech., 16, 3211–3219, https://doi.org/10.5194/amt-16-3211-2023, https://doi.org/10.5194/amt-16-3211-2023, 2023
Short summary
Short summary
The CPR on the EarthCARE satellite is the first satellite-borne Doppler radar. We evaluated the effectiveness of horizontal integration and the unfolding method for the reduction of the Doppler error (the standard deviation of the random error) in the CPR_ECO product. The error was higher in the tropics than in the other latitudes due to frequent rain echo occurrence and limitation of its unfolding correction. If we use low-mode operation (high PRF), the errors become small enough.
Minrui Wang, Takashi Y. Nakajima, Woosub Roh, Masaki Satoh, Kentaroh Suzuki, Takuji Kubota, and Mayumi Yoshida
Atmos. Meas. Tech., 16, 603–623, https://doi.org/10.5194/amt-16-603-2023, https://doi.org/10.5194/amt-16-603-2023, 2023
Short summary
Short summary
SMILE (a spectral misalignment in which a shift in the center wavelength appears as a distortion in the spectral image) was detected during our recent work. To evaluate how it affects the cloud retrieval products, we did a simulation of EarthCARE-MSI forward radiation, evaluating the error in simulated scenes from a global cloud system-resolving model and a satellite simulator. Our results indicated that the error from SMILE was generally small and negligible for oceanic scenes.
Maria Paula Pérez-Peña, Jenny A. Fisher, Dylan B. Millet, Hisashi Yashiro, Ray L. Langenfelds, Paul B. Krummel, and Scott H. Kable
Atmos. Chem. Phys., 22, 12367–12386, https://doi.org/10.5194/acp-22-12367-2022, https://doi.org/10.5194/acp-22-12367-2022, 2022
Short summary
Short summary
We used two atmospheric models to test the implications of previously unexplored aldehyde photochemistry on the atmospheric levels of molecular hydrogen (H2). We showed that the new photochemistry from aldehydes produces more H2 over densely forested areas. Compared to the rest of the world, it is over these forested regions where the produced H2 is more likely to be removed. The results highlight that other processes that contribute to atmospheric H2 levels should be studied further.
Tie Dai, Yueming Cheng, Daisuke Goto, Yingruo Li, Xiao Tang, Guangyu Shi, and Teruyuki Nakajima
Atmos. Chem. Phys., 21, 4357–4379, https://doi.org/10.5194/acp-21-4357-2021, https://doi.org/10.5194/acp-21-4357-2021, 2021
Short summary
Short summary
The anthropogenic emission of sulfur dioxide (SO2) over China has significantly declined as a consequence of the clean air actions. We have developed a new emission inversion system to dynamically update the SO2 emission grid by grid over China by assimilating ground-based SO2 observations. The inverted SO2 emission over China in November 2016 on average had declined by 49.4 % since 2010, which is well in agreement with the bottom-up estimation of 48.0 %.
Richard Essery, Hyungjun Kim, Libo Wang, Paul Bartlett, Aaron Boone, Claire Brutel-Vuilmet, Eleanor Burke, Matthias Cuntz, Bertrand Decharme, Emanuel Dutra, Xing Fang, Yeugeniy Gusev, Stefan Hagemann, Vanessa Haverd, Anna Kontu, Gerhard Krinner, Matthieu Lafaysse, Yves Lejeune, Thomas Marke, Danny Marks, Christoph Marty, Cecile B. Menard, Olga Nasonova, Tomoko Nitta, John Pomeroy, Gerd Schädler, Vladimir Semenov, Tatiana Smirnova, Sean Swenson, Dmitry Turkov, Nander Wever, and Hua Yuan
The Cryosphere, 14, 4687–4698, https://doi.org/10.5194/tc-14-4687-2020, https://doi.org/10.5194/tc-14-4687-2020, 2020
Short summary
Short summary
Climate models are uncertain in predicting how warming changes snow cover. This paper compares 22 snow models with the same meteorological inputs. Predicted trends agree with observations at four snow research sites: winter snow cover does not start later, but snow now melts earlier in spring than in the 1980s at two of the sites. Cold regions where snow can last until late summer are predicted to be particularly sensitive to warming because the snow then melts faster at warmer times of year.
Tokuta Yokohata, Tsuguki Kinoshita, Gen Sakurai, Yadu Pokhrel, Akihiko Ito, Masashi Okada, Yusuke Satoh, Etsushi Kato, Tomoko Nitta, Shinichiro Fujimori, Farshid Felfelani, Yoshimitsu Masaki, Toshichika Iizumi, Motoki Nishimori, Naota Hanasaki, Kiyoshi Takahashi, Yoshiki Yamagata, and Seita Emori
Geosci. Model Dev., 13, 4713–4747, https://doi.org/10.5194/gmd-13-4713-2020, https://doi.org/10.5194/gmd-13-4713-2020, 2020
Short summary
Short summary
The most significant feature of MIROC-INTEG-LAND is that the land surface model that describes the processes of the energy and water balances, human water management, and crop growth incorporates a land-use decision-making model based on economic activities. The future simulations indicate that changes in climate have significant impacts on crop yields, land use, and irrigation water demand.
Daisuke Goto, Yousuke Sato, Hisashi Yashiro, Kentaroh Suzuki, Eiji Oikawa, Rei Kudo, Takashi M. Nagao, and Teruyuki Nakajima
Geosci. Model Dev., 13, 3731–3768, https://doi.org/10.5194/gmd-13-3731-2020, https://doi.org/10.5194/gmd-13-3731-2020, 2020
Short summary
Short summary
We executed a global aerosol model over 3 years with the finest grid size in the world. The results elucidated that global annual averages of parameters associated with the aerosols were generally comparable to those obtained from a low-resolution model (LRM), but spatiotemporal variabilities of the aerosol components and their associated parameters provided better results closer to the observations than those from the LRM. This study clarified the advantages of the high-resolution model.
Daisuke Goto, Yu Morino, Toshimasa Ohara, Tsuyoshi Thomas Sekiyama, Junya Uchida, and Teruyuki Nakajima
Atmos. Chem. Phys., 20, 3589–3607, https://doi.org/10.5194/acp-20-3589-2020, https://doi.org/10.5194/acp-20-3589-2020, 2020
Short summary
Short summary
To obtain reliable distribution of atmospheric Cs-137 emitted from the Fukushima accident, we proposed a multi-model ensemble (MME) method using observations. We found the MME-estimated Cs-137 concentrations using all available observations had lower bias, lower uncertainty, higher correlation and higher precision against the observations compared to single-model results. It can be applied not only to the Cs-137 distribution but also any atmospheric materials such as PM2.5 distribution.
Yueming Cheng, Tie Dai, Daisuke Goto, Nick A. J. Schutgens, Guangyu Shi, and Teruyuki Nakajima
Atmos. Chem. Phys., 19, 13445–13467, https://doi.org/10.5194/acp-19-13445-2019, https://doi.org/10.5194/acp-19-13445-2019, 2019
Short summary
Short summary
Aerosol vertical information is critical to quantify the influences of aerosol on the climate and environment; however, large uncertainties still persist in model simulations. Global aerosol vertical distributions are more accurately simulated by assimilating the vertical aerosol extinction coefficients from the Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP).
Hiroaki Tatebe, Tomoo Ogura, Tomoko Nitta, Yoshiki Komuro, Koji Ogochi, Toshihiko Takemura, Kengo Sudo, Miho Sekiguchi, Manabu Abe, Fuyuki Saito, Minoru Chikira, Shingo Watanabe, Masato Mori, Nagio Hirota, Yoshio Kawatani, Takashi Mochizuki, Kei Yoshimura, Kumiko Takata, Ryouta O'ishi, Dai Yamazaki, Tatsuo Suzuki, Masao Kurogi, Takahito Kataoka, Masahiro Watanabe, and Masahide Kimoto
Geosci. Model Dev., 12, 2727–2765, https://doi.org/10.5194/gmd-12-2727-2019, https://doi.org/10.5194/gmd-12-2727-2019, 2019
Short summary
Short summary
For a deeper understanding of a wide range of climate science issues, the latest version of the Japanese climate model, called MIROC6, was developed. The climate model represents observed mean climate and climate variations well, for example tropical precipitation, the midlatitude westerlies, and the East Asian monsoon, which influence human activity all over the world. The improved climate simulations could add reliability to climate predictions under global warming.
Colin M. Zarzycki, Christiane Jablonowski, James Kent, Peter H. Lauritzen, Ramachandran Nair, Kevin A. Reed, Paul A. Ullrich, David M. Hall, Mark A. Taylor, Don Dazlich, Ross Heikes, Celal Konor, David Randall, Xi Chen, Lucas Harris, Marco Giorgetta, Daniel Reinert, Christian Kühnlein, Robert Walko, Vivian Lee, Abdessamad Qaddouri, Monique Tanguay, Hiroaki Miura, Tomoki Ohno, Ryuji Yoshida, Sang-Hun Park, Joseph B. Klemp, and William C. Skamarock
Geosci. Model Dev., 12, 879–892, https://doi.org/10.5194/gmd-12-879-2019, https://doi.org/10.5194/gmd-12-879-2019, 2019
Short summary
Short summary
We summarize the results of the Dynamical Core Model Intercomparison Project's idealized supercell test case. Supercells are storm-scale weather phenomena that are a key target for next-generation, non-hydrostatic weather prediction models. We show that the dynamical cores of most global numerical models converge between approximately 1 and 0.5 km grid spacing for this test, although differences in final solution exist, particularly due to differing grid discretizations and numerical diffusion.
Daniel T. McCoy, Paul R. Field, Gregory S. Elsaesser, Alejandro Bodas-Salcedo, Brian H. Kahn, Mark D. Zelinka, Chihiro Kodama, Thorsten Mauritsen, Benoit Vanniere, Malcolm Roberts, Pier L. Vidale, David Saint-Martin, Aurore Voldoire, Rein Haarsma, Adrian Hill, Ben Shipway, and Jonathan Wilkinson
Atmos. Chem. Phys., 19, 1147–1172, https://doi.org/10.5194/acp-19-1147-2019, https://doi.org/10.5194/acp-19-1147-2019, 2019
Short summary
Short summary
The largest single source of uncertainty in the climate sensitivity predicted by global climate models is how much low-altitude clouds change as the climate warms. Models predict that the amount of liquid within and the brightness of low-altitude clouds increase in the extratropics with warming. We show that increased fluxes of moisture into extratropical storms in the midlatitudes explain the majority of the observed trend and the modeled increase in liquid water within these storms.
Gerhard Krinner, Chris Derksen, Richard Essery, Mark Flanner, Stefan Hagemann, Martyn Clark, Alex Hall, Helmut Rott, Claire Brutel-Vuilmet, Hyungjun Kim, Cécile B. Ménard, Lawrence Mudryk, Chad Thackeray, Libo Wang, Gabriele Arduini, Gianpaolo Balsamo, Paul Bartlett, Julia Boike, Aaron Boone, Frédérique Chéruy, Jeanne Colin, Matthias Cuntz, Yongjiu Dai, Bertrand Decharme, Jeff Derry, Agnès Ducharne, Emanuel Dutra, Xing Fang, Charles Fierz, Josephine Ghattas, Yeugeniy Gusev, Vanessa Haverd, Anna Kontu, Matthieu Lafaysse, Rachel Law, Dave Lawrence, Weiping Li, Thomas Marke, Danny Marks, Martin Ménégoz, Olga Nasonova, Tomoko Nitta, Masashi Niwano, John Pomeroy, Mark S. Raleigh, Gerd Schaedler, Vladimir Semenov, Tanya G. Smirnova, Tobias Stacke, Ulrich Strasser, Sean Svenson, Dmitry Turkov, Tao Wang, Nander Wever, Hua Yuan, Wenyan Zhou, and Dan Zhu
Geosci. Model Dev., 11, 5027–5049, https://doi.org/10.5194/gmd-11-5027-2018, https://doi.org/10.5194/gmd-11-5027-2018, 2018
Short summary
Short summary
This paper provides an overview of a coordinated international experiment to determine the strengths and weaknesses in how climate models treat snow. The models will be assessed at point locations using high-quality reference measurements and globally using satellite-derived datasets. How well climate models simulate snow-related processes is important because changing snow cover is an important part of the global climate system and provides an important freshwater resource for human use.
Takashi Arakawa, Takahiro Inoue, Hisashi Yashiro, and Masaki Satoh
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-147, https://doi.org/10.5194/gmd-2018-147, 2018
Preprint withdrawn
Short summary
Short summary
In this paper, we discussed the design concept and implementation of a coupling software Jcup. The design concept can be summarized as dividing the function of the software into changing and not changing the values of the data and enabling users to manage and implement the function of changing the value. Based upon this concept, Jcup is constructed so that 1) remapping table is utilized as input information and 2) interpolation calculation codes can be freely implemented by users.
Allison A. Wing, Kevin A. Reed, Masaki Satoh, Bjorn Stevens, Sandrine Bony, and Tomoki Ohno
Geosci. Model Dev., 11, 793–813, https://doi.org/10.5194/gmd-11-793-2018, https://doi.org/10.5194/gmd-11-793-2018, 2018
Short summary
Short summary
RCEMIP, an intercomparison of multiple types of numerical models, is proposed. In RCEMIP, the climate system is modeled in an idealized manner with no spatial dependence of boundary conditions (i.e., sea surface temperature) or forcing (i.e., incoming sunlight). This set of simulations will be used to investigate how the amount of cloudiness changes with warming, how the clustering of clouds changes with warming, and how the state of the atmosphere in this idealized setup varies between models.
Paul A. Ullrich, Christiane Jablonowski, James Kent, Peter H. Lauritzen, Ramachandran Nair, Kevin A. Reed, Colin M. Zarzycki, David M. Hall, Don Dazlich, Ross Heikes, Celal Konor, David Randall, Thomas Dubos, Yann Meurdesoif, Xi Chen, Lucas Harris, Christian Kühnlein, Vivian Lee, Abdessamad Qaddouri, Claude Girard, Marco Giorgetta, Daniel Reinert, Joseph Klemp, Sang-Hun Park, William Skamarock, Hiroaki Miura, Tomoki Ohno, Ryuji Yoshida, Robert Walko, Alex Reinecke, and Kevin Viner
Geosci. Model Dev., 10, 4477–4509, https://doi.org/10.5194/gmd-10-4477-2017, https://doi.org/10.5194/gmd-10-4477-2017, 2017
Short summary
Short summary
Atmospheric dynamical cores are a fundamental component of global atmospheric modeling systems and are responsible for capturing the dynamical behavior of the Earth's atmosphere. To better understand modern dynamical cores, this paper aims to provide a comprehensive review of 11 dynamical cores, drawn from modeling centers and groups that participated in the 2016 Dynamical Core Model Intercomparison Project (DCMIP) workshop and summer school.
Nick Schutgens, Svetlana Tsyro, Edward Gryspeerdt, Daisuke Goto, Natalie Weigum, Michael Schulz, and Philip Stier
Atmos. Chem. Phys., 17, 9761–9780, https://doi.org/10.5194/acp-17-9761-2017, https://doi.org/10.5194/acp-17-9761-2017, 2017
Short summary
Short summary
We estimate representativeness errors in observations due to mismatching spatio-temporal sampling, on timescales of hours to a year and length scales of 50 to 200 km, for a variety of observing systems (in situ or remote sensing ground sites, satellites with imagers or lidar, etc.) and develop strategies to reduce them. This study is relevant to the use of observations in constructing satellite L3 products, observational intercomparison and model evaluation.
Yosuke Niwa, Yosuke Fujii, Yousuke Sawa, Yosuke Iida, Akihiko Ito, Masaki Satoh, Ryoichi Imasu, Kazuhiro Tsuboi, Hidekazu Matsueda, and Nobuko Saigusa
Geosci. Model Dev., 10, 2201–2219, https://doi.org/10.5194/gmd-10-2201-2017, https://doi.org/10.5194/gmd-10-2201-2017, 2017
Short summary
Short summary
A new 4D-Var inversion system based on the icosahedral grid model, NICAM, is introduced and tested. Adding to the offline forward and adjoint models, this study has introduced the optimization method of POpULar; it does not require difficult decomposition of a matrix that establishes the correlation among the prior flux errors. In identical twin experiments of atmospheric CO2 inversion, the system successfully reproduces the spatiotemporal variations of the surface fluxes.
Masuo Nakano, Akiyoshi Wada, Masahiro Sawada, Hiromasa Yoshimura, Ryo Onishi, Shintaro Kawahara, Wataru Sasaki, Tomoe Nasuno, Munehiko Yamaguchi, Takeshi Iriguchi, Masato Sugi, and Yoshiaki Takeuchi
Geosci. Model Dev., 10, 1363–1381, https://doi.org/10.5194/gmd-10-1363-2017, https://doi.org/10.5194/gmd-10-1363-2017, 2017
Short summary
Short summary
Three 7 km mesh next-generation global models and a 20 km mesh conventional global model were run to improve tropical cyclone (TC) prediction. The 7 km mesh models reduce systematic errors in the TC track, intensity and wind radii predictions. However, the simulated TC structures and their intensities in each case are very different for each model. These results suggest that the development of more sophisticated initialization techniques and model physics is needed to further improvement.
Yosuke Niwa, Hirofumi Tomita, Masaki Satoh, Ryoichi Imasu, Yousuke Sawa, Kazuhiro Tsuboi, Hidekazu Matsueda, Toshinobu Machida, Motoki Sasakawa, Boris Belan, and Nobuko Saigusa
Geosci. Model Dev., 10, 1157–1174, https://doi.org/10.5194/gmd-10-1157-2017, https://doi.org/10.5194/gmd-10-1157-2017, 2017
Short summary
Short summary
We have developed forward and adjoint models based on NICAM-TM, as part of the 4D-Var system for atmospheric GHGs inversions. The models are computationally efficient enough to make the 4D-Var iterative calculation feasible. Trajectory analysis for high-CO2 concentration events are performed to test adjoint sensitivities; we also demonstrate the potential usefulness of our adjoint model for diagnosing tracer transport.
Kunihiko Kodera, Nawo Eguchi, Hitoshi Mukougawa, Tomoe Nasuno, and Toshihiko Hirooka
Atmos. Chem. Phys., 17, 615–625, https://doi.org/10.5194/acp-17-615-2017, https://doi.org/10.5194/acp-17-615-2017, 2017
Short summary
Short summary
An exceptional strengthening of the middle atmospheric subtropical jet occurred without an apparent relationship with the tropospheric circulation. The analysis of this event demonstrated downward penetration of stratospheric influence to the troposphere: in the north polar region amplification of planetary wave occurred due to a deflection by the strong middle atmospheric subtropical jet, whereas in the tropics, increased tropopause temperature suppressed equatorial convective activity.
Reindert J. Haarsma, Malcolm J. Roberts, Pier Luigi Vidale, Catherine A. Senior, Alessio Bellucci, Qing Bao, Ping Chang, Susanna Corti, Neven S. Fučkar, Virginie Guemas, Jost von Hardenberg, Wilco Hazeleger, Chihiro Kodama, Torben Koenigk, L. Ruby Leung, Jian Lu, Jing-Jia Luo, Jiafu Mao, Matthew S. Mizielinski, Ryo Mizuta, Paulo Nobre, Masaki Satoh, Enrico Scoccimarro, Tido Semmler, Justin Small, and Jin-Song von Storch
Geosci. Model Dev., 9, 4185–4208, https://doi.org/10.5194/gmd-9-4185-2016, https://doi.org/10.5194/gmd-9-4185-2016, 2016
Short summary
Short summary
Recent progress in computing power has enabled climate models to simulate more processes in detail and on a smaller scale. Here we present a common protocol for these high-resolution runs that will foster the analysis and understanding of the impact of model resolution on the simulated climate. These runs will also serve as a more reliable source for assessing climate risks that are associated with small-scale weather phenomena such as tropical cyclones.
Hisashi Yashiro, Koji Terasaki, Takemasa Miyoshi, and Hirofumi Tomita
Geosci. Model Dev., 9, 2293–2300, https://doi.org/10.5194/gmd-9-2293-2016, https://doi.org/10.5194/gmd-9-2293-2016, 2016
Short summary
Short summary
We propose the design and implementation of an ensemble data assimilation framework for weather prediction at a high resolution and with a large ensemble size. We consider the deployment of this framework on the data throughput of file I/O and multi-node communication. With regard to high-performance computing systems, where data throughput performance increases at a slower rate than computational performance, our new framework promises drastic reduction of total execution time.
Nick A. J. Schutgens, Edward Gryspeerdt, Natalie Weigum, Svetlana Tsyro, Daisuke Goto, Michael Schulz, and Philip Stier
Atmos. Chem. Phys., 16, 6335–6353, https://doi.org/10.5194/acp-16-6335-2016, https://doi.org/10.5194/acp-16-6335-2016, 2016
Short summary
Short summary
We show that evaluating global aerosol model data with observations of very different spatial scales (200 vs. 10 km) can lead to large discrepancies, solely due to different spatial sampling. Strategies for reducing these sampling errors are developed and tested using a set of high-resolution model simulations.
S. Nishizawa, H. Yashiro, Y. Sato, Y. Miyamoto, and H. Tomita
Geosci. Model Dev., 8, 3393–3419, https://doi.org/10.5194/gmd-8-3393-2015, https://doi.org/10.5194/gmd-8-3393-2015, 2015
Short summary
Short summary
The influence of the large grid aspect ratio of horizontal to vertical grid spacing traditionally used in meteorological large-eddy simulations on simulated turbulence is investigated with a series of sensitivity tests with various grid configurations. We confirmed that the grid aspect ratio should be taken into account in the sub-grid scale model to reproduce the theoretical energy spectrum. We also found that the grid aspect ratio has an influence on the turbulent statistics.
S. Miyazaki, K. Saito, J. Mori, T. Yamazaki, T. Ise, H. Arakida, T. Hajima, Y. Iijima, H. Machiya, T. Sueyoshi, H. Yabuki, E. J. Burke, M. Hosaka, K. Ichii, H. Ikawa, A. Ito, A. Kotani, Y. Matsuura, M. Niwano, T. Nitta, R. O'ishi, T. Ohta, H. Park, T. Sasai, A. Sato, H. Sato, A. Sugimoto, R. Suzuki, K. Tanaka, S. Yamaguchi, and K. Yoshimura
Geosci. Model Dev., 8, 2841–2856, https://doi.org/10.5194/gmd-8-2841-2015, https://doi.org/10.5194/gmd-8-2841-2015, 2015
Short summary
Short summary
The paper provides an overall outlook and the Stage 1 experiment (site simulations) protocol of GTMIP, an open model intercomparison project for terrestrial Arctic, conducted as an activity of the Japan-funded Arctic Climate Change Research Project (GRENE-TEA). Models are driven by 34-year data created with the GRENE-TEA observations at four sites in Finland, Siberia and Alaska, and evaluated for physico-ecological key processes: energy budgets, snow, permafrost, phenology, and carbon budget.
J. Leinonen, M. D. Lebsock, S. Tanelli, K. Suzuki, H. Yashiro, and Y. Miyamoto
Atmos. Meas. Tech., 8, 3493–3517, https://doi.org/10.5194/amt-8-3493-2015, https://doi.org/10.5194/amt-8-3493-2015, 2015
Short summary
Short summary
Using multiple frequencies in cloud and precipitation radars enables them to be both sensitive enough to detect thin clouds and to penetrate heavy precipitation, profiling the entire vertical structure of the atmospheric component of the water cycle. Here, we evaluate the performance of a potential future three-frequency space-based radar system by simulating its observations using data from a high-resolution global atmospheric model.
D. Goto, T. Dai, M. Satoh, H. Tomita, J. Uchida, S. Misawa, T. Inoue, H. Tsuruta, K. Ueda, C. F. S. Ng, A. Takami, N. Sugimoto, A. Shimizu, T. Ohara, and T. Nakajima
Geosci. Model Dev., 8, 235–259, https://doi.org/10.5194/gmd-8-235-2015, https://doi.org/10.5194/gmd-8-235-2015, 2015
Short summary
Short summary
An aerosol-coupled global non-hydrostatic model with a stretched-grid system has been developed to simulate aerosols on a region scale of 10 km grids. The regional simulation does require either a nesting technique or lateral boundary conditions, as opposed to general regional models. It generally reproduces monthly mean distributions of the observed sulfate and SO2 over East Asia as well as the diurnal and synoptic variations of the observed ones around the main target region, Tokyo/Japan.
N. Eguchi, K. Kodera, and T. Nasuno
Atmos. Chem. Phys., 15, 297–304, https://doi.org/10.5194/acp-15-297-2015, https://doi.org/10.5194/acp-15-297-2015, 2015
Short summary
Short summary
The dynamical coupling process between stratosphere and troposphere in the tropical tropopause layer (TTL) during stratospheric sudden warming (SSW) was investigated using simulation data of global non-hydrostatic model (NICAM) that does not use cumulus parameterization. The results suggested that increased stratospheric tropical upwelling associated with SSW induced decreased static stability in TTL, which contributes to increased convective activity and changes in its large-scale organizations
Related subject area
Atmospheric sciences
Low-level jets in the North and Baltic seas: mesoscale model sensitivity and climatology using WRF V4.2.1
SynRad v1.0: a radar forward operator to simulate synthetic weather radar observations from volcanic ash clouds
Chempath 1.0: an open-source pathway analysis program for photochemical models
PALACE v1.0: Paranal Airglow Line And Continuum Emission model
Atmospheric moisture tracking with WAM2layers v3
A new set of indicators for model evaluation complementing FAIRMODE's modelling quality objective (MQO)
Impact of multiple radar wind profiler data assimilation on convective-scale short-term rainfall forecasts: OSSE studies over the Beijing–Tianjin–Hebei region
New submodel for emissions from Explosive Volcanic ERuptions (EVER v1.1) within the Modular Earth Submodel System (MESSy, version 2.55.1)
Quantifying the oscillatory evolution of simulated boundary-layer cloud fields using Gaussian process regression
Numerical investigations on the modelling of ultrafine particles in SSH-aerosol-v1.3a: size resolution and redistribution
The third Met Office Unified Model–JULES Regional Atmosphere and Land Configuration, RAL3
The sensitivity of aerosol data assimilation to vertical profiles: case study of dust storm assimilation with LOTOS-EUROS v2.2
Knowledge-inspired fusion strategies for the inference of PM2.5 values with a neural network
Tuning the ICON-A 2.6.4 climate model with machine-learning-based emulators and history matching
A novel method for quantifying the contribution of regional transport to PM2.5 in Beijing (2013–2020): combining machine learning with concentration-weighted trajectory analysis
Quantification of CO2 hotspot emissions from OCO-3 SAM CO2 satellite images using deep learning methods
Diagnosis of winter precipitation types using the spectral bin model (version 1DSBM-19M): comparison of five methods using ICE-POP 2018 field experiment data
Improving winter condition simulations in SURFEX-TEB v9.0 with a multi-layer snow model and ice
UA-ICON with the NWP physics package (version ua-icon-2.1): mean state and variability of the middle atmosphere
Integrated Methane Inversion (IMI) 2.0: an improved research and stakeholder tool for monitoring total methane emissions with high resolution worldwide using TROPOMI satellite observations
HTAP3 Fires: towards a multi-model, multi-pollutant study of fire impacts
Using a data-driven statistical model to better evaluate surface turbulent heat fluxes in weather and climate numerical models: a demonstration study
Pochva: a new hydro-thermal process model in soil, snow, and vegetation for application in atmosphere numerical models
ClimKern v1.2: a new Python package and kernel repository for calculating radiative feedbacks
Accounting for effects of coagulation and model uncertainties in particle number concentration estimates based on measurements from sampling lines – a Bayesian inversion approach with SLIC v1.0
Top-down CO emission estimates using TROPOMI CO data in the TM5-4DVAR (r1258) inverse modeling suit
The Multi-Compartment Hg Modeling and Analysis Project (MCHgMAP): mercury modeling to support international environmental policy
Similarity-based analysis of atmospheric organic compounds for machine learning applications
Porting the Meso-NH atmospheric model on different GPU architectures for the next generation of supercomputers (version MESONH-v55-OpenACC)
Estimation of aerosol and cloud radiative heating rate in the tropical stratosphere using a radiative kernel method
Development of a High-Resolution Coupled SHiELD-MOM6 Model. Part I – Model Overview, Coupling Technique, and Validation in a Regional Setup
Evaluation of dust emission and land surface schemes in predicting a mega Asian dust storm over South Korea using WRF-Chem
Sensitivity studies of a four-dimensional local ensemble transform Kalman filter coupled with WRF-Chem version 3.9.1 for improving particulate matter simulation accuracy
A Bayesian method for predicting background radiation at environmental monitoring stations in local-scale networks
Inclusion of the ECMWF ecRad radiation scheme (v1.5.0) in the MAR (v3.14), regional evaluation for Belgium, and assessment of surface shortwave spectral fluxes at Uccle
Development of a fast radiative transfer model for ground-based microwave radiometers (ARMS-gb v1.0): validation and comparison to RTTOV-gb
Indian Institute of Tropical Meteorology (IITM) High-Resolution Global Forecast Model version 1: an attempt to resolve monsoon prediction deadlock
Cell-tracking-based framework for assessing nowcasting model skill in reproducing growth and decay of convective rainfall
NeuralMie (v1.0): an aerosol optics emulator
A REtrieval Method for optical and physical Aerosol Properties in the stratosphere (REMAPv1)
Simulation performance of planetary boundary layer schemes in WRF v4.3.1 for near-surface wind over the western Sichuan Basin: a single-site assessment
FootNet v1.0: development of a machine learning emulator of atmospheric transport
Updates and evaluation of NOAA's online-coupled air quality model version 7 (AQMv7) within the Unified Forecast System
Quantifying the analysis uncertainty for nowcasting application
Improving the ensemble square root filter (EnSRF) in the Community Inversion Framework: a case study with ICON-ART 2024.01
The MESSy DWARF (based on MESSy v2.55.2)
Generalized local fractions – a method for the calculation of sensitivities to emissions from multiple sources for chemically active species, illustrated using the EMEP MSC-W model (rv5.5)
SanDyPALM v1.0: Static and Dynamic Drivers for the PALM-4U Model to Facilitate Realistic Urban Microclimate Simulations
An enhanced emission module for the PALM model system 23.10 with application for PM10 emission from urban domestic heating
Identifying lightning processes in ERA5 soundings with deep learning
Bjarke T. E. Olsen, Andrea N. Hahmann, Nicolas G. Alonso-de-Linaje, Mark Žagar, and Martin Dörenkämper
Geosci. Model Dev., 18, 4499–4533, https://doi.org/10.5194/gmd-18-4499-2025, https://doi.org/10.5194/gmd-18-4499-2025, 2025
Short summary
Short summary
Low-level jets (LLJs) are strong winds in the lower atmosphere that are important for wind energy as turbines get taller. This study compares a weather model (WRF) with real data across five North and Baltic Sea sites. Adjusting the model improved accuracy over the widely used ERA5. In key offshore regions, LLJs occur 10–15 % of the time and significantly boost wind power, especially in spring and summer, contributing up to 30 % of total capacity in some areas.
Vishnu Nair, Anujah Mohanathan, Michael Herzog, David G. Macfarlane, and Duncan A. Robertson
Geosci. Model Dev., 18, 4417–4432, https://doi.org/10.5194/gmd-18-4417-2025, https://doi.org/10.5194/gmd-18-4417-2025, 2025
Short summary
Short summary
A numerical model that simulates the measurement processes behind the ground-based radars used to detect volcanic ash clouds is introduced. Using weather radars to detect volcanic clouds is not ideal, as fine ash particles are smaller than raindrops and remain undetected. We evaluate the performance of weather radars to study ash clouds and to identify optimal frequencies that balance the trade-off between a higher return signal and the higher path attenuation that comes at these higher frequencies.
Daniel Garduno Ruiz, Colin Goldblatt, and Anne-Sofie Ahm
Geosci. Model Dev., 18, 4433–4454, https://doi.org/10.5194/gmd-18-4433-2025, https://doi.org/10.5194/gmd-18-4433-2025, 2025
Short summary
Short summary
Photochemical models describe how the composition of the atmosphere changes due to chemical reactions, transport, and other processes. These models are useful for studying the composition of the Earth's and other planets' atmospheres. Understanding the results of these models can be difficult. Here, we build on previous work to develop open-source code that can identify the reaction chains (pathways) that produce the results of these models, facilitating the understanding of these results.
Stefan Noll, Carsten Schmidt, Patrick Hannawald, Wolfgang Kausch, and Stefan Kimeswenger
Geosci. Model Dev., 18, 4353–4398, https://doi.org/10.5194/gmd-18-4353-2025, https://doi.org/10.5194/gmd-18-4353-2025, 2025
Short summary
Short summary
Non-thermal emission from chemical reactions in the Earth's middle und upper atmosphere strongly contributes to the brightness of the night sky below about 2.3 µm. The new Paranal Airglow Line And Continuum Emission model calculates the emission spectrum and its variability with an unprecedented accuracy. Relying on a large spectroscopic data set from astronomical spectrographs and theoretical molecular/atomic data, this model is valuable for airglow research and astronomical observatories.
Peter Kalverla, Imme Benedict, Chris Weijenborg, and Ruud J. van der Ent
Geosci. Model Dev., 18, 4335–4352, https://doi.org/10.5194/gmd-18-4335-2025, https://doi.org/10.5194/gmd-18-4335-2025, 2025
Short summary
Short summary
We introduce a new version of WAM2layers (Water Accounting Model – 2 layers), a computer program that tracks how the weather brings water from one place to another. It uses data from weather and climate models, whose resolution is steadily increasing. Processing the latest data had become a challenge, and the updates presented here ensure that WAM2layers runs smoothly again. We also made it easier to use the program and to understand its source code. This makes it more transparent, reliable, and easier to maintain.
Alexander de Meij, Cornelis Cuvelier, Philippe Thunis, and Enrico Pisoni
Geosci. Model Dev., 18, 4231–4245, https://doi.org/10.5194/gmd-18-4231-2025, https://doi.org/10.5194/gmd-18-4231-2025, 2025
Short summary
Short summary
We assess relevance and utility indicators by evaluating nine Copernicus Atmospheric Monitoring Service models in calculated air pollutant values. For NO2, the results highlight difficulties at traffic stations. For PM2.5 and PM10 the bias and winter–summer gradients reveal issues. O3 evaluation shows that seasonal gradients are useful. Overall, the indicators reveal model limitations, yet there is a need to reconsider the strictness of some indicators for certain pollutants.
Juan Zhao, Jianping Guo, and Xiaohui Zheng
Geosci. Model Dev., 18, 4075–4101, https://doi.org/10.5194/gmd-18-4075-2025, https://doi.org/10.5194/gmd-18-4075-2025, 2025
Short summary
Short summary
A series of observing system simulation experiments are conducted to assess the impact of multiple radar wind profiler (RWP) networks on convective-scale numerical weather prediction. Results from three southwest-type heavy rainfall cases in the Beijing–Tianjin–Hebei region suggest the added forecast skill of ridge and foothill networks associated with the Taihang Mountains over the existing RWP network. This research provides valuable guidance for designing optimal RWP networks in the region.
Matthias Kohl, Christoph Brühl, Jennifer Schallock, Holger Tost, Patrick Jöckel, Adrian Jost, Steffen Beirle, Michael Höpfner, and Andrea Pozzer
Geosci. Model Dev., 18, 3985–4007, https://doi.org/10.5194/gmd-18-3985-2025, https://doi.org/10.5194/gmd-18-3985-2025, 2025
Short summary
Short summary
SO2 from explosive volcanic eruptions reaching the stratosphere can oxidize and form sulfur aerosols, potentially persisting for several years. We developed a new submodel, Explosive Volcanic ERuptions (EVER), that seamlessly includes stratospheric volcanic SO2 emissions in global numerical simulations based on a novel standard historical model setup, successfully evaluated with satellite observations. Sensitivity studies on the Nabro eruption in 2011 evaluate different emission methods.
Gunho Loren Oh and Philip H. Austin
Geosci. Model Dev., 18, 3921–3940, https://doi.org/10.5194/gmd-18-3921-2025, https://doi.org/10.5194/gmd-18-3921-2025, 2025
Short summary
Short summary
It is difficult to study the behaviour of a cloud field due to internal fluctuations and observational noise. We perform a high-resolution simulation of the boundary-layer cloud field and introduce statistical and numerical techniques, including machine-learning models, to study the evolution of the cloud field, which shows a periodic behaviour. We aim to use the numerical techniques to identify the underlying behaviour within noisy observations.
Oscar Jacquot and Karine Sartelet
Geosci. Model Dev., 18, 3965–3984, https://doi.org/10.5194/gmd-18-3965-2025, https://doi.org/10.5194/gmd-18-3965-2025, 2025
Short summary
Short summary
Modelling the size distribution and the number concentration is important to represent ultrafine particles. A new analytic formulation is presented to compute coagulation partition coefficients, allowing us to lower the numerical diffusion associated with the resolution of aerosol dynamics. The significance of this effect is assessed in a 0D box model and over greater Paris with a chemistry transport model, using different size resolutions of the particle distribution.
Mike Bush, David L. A. Flack, Huw W. Lewis, Sylvia I. Bohnenstengel, Chris J. Short, Charmaine Franklin, Adrian P. Lock, Martin Best, Paul Field, Anne McCabe, Kwinten Van Weverberg, Segolene Berthou, Ian Boutle, Jennifer K. Brooke, Seb Cole, Shaun Cooper, Gareth Dow, John Edwards, Anke Finnenkoetter, Kalli Furtado, Kate Halladay, Kirsty Hanley, Margaret A. Hendry, Adrian Hill, Aravindakshan Jayakumar, Richard W. Jones, Humphrey Lean, Joshua C. K. Lee, Andy Malcolm, Marion Mittermaier, Saji Mohandas, Stuart Moore, Cyril Morcrette, Rachel North, Aurore Porson, Susan Rennie, Nigel Roberts, Belinda Roux, Claudio Sanchez, Chun-Hsu Su, Simon Tucker, Simon Vosper, David Walters, James Warner, Stuart Webster, Mark Weeks, Jonathan Wilkinson, Michael Whitall, Keith D. Williams, and Hugh Zhang
Geosci. Model Dev., 18, 3819–3855, https://doi.org/10.5194/gmd-18-3819-2025, https://doi.org/10.5194/gmd-18-3819-2025, 2025
Short summary
Short summary
RAL configurations define settings for the Unified Model atmosphere and Joint UK Land Environment Simulator. The third version of the Regional Atmosphere and Land (RAL3) science configuration for kilometre- and sub-kilometre-scale modelling represents a major advance compared to previous versions (RAL2) by delivering a common science definition for applications in tropical and mid-latitude regions. RAL3 has more realistic precipitation distributions and an improved representation of clouds and visibility.
Mijie Pang, Jianbing Jin, Ting Yang, Xi Chen, Arjo Segers, Batjargal Buyantogtokh, Yixuan Gu, Jiandong Li, Hai Xiang Lin, Hong Liao, and Wei Han
Geosci. Model Dev., 18, 3781–3798, https://doi.org/10.5194/gmd-18-3781-2025, https://doi.org/10.5194/gmd-18-3781-2025, 2025
Short summary
Short summary
Aerosol data assimilation has gained popularity as it combines the advantages of modelling and observation. However, few studies have addressed the challenges in the prior vertical structure. Different observations are assimilated to examine the sensitivity of assimilation to vertical structure. Results show that assimilation can optimize the dust field in general. However, if the prior introduces an incorrect structure, the assimilation can significantly deteriorate the integrity of the aerosol profile.
Matthieu Dabrowski, José Mennesson, Jérôme Riedi, Chaabane Djeraba, and Pierre Nabat
Geosci. Model Dev., 18, 3707–3733, https://doi.org/10.5194/gmd-18-3707-2025, https://doi.org/10.5194/gmd-18-3707-2025, 2025
Short summary
Short summary
This work focuses on the prediction of aerosol concentration values at the ground level, which are a strong indicator of air quality, using artificial neural networks. A study of different variables and their efficiency as inputs for these models is also proposed and reveals that the best results are obtained when using all of them. Comparison between network architectures and information fusion methods allows for the extraction of knowledge on the most efficient methods in the context of this study.
Pauline Bonnet, Lorenzo Pastori, Mierk Schwabe, Marco Giorgetta, Fernando Iglesias-Suarez, and Veronika Eyring
Geosci. Model Dev., 18, 3681–3706, https://doi.org/10.5194/gmd-18-3681-2025, https://doi.org/10.5194/gmd-18-3681-2025, 2025
Short summary
Short summary
Tuning a climate model means adjusting uncertain parameters in the model to best match observations like the global radiation balance and cloud cover. This is usually done by running many simulations of the model with different settings, which can be time-consuming and relies heavily on expert knowledge. To make this process faster and more objective, we developed a machine learning emulator to create a large ensemble and apply a method called history matching to find the best settings.
Kang Hu, Hong Liao, Dantong Liu, Jianbing Jin, Lei Chen, Siyuan Li, Yangzhou Wu, Changhao Wu, Shitong Zhao, Xiaotong Jiang, Ping Tian, Kai Bi, Ye Wang, and Delong Zhao
Geosci. Model Dev., 18, 3623–3634, https://doi.org/10.5194/gmd-18-3623-2025, https://doi.org/10.5194/gmd-18-3623-2025, 2025
Short summary
Short summary
This study combines machine learning with concentration-weighted trajectory analysis to quantify regional transport PM2.5. From 2013–2020, local emissions dominated Beijing's pollution events. The Air Pollution Prevention and Control Action Plan reduced regional transport pollution, but the eastern region showed the smallest decrease. Beijing should prioritize local emission reduction while considering the east region's contributions in future strategies.
Joffrey Dumont Le Brazidec, Pierre Vanderbecken, Alban Farchi, Grégoire Broquet, Gerrit Kuhlmann, and Marc Bocquet
Geosci. Model Dev., 18, 3607–3622, https://doi.org/10.5194/gmd-18-3607-2025, https://doi.org/10.5194/gmd-18-3607-2025, 2025
Short summary
Short summary
We developed a deep learning method to estimate CO2 emissions from power plants using satellite images. Trained and validated on simulated data, our model accurately predicts emissions despite challenges like cloud cover. When applied to real OCO3 satellite images, the results closely match reported emissions. This study shows that neural networks trained on simulations can effectively analyse real satellite data, offering a new way to monitor CO2 emissions from space.
Wonbae Bang, Jacob T. Carlin, Kwonil Kim, Alexander V. Ryzhkov, Guosheng Liu, and GyuWon Lee
Geosci. Model Dev., 18, 3559–3581, https://doi.org/10.5194/gmd-18-3559-2025, https://doi.org/10.5194/gmd-18-3559-2025, 2025
Short summary
Short summary
Microphysics model-based diagnosis, such as the spectral bin model (SBM), has recently been attempted to diagnose winter precipitation types. In this study, the accuracy of SBM-based precipitation type diagnosis is compared with other traditional methods. SBM has a relatively higher accuracy for dry-snow and wet-snow events, whereas it has lower accuracy for rain events. When the microphysics scheme in the SBM was optimized for the corresponding region, the accuracy for rain events improved.
Gabriel Colas, Valéry Masson, François Bouttier, Ludovic Bouilloud, Laura Pavan, and Virve Karsisto
Geosci. Model Dev., 18, 3453–3472, https://doi.org/10.5194/gmd-18-3453-2025, https://doi.org/10.5194/gmd-18-3453-2025, 2025
Short summary
Short summary
In winter, snow- and ice-covered artificial surfaces are important aspects of the urban climate. They may influence the magnitude of the urban heat island effect, but this is still unclear. In this study, we improved the representation of the snow and ice cover in the Town Energy Balance (TEB) urban climate model. Evaluations have shown that the results are promising for using TEB to study the climate of cold cities.
Markus Kunze, Christoph Zülicke, Tarique A. Siddiqui, Claudia C. Stephan, Yosuke Yamazaki, Claudia Stolle, Sebastian Borchert, and Hauke Schmidt
Geosci. Model Dev., 18, 3359–3385, https://doi.org/10.5194/gmd-18-3359-2025, https://doi.org/10.5194/gmd-18-3359-2025, 2025
Short summary
Short summary
We present the Icosahedral Nonhydrostatic (ICON) general circulation model with an upper-atmospheric extension with the physics package for numerical weather prediction (UA-ICON(NWP)). We optimized the parameters for the gravity wave parameterizations and achieved realistic modeling of the thermal and dynamic states of the mesopause regions. UA-ICON(NWP) now shows a realistic frequency of major sudden stratospheric warmings and well-represented solar tides in temperature.
Lucas A. Estrada, Daniel J. Varon, Melissa Sulprizio, Hannah Nesser, Zichong Chen, Nicholas Balasus, Sarah E. Hancock, Megan He, James D. East, Todd A. Mooring, Alexander Oort Alonso, Joannes D. Maasakkers, Ilse Aben, Sabour Baray, Kevin W. Bowman, John R. Worden, Felipe J. Cardoso-Saldaña, Emily Reidy, and Daniel J. Jacob
Geosci. Model Dev., 18, 3311–3330, https://doi.org/10.5194/gmd-18-3311-2025, https://doi.org/10.5194/gmd-18-3311-2025, 2025
Short summary
Short summary
Reducing emissions of methane, a powerful greenhouse gas, is a top policy concern for mitigating anthropogenic climate change. The Integrated Methane Inversion (IMI) is an advanced, cloud-based software that translates satellite observations into actionable emissions data. Here we present IMI version 2.0 with vastly expanded capabilities. These updates enable a wider range of scientific and stakeholder applications from individual basin to global scales with continuous emissions monitoring.
Cynthia H. Whaley, Tim Butler, Jose A. Adame, Rupal Ambulkar, Steve R. Arnold, Rebecca R. Buchholz, Benjamin Gaubert, Douglas S. Hamilton, Min Huang, Hayley Hung, Johannes W. Kaiser, Jacek W. Kaminski, Christoph Knote, Gerbrand Koren, Jean-Luc Kouassi, Meiyun Lin, Tianjia Liu, Jianmin Ma, Kasemsan Manomaiphiboon, Elisa Bergas Masso, Jessica L. McCarty, Mariano Mertens, Mark Parrington, Helene Peiro, Pallavi Saxena, Saurabh Sonwani, Vanisa Surapipith, Damaris Y. T. Tan, Wenfu Tang, Veerachai Tanpipat, Kostas Tsigaridis, Christine Wiedinmyer, Oliver Wild, Yuanyu Xie, and Paquita Zuidema
Geosci. Model Dev., 18, 3265–3309, https://doi.org/10.5194/gmd-18-3265-2025, https://doi.org/10.5194/gmd-18-3265-2025, 2025
Short summary
Short summary
The multi-model experiment design of the HTAP3 Fires project takes a multi-pollutant approach to improving our understanding of transboundary transport of wildland fire and agricultural burning emissions and their impacts. The experiments are designed with the goal of answering science policy questions related to fires. The options for the multi-model approach, including inputs, outputs, and model setup, are discussed, and the official recommendations for the project are presented.
Maurin Zouzoua, Sophie Bastin, Fabienne Lohou, Marie Lothon, Marjolaine Chiriaco, Mathilde Jome, Cécile Mallet, Laurent Barthes, and Guylaine Canut
Geosci. Model Dev., 18, 3211–3239, https://doi.org/10.5194/gmd-18-3211-2025, https://doi.org/10.5194/gmd-18-3211-2025, 2025
Short summary
Short summary
This study proposes using a statistical model to freeze errors due to differences in environmental forcing when evaluating the surface turbulent heat fluxes from numerical simulations with observations. The statistical model is first built with observations and then applied to the simulated environment to generate possibly observed fluxes. This novel method provides insight into differently evaluating the numerical formulation of turbulent heat fluxes with a long period of observational data.
Oxana Drofa
Geosci. Model Dev., 18, 3175–3209, https://doi.org/10.5194/gmd-18-3175-2025, https://doi.org/10.5194/gmd-18-3175-2025, 2025
Short summary
Short summary
This paper presents the result of many years of effort of the author, who developed an original mathematical numerical model of heat and moisture exchange processes in soil, vegetation, and snow. The author relied on her 30 years of research experience in atmospheric numerical modelling. The presented model is the fruit of the author's research on physical processes at the surface–atmosphere interface and their numerical approximation and aims at improving numerical weather forecasting and climate simulations.
Tyler P. Janoski, Ivan Mitevski, Ryan J. Kramer, Michael Previdi, and Lorenzo M. Polvani
Geosci. Model Dev., 18, 3065–3079, https://doi.org/10.5194/gmd-18-3065-2025, https://doi.org/10.5194/gmd-18-3065-2025, 2025
Short summary
Short summary
We developed ClimKern, a Python package and radiative kernel repository, to simplify calculating radiative feedbacks and make climate sensitivity studies more reproducible. Testing of ClimKern with sample climate model data reveals that radiative kernel choice may be more important than previously thought, especially in polar regions. Our work highlights the need for kernel sensitivity analyses to be included in future studies.
Matti Niskanen, Aku Seppänen, Henri Oikarinen, Miska Olin, Panu Karjalainen, Santtu Mikkonen, and Kari Lehtinen
Geosci. Model Dev., 18, 2983–3001, https://doi.org/10.5194/gmd-18-2983-2025, https://doi.org/10.5194/gmd-18-2983-2025, 2025
Short summary
Short summary
Particle size is a key factor determining the properties of aerosol particles which have a major influence on the climate and on human health. When measuring the particle sizes, however, sometimes the sampling lines that transfer the aerosol to the measurement device distort the size distribution, making the measurement unreliable. We propose a method to correct for the distortions and estimate the true particle sizes, improving measurement accuracy.
Johann Rasmus Nüß, Nikos Daskalakis, Fabian Günther Piwowarczyk, Angelos Gkouvousis, Oliver Schneising, Michael Buchwitz, Maria Kanakidou, Maarten C. Krol, and Mihalis Vrekoussis
Geosci. Model Dev., 18, 2861–2890, https://doi.org/10.5194/gmd-18-2861-2025, https://doi.org/10.5194/gmd-18-2861-2025, 2025
Short summary
Short summary
We estimate carbon monoxide emissions through inverse modeling, an approach where measurements of tracers in the atmosphere are fed to a model to calculate backwards in time (inverse) where the tracers came from. We introduce measurements from a new satellite instrument and show that, in most places globally, these on their own sufficiently constrain the emissions. This alleviates the need for additional datasets, which could shorten the delay for future carbon monoxide source estimates.
Ashu Dastoor, Hélène Angot, Johannes Bieser, Flora Brocza, Brock Edwards, Aryeh Feinberg, Xinbin Feng, Benjamin Geyman, Charikleia Gournia, Yipeng He, Ian M. Hedgecock, Ilia Ilyin, Jane Kirk, Che-Jen Lin, Igor Lehnherr, Robert Mason, David McLagan, Marilena Muntean, Peter Rafaj, Eric M. Roy, Andrei Ryjkov, Noelle E. Selin, Francesco De Simone, Anne L. Soerensen, Frits Steenhuisen, Oleg Travnikov, Shuxiao Wang, Xun Wang, Simon Wilson, Rosa Wu, Qingru Wu, Yanxu Zhang, Jun Zhou, Wei Zhu, and Scott Zolkos
Geosci. Model Dev., 18, 2747–2860, https://doi.org/10.5194/gmd-18-2747-2025, https://doi.org/10.5194/gmd-18-2747-2025, 2025
Short summary
Short summary
This paper introduces the Multi-Compartment Mercury (Hg) Modeling and Analysis Project (MCHgMAP) aimed at informing the effectiveness evaluations of two multilateral environmental agreements: the Minamata Convention on Mercury and the Convention on Long-Range Transboundary Air Pollution. The experimental design exploits a variety of models (atmospheric, land, oceanic ,and multimedia mass balance models) to assess the short- and long-term influences of anthropogenic Hg releases into the environment.
Hilda Sandström and Patrick Rinke
Geosci. Model Dev., 18, 2701–2724, https://doi.org/10.5194/gmd-18-2701-2025, https://doi.org/10.5194/gmd-18-2701-2025, 2025
Short summary
Short summary
Machine learning has the potential to aid the identification of organic molecules involved in aerosol formation. Yet, progress is stalled by a lack of curated atmospheric molecular datasets. Here, we compared atmospheric compounds with large molecular datasets used in machine learning and found minimal overlap with similarity algorithms. Our result underlines the need for collaborative efforts to curate atmospheric molecular data to facilitate machine learning models in atmospheric sciences.
Juan Escobar, Philippe Wautelet, Joris Pianezze, Florian Pantillon, Thibaut Dauhut, Christelle Barthe, and Jean-Pierre Chaboureau
Geosci. Model Dev., 18, 2679–2700, https://doi.org/10.5194/gmd-18-2679-2025, https://doi.org/10.5194/gmd-18-2679-2025, 2025
Short summary
Short summary
The Meso-NH weather research code is adapted for GPUs using OpenACC, leading to significant performance and energy efficiency improvements. Called MESONH-v55-OpenACC, it includes enhanced memory management, communication optimizations and a new solver. On the AMD MI250X Adastra platform, it achieved up to 6× speedup and 2.3× energy efficiency gain compared to CPUs. Storm simulations at 100 m resolution show positive results, positioning the code for future use on exascale supercomputers.
Jie Gao, Yi Huang, Jonathon S. Wright, Ke Li, Tao Geng, and Qiurun Yu
Geosci. Model Dev., 18, 2569–2586, https://doi.org/10.5194/gmd-18-2569-2025, https://doi.org/10.5194/gmd-18-2569-2025, 2025
Short summary
Short summary
The aerosol in the upper troposphere and stratosphere is highly variable, and its radiative effect is poorly understood. To estimate this effect, the radiative kernel is constructed and applied. The results show that the kernels can reproduce aerosol radiative effects and are expected to simulate stratospheric aerosol radiative effects. This approach reduces computational expense, is consistent with radiative model calculations, and can be applied to atmospheric models with speed requirements.
Joseph Mouallem, Kun Gao, Brandon G. Reichl, Lauren Chilutti, Lucas Harris, Rusty Benson, Niki Zadeh, Jing Chen, Jan-Huey Chen, and Cheng Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-1690, https://doi.org/10.5194/egusphere-2025-1690, 2025
Short summary
Short summary
We introduce a new high-resolution model that couple the atmosphere and ocean to better simulate extreme weather events. It combines GFDL’s advanced atmospheric and ocean models with a powerful coupling system that allows robust and efficient two-way interactions. Simulations show the model accurately captures hurricane behavior and its impact on the ocean. It also runs efficiently on supercomputers. This model is a key step toward improving extreme weather forecast.
Ji Won Yoon, Seungyeon Lee, Ebony Lee, and Seon Ki Park
Geosci. Model Dev., 18, 2303–2328, https://doi.org/10.5194/gmd-18-2303-2025, https://doi.org/10.5194/gmd-18-2303-2025, 2025
Short summary
Short summary
This study evaluates the Weather Research and Forecasting Model (WRF) coupled with Chemistry (WRF-Chem) to predict a mega Asian dust storm (ADS) over South Korea on 28–29 March 2021. We assessed combinations of five dust emission and four land surface schemes by analyzing meteorological and air quality variables. The best scheme combination reduced the root mean square error (RMSE) for particulate matter 10 (PM10) by up to 29.6 %, demonstrating the highest performance.
Jianyu Lin, Tie Dai, Lifang Sheng, Weihang Zhang, Shangfei Hai, and Yawen Kong
Geosci. Model Dev., 18, 2231–2248, https://doi.org/10.5194/gmd-18-2231-2025, https://doi.org/10.5194/gmd-18-2231-2025, 2025
Short summary
Short summary
The effectiveness of this assimilation system and its sensitivity to the ensemble member size and length of the assimilation window are investigated. This study advances our understanding of the selection of basic parameters in the four-dimensional local ensemble transform Kalman filter assimilation system and the performance of ensemble simulation in a particulate-matter-polluted environment.
Jens Peter Karolus Wenceslaus Frankemölle, Johan Camps, Pieter De Meutter, and Johan Meyers
Geosci. Model Dev., 18, 1989–2003, https://doi.org/10.5194/gmd-18-1989-2025, https://doi.org/10.5194/gmd-18-1989-2025, 2025
Short summary
Short summary
To detect anomalous radioactivity in the environment, it is paramount that we understand the natural background level. In this work, we propose a statistical model to describe the most likely background level and the associated uncertainty in a network of dose rate detectors. We train, verify, and validate the model using real environmental data. Using the model, we show that we can correctly predict the background level in a subset of the detector network during a known
anomalous event.
Jean-François Grailet, Robin J. Hogan, Nicolas Ghilain, David Bolsée, Xavier Fettweis, and Marilaure Grégoire
Geosci. Model Dev., 18, 1965–1988, https://doi.org/10.5194/gmd-18-1965-2025, https://doi.org/10.5194/gmd-18-1965-2025, 2025
Short summary
Short summary
The MAR (Modèle Régional Atmosphérique) is a regional climate model used for weather forecasting and studying the climate over various regions. This paper presents an update of MAR thanks to which it can precisely decompose solar radiation, in particular in the UV (ultraviolet) and photosynthesis ranges, both being critical to human health and ecosystems. As a first application of this new capability, this paper presents a method for predicting UV indices with MAR.
Yi-Ning Shi, Jun Yang, Wei Han, Lujie Han, Jiajia Mao, Wanlin Kan, and Fuzhong Weng
Geosci. Model Dev., 18, 1947–1964, https://doi.org/10.5194/gmd-18-1947-2025, https://doi.org/10.5194/gmd-18-1947-2025, 2025
Short summary
Short summary
Direct assimilation of observations from ground-based microwave radiometers (GMRs) holds significant potential for improving forecast accuracy. Radiative transfer models (RTMs) play a crucial role in direct data assimilation. In this study, we introduce a new RTM, the Advanced Radiative Transfer Modeling System – Ground-Based (ARMS-gb), designed to simulate brightness temperatures observed by GMRs along with their Jacobians. Several enhancements have been incorporated to achieve higher accuracy.
R. Phani Murali Krishna, Siddharth Kumar, A. Gopinathan Prajeesh, Peter Bechtold, Nils Wedi, Kumar Roy, Malay Ganai, B. Revanth Reddy, Snehlata Tirkey, Tanmoy Goswami, Radhika Kanase, Sahadat Sarkar, Medha Deshpande, and Parthasarathi Mukhopadhyay
Geosci. Model Dev., 18, 1879–1894, https://doi.org/10.5194/gmd-18-1879-2025, https://doi.org/10.5194/gmd-18-1879-2025, 2025
Short summary
Short summary
The High-Resolution Global Forecast Model (HGFM) is an advanced iteration of the operational Global Forecast System (GFS) model. HGFM can produce forecasts at a spatial scale of ~6 km in tropics. It demonstrates improved accuracy in short- to medium-range weather prediction over the Indian region, with notable success in predicting extreme events. Further, the model will be entrusted to operational forecasting agencies after validation and testing.
Jenna Ritvanen, Seppo Pulkkinen, Dmitri Moisseev, and Daniele Nerini
Geosci. Model Dev., 18, 1851–1878, https://doi.org/10.5194/gmd-18-1851-2025, https://doi.org/10.5194/gmd-18-1851-2025, 2025
Short summary
Short summary
Nowcasting models struggle with the rapid evolution of heavy rain, and common verification methods are unable to describe how accurately the models predict the growth and decay of heavy rain. We propose a framework to assess model performance. In the framework, convective cells are identified and tracked in the forecasts and observations, and the model skill is then evaluated by comparing differences between forecast and observed cells. We demonstrate the framework with four open-source models.
Andrew Geiss and Po-Lun Ma
Geosci. Model Dev., 18, 1809–1827, https://doi.org/10.5194/gmd-18-1809-2025, https://doi.org/10.5194/gmd-18-1809-2025, 2025
Short summary
Short summary
Particles in the Earth's atmosphere strongly impact the planet's energy budget, and atmosphere simulations require accurate representation of their interaction with light. This work introduces two approaches to represent light scattering by small particles. The first is a scattering simulator based on Mie theory implemented in Python. The second is a neural network emulator that is more accurate than existing methods and is fast enough to be used in climate and weather simulations.
Andrin Jörimann, Timofei Sukhodolov, Beiping Luo, Gabriel Chiodo, Graham Mann, and Thomas Peter
EGUsphere, https://doi.org/10.5194/egusphere-2025-145, https://doi.org/10.5194/egusphere-2025-145, 2025
Short summary
Short summary
Aerosol particles in the stratosphere affect our climate. Climate models therefore need an accurate description of their properties and evolution. Satellites measure how strongly aerosol particles extinguish light passing through the stratosphere. We describe a method to use such aerosol extinction data to retrieve the number and sizes of the aerosol particles and calculate their optical effects. The resulting data sets for models are validated against ground-based and balloon observations.
Qin Wang, Bo Zeng, Gong Chen, and Yaoting Li
Geosci. Model Dev., 18, 1769–1784, https://doi.org/10.5194/gmd-18-1769-2025, https://doi.org/10.5194/gmd-18-1769-2025, 2025
Short summary
Short summary
This study evaluates the performance of four planetary boundary layer (PBL) schemes in near-surface wind fields over the Sichuan Basin, China. Using 112 sensitivity experiments with the Weather Research and Forecasting (WRF) model and focusing on 28 wind events, it is found that wind direction was less sensitive to the PBL schemes. The quasi-normal scale elimination (QNSE) scheme captured temporal variations best, while the Mellor–Yamada–Janjić (MYJ) scheme had the least error in wind speed.
Tai-Long He, Nikhil Dadheech, Tammy M. Thompson, and Alexander J. Turner
Geosci. Model Dev., 18, 1661–1671, https://doi.org/10.5194/gmd-18-1661-2025, https://doi.org/10.5194/gmd-18-1661-2025, 2025
Short summary
Short summary
It is computationally expensive to infer greenhouse gas (GHG) emissions using atmospheric observations. This is partly due to the detailed model used to represent atmospheric transport. We demonstrate how a machine learning (ML) model can be used to simulate high-resolution atmospheric transport. This type of ML model will help estimate GHG emissions using dense observations, which are becoming increasingly common with the proliferation of urban monitoring networks and geostationary satellites.
Wei Li, Beiming Tang, Patrick C. Campbell, Youhua Tang, Barry Baker, Zachary Moon, Daniel Tong, Jianping Huang, Kai Wang, Ivanka Stajner, and Raffaele Montuoro
Geosci. Model Dev., 18, 1635–1660, https://doi.org/10.5194/gmd-18-1635-2025, https://doi.org/10.5194/gmd-18-1635-2025, 2025
Short summary
Short summary
The study describes the updates of NOAA's current UFS-AQMv7 air quality forecast model by incorporating the latest scientific and structural changes in CMAQv5.4. An evaluation during the summer of 2023 shows that the updated model overall improves the simulation of MDA8 O3 by reducing the bias by 8%–12% in the contiguous US. PM2.5 predictions have mixed results due to wildfire, highlighting the need for future refinements.
Yanwei Zhu, Aitor Atencia, Markus Dabernig, and Yong Wang
Geosci. Model Dev., 18, 1545–1559, https://doi.org/10.5194/gmd-18-1545-2025, https://doi.org/10.5194/gmd-18-1545-2025, 2025
Short summary
Short summary
Most works have delved into convective weather nowcasting, and only a few works have discussed the nowcasting uncertainty for variables at the surface level. Hence, we proposed a method to estimate uncertainty. Generating appropriate noises associated with the characteristic of the error in analysis can simulate the uncertainty of nowcasting. This method can contribute to the estimation of near–surface analysis uncertainty in both nowcasting applications and ensemble nowcasting development.
Joël Thanwerdas, Antoine Berchet, Lionel Constantin, Aki Tsuruta, Michael Steiner, Friedemann Reum, Stephan Henne, and Dominik Brunner
Geosci. Model Dev., 18, 1505–1544, https://doi.org/10.5194/gmd-18-1505-2025, https://doi.org/10.5194/gmd-18-1505-2025, 2025
Short summary
Short summary
The Community Inversion Framework (CIF) brings together methods for estimating greenhouse gas fluxes from atmospheric observations. The initial ensemble method implemented in CIF was found to be incomplete and could hardly be compared to other ensemble methods employed in the inversion community. In this paper, we present and evaluate a new implementation of the ensemble mode, building upon the initial developments.
Astrid Kerkweg, Timo Kirfel, Duong H. Do, Sabine Griessbach, Patrick Jöckel, and Domenico Taraborrelli
Geosci. Model Dev., 18, 1265–1286, https://doi.org/10.5194/gmd-18-1265-2025, https://doi.org/10.5194/gmd-18-1265-2025, 2025
Short summary
Short summary
Normally, the Modular Earth Submodel System (MESSy) is linked to complete dynamic models to create chemical climate models. However, the modular concept of MESSy and the newly developed DWARF component presented here make it possible to create simplified models that contain only one or a few process descriptions. This is very useful for technical optimisation, such as porting to GPUs, and can be used to create less complex models, such as a chemical box model.
Peter Wind and Willem van Caspel
EGUsphere, https://doi.org/10.5194/egusphere-2024-3571, https://doi.org/10.5194/egusphere-2024-3571, 2025
Short summary
Short summary
This paper presents a numerical method to assess the origin of air pollution. Combined with a numerical air pollution transport and chemistry model, it can follow the contributions from a large number of emission sources. The result is a series of maps that give the relative contributions from for example all European countries at each point.
Julian Vogel, Sebastian Stadler, Ganesh Chockalingam, Afshin Afshari, Johanna Henning, and Matthias Winkler
EGUsphere, https://doi.org/10.5194/egusphere-2025-144, https://doi.org/10.5194/egusphere-2025-144, 2025
Short summary
Short summary
This study presents a toolkit to simplify input data creation for the urban microclimate model PALM-4U. It introduces novel methods to automate the use of open data sources. Our analysis of four test cases created from different geographic data sources shows variations in temperature, humidity, and wind speed, influenced by data quality. Validation indicates that the automated methods yield results comparable to expert-driven approaches, facilitating user-friendly urban climate modeling.
Edward C. Chan, Ilona J. Jäkel, Basit Khan, Martijn Schaap, Timothy M. Butler, Renate Forkel, and Sabine Banzhaf
Geosci. Model Dev., 18, 1119–1139, https://doi.org/10.5194/gmd-18-1119-2025, https://doi.org/10.5194/gmd-18-1119-2025, 2025
Short summary
Short summary
An enhanced emission module has been developed for the PALM model system, improving flexibility and scalability of emission source representation across different sectors. A model for parametrized domestic emissions has also been included, for which an idealized model run is conducted for particulate matter (PM10). The results show that, in addition to individual sources and diurnal variations in energy consumption, vertical transport and urban topology play a role in concentration distribution.
Gregor Ehrensperger, Thorsten Simon, Georg J. Mayr, and Tobias Hell
Geosci. Model Dev., 18, 1141–1153, https://doi.org/10.5194/gmd-18-1141-2025, https://doi.org/10.5194/gmd-18-1141-2025, 2025
Short summary
Short summary
As lightning is a brief and localized event, it is not explicitly resolved in atmospheric models. Instead, expert-based auxiliary descriptions are used to assess it. This study explores how AI can improve our understanding of lightning without relying on traditional expert knowledge. We reveal that AI independently identified the key factors known to experts as essential for lightning in the Alps region. This shows how knowledge discovery could be sped up in areas with limited expert knowledge.
Cited articles
Adler, R. F., Huffman, G. J., Chang, A., Ferraro, R., Xie, P.-P., Janowiak,
J., Rudolf, B., Schneider, U., Curtis, S., Bolvin, D., Gruber, A., Susskind,
J., Arkin, P., and Nelkin, E.: The version-2 global precipitation climatology
project (GPCP) monthly precipitation analysis (1979–present), J.
Hydrometeorol., 4, 1147–1167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2, 2003.
Aoki, T., Kuchiki, K., Niwano, M., Kodama, Y., Hosaka, M., and Tanaka, T.:
Physically based snow albedo model for calculating broadband albedos and the
solar heating profile in snowpack for general circulation models, J.
Geophys. Res., 116, D11114, https://doi.org/10.1029/2010JD015507, 2011.
Armstrong, R. L. and and Brun, E. (Eds.): Snow and climate: Physical
processes, surface energy exchange and modeling, Cambridge Univ. Press,
Cambridge, UK, 2008.
Austin, R. T. and Stephens, G. L.: Retrieval of stratus cloud microphysical
parameters using millimeter-wave radar and visible optical depth in
preparation for CloudSat: 1. Algorithm formulation, J. Geophys. Res.-Atmos.,
106, 28233–28242, https://doi.org/10.1029/2000JD000293, 2001.
Austin, R. T., Heymsfield, A. J., and Stephens, G. L.: Retrieval of ice cloud
microphysical parameters using the CloudSat millimeter-wave radar and
temperature, J. Geophys. Res., 114, D00A23, https://doi.org/10.1029/2008JD010049, 2009.
Bodas-Salcedo, A., Webb, M. J., Brooks, M. E., Ringer, M. A., Williams, K.
D., Milton, S. F., and Wilson, D. R.: Evaluating cloud systems in the Met
Office global forecast model using simulated CloudSat radar reflectivities,
J. Geophys. Res., 113, D00A13, https://doi.org/10.1029/2007JD009620, 2008.
Bodas-Salcedo, A., Webb, M. J., Bony, S., Chepfer, H., Dufresne, J.-L.,
Klein, S. A., Zhang, Y., Marchand, R., Haynes, J. M., Pincus, R., and John,
V. O.: COSP: Satellite simulation software for model assessment, B. Am.
Meteorol. Soc., 92, 1023–1043, https://doi.org/10.1175/2011BAMS2856.1, 2011.
Bony, S., Stevens, B., Frierson, D. M. W., Jakob, C., Kageyama, M., Pincus,
R., Shepherd, T. G., Sherwood, S. C., Siebesma, A. P., Sobel, A. H.,
Watanabe, M., and Webb, M. J.: Clouds, circulation and climate sensitivity,
Nat. Geosci., 8, 261–268, https://doi.org/10.1038/ngeo2398, 2015.
Chen, Y.-W., Seiki, T., Kodama, C., Satoh, M., Noda, A. T., and Yamada, Y.:
High Cloud Responses to Global Warming Simulated by Two Different Cloud
Microphysics Schemes Implemented in the Nonhydrostatic Icosahedral
Atmospheric Model (NICAM), J. Climate, 29, 5949–5964,
https://doi.org/10.1175/JCLI-D-15-0668.1, 2016.
Chen, Y.-W., Seiki, T., Kodama, C., Satoh, M., and Noda, A. T.: Impact of
precipitating ice hydrometeors on longwave radiative effect estimated by a
global cloud-system resolving model, J. Adv. Model. Earth Sy., 10,
284–296, https://doi.org/10.1002/2017MS001180, 2018.
Chepfer, H., Bony, S., Winker, D., Chiriaco, M., Dufresne, J.-L., and
Sèze, G.: Use of CALIPSO lidar observations to evaluate the cloudiness
simulated by a climate model, Geophys. Res. Lett., 35, L15704,
https://doi.org/10.1029/2008GL034207, 2008.
ECMWF: ECMWF ERA-20C, Daily, available at: https://apps.ecmwf.int/datasets/data/era20c-daily/,
last access: 21 January 2021.
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016.
Fairall, C. W., Bradley, E. F., Hare, J. E., Grachev, A. A., and Edson, J.
B.: Bulk parameterization of air–sea fluxes: updates and verification for
the COARE algorithm, J. Climate, 16, 571–591,
https://doi.org/10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2,
2003.
Fiedler, S., Stevens, B., and Mauritsen, T.: On the sensitivity of anthropogenic aerosol forcing to model‐internal variability and parameterizing a T womey effect, J. Adv. Model. Earth Sy., 9, 1325–1341, https://doi.org/10.1002/2017MS000932, 2017.
Fiedler, S., Stevens, B., Gidden, M., Smith, S. J., Riahi, K., and van Vuuren, D.: First forcing estimates from the future CMIP6 scenarios of anthropogenic aerosol optical properties and an associated Twomey effect, Geosci. Model Dev., 12, 989–1007, https://doi.org/10.5194/gmd-12-989-2019, 2019.
Field, P. R., Hogan, R. J., Brown, P. R. A., Illingworth, A. J., Choularton,
T. W., and Cotton, R. J.: Parametrization of ice-particle size distributions
for mid-latitude stratiform cloud, Q. J. Roy. Meteor. Soc., 131,
1997–2017, https://doi.org/10.1256/qj.04.134, 2005.
Fu, Q.: An accurate parameterization of the solar radiative properties of
cirrus clouds for climate models, J. Climate, 9, 2058–2082,
https://doi.org/10.1175/1520-0442(1996)009<2058:AAPOTS>2.0.CO;2,
1996.
Fu, Q., Yang, P., and Sun, W. B.: An accurate parameterization of the
infrared radiative properties of cirrus clouds for climate models, J. Climate,
11, 2223–2237, https://doi.org/10.1175/1520-0442(1998)011<2223:AAPOTI>2.0.CO;2, 1998.
Fukutomi, Y., Kodama, C., Yamada, Y., Noda, A. T., and Satoh, M.: Tropical
synoptic-scale wave disturbances over the western Pacific simulated by a
global cloud-system resolving model, Theor. Appl. Climatol., 124,
737–755, https://doi.org/10.1007/s00704-015-1456-4, 2016.
Gilmore, M. S., Straka, J. M., and Rasmussen, E. N.: Precipitation
uncertainty due to variations in precipitation particle parameters within a
simple microphysics scheme, Mon. Weather Rev., 132, 2610–2627,
https://doi.org/10.1175/MWR2810.1, 2004.
Goto, D., Takemura, T., and Nakajima, T.: Importance of global aerosol
modeling including secondary organic aerosol formed from monoterpene, J.
Geophys. Res., 113, D07205, https://doi.org/10.1029/2007JD009019, 2008.
Goto, D., Nakajima, T., Takemura, T., and Sudo, K.: A study of uncertainties in the sulfate distribution and its radiative forcing associated with sulfur chemistry in a global aerosol model, Atmos. Chem. Phys., 11, 10889–10910, https://doi.org/10.5194/acp-11-10889-2011, 2011.
Goto, D., Nakajima, T., Tie, D., Yashiro, H., Sato, Y., Suzuki, K., Uchida,
J., Misawa, S., Yonemoto, R., Trieu, T. T. N., Tomita, H., and Satoh, M.:
Multi-scale simulations of atmospheric pollutants using a non-hydrostatic
icosahedral atmospheric model, in: Land-Atmospheric Research Applications in
South and Southeast Asia, edited by: Vadrevu, K., Ohara, T., and Justice, C.,
Springer International Publishing, 277–302, 2018.
Goto, D., Sato, Y., Yashiro, H., Suzuki, K., Oikawa, E., Kudo, R., Nagao, T. M., and Nakajima, T.: Global aerosol simulations using NICAM.16 on a 14 km grid spacing for a climate study: improved and remaining issues relative to a lower-resolution model, Geosci. Model Dev., 13, 3731–3768, https://doi.org/10.5194/gmd-13-3731-2020, 2020.
Grabowski, W. W.: Impact of explicit atmosphere–ocean coupling on MJO-like
coherent structures in idealized aquaplanet simulations, J. Atmos. Sci.,
63, 2289–2306, https://doi.org/10.1175/JAS3740.1, 2006.
Haarsma, R. J., Roberts, M. J., Vidale, P. L., Senior, C. A., Bellucci, A., Bao, Q., Chang, P., Corti, S., Fučkar, N. S., Guemas, V., von Hardenberg, J., Hazeleger, W., Kodama, C., Koenigk, T., Leung, L. R., Lu, J., Luo, J.-J., Mao, J., Mizielinski, M. S., Mizuta, R., Nobre, P., Satoh, M., Scoccimarro, E., Semmler, T., Small, J., and von Storch, J.-S.: High Resolution Model Intercomparison Project (HighResMIP v1.0) for CMIP6, Geosci. Model Dev., 9, 4185–4208, https://doi.org/10.5194/gmd-9-4185-2016, 2016.
Hashino, T., Satoh, M., Hagihara, Y., Kubota, T., Matsui, T., Nasuno, T., and
Okamoto, H.: Evaluating cloud microphysics from NICAM against CloudSat and
CALIPSO, J. Geophys. Res.-Atmos., 118, 7273–7292,
https://doi.org/10.1002/jgrd.50564, 2013.
Hashino, T., Satoh, M., Hagihara, Y., Kato, S., Kubota, T., Matsui, T.,
Nasuno, T., Okamoto, H., and Sekiguchi, M.: Evaluating Arctic cloud radiative
effects simulated by NICAM with A-train, J. Geophys. Res.-Atmos., 121,
7041–7063, https://doi.org/10.1002/2016JD024775, 2016.
Haynes, J. M., Marchand, R. T., Luo, Z., Bodas-Salcedo, A., and Stephens, G.
L.: A multipurpose radar simulation package: QuickBeam, B. Am. Meteorol.
Soc., 88, 1723–1728, https://doi.org/10.1175/BAMS-88-11-1723, 2007.
Hegglin, M., Kinnison, D., Lamarque, J.-F., and Plummer, D.: CCMI ozone in
support of CMIP6 – version 1.0. Version 20160711, Earth System Grid Federation, https://doi.org/10.22033/ESGF/input4MIPs.1115, 2016.
Hegglin, M., Kinnison, D., Lamarque, J.-F., and Plummer, D.:
input4MIPs.CMIP6.ScenarioMIP.UReading.UReading-CCMI-ssp585-1-0, Version
20181101, Earth System Grid Federation, https://doi.org/10.22033/ESGF/input4MIPs, 2018.
Heymsfield, A. J. and Donner, L. J.: A scheme for parameterizing ice-cloud
water content in general circulation models, J. Atmos. Sci., 47,
1865–1877, https://doi.org/10.1175/1520-0469(1990)047<1865:ASFPIC>2.0.CO;2, 1990.
HighResMIP: PRIMAVERA-H2020/HighResMIP-futureSSTSeaice, HighResMIP,
available at:
https://github.com/PRIMAVERA-H2020/HighResMIP-futureSSTSeaice, last Access: 17
August 2020.
Hohenegger, C., Kornblueh, L., Klocke, D., Becker, T., Cioni, G., Engels, J.
F., Schulzweida, U., and Stevens, B.: Climate statistics in global
simulations of the atmosphere, from 80 to 2.5 km grid spacing, J. Meteorol.
Soc. Jpn., 98, 73–91, https://doi.org/10.2151/jmsj.2020-005, 2020.
Hong, S.-Y., Dudhia, J., and Chen, S.-H.: A revised approach to ice
microphysical processes for the bulk parameterization of clouds and
precipitation, Mon. Weather Rev., 132, 103–120,
https://doi.org/10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2,
2004.
Huffman, G. J., Adler, R. F., Morrissey, M. M., Bolvin, D. T., Curtis, S.,
Joyce, R., McGavock, B., and Susskind, J.: Global Precipitation at One-Degree
Daily Resolution from Multisatellite Observations, J. Hydrometeorol., 2,
36–50, https://doi.org/10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO;2, 2001.
Huffman, G. J., Bolvin, D. T., Nelkin, E. J., and Adler, R. F.: TRMM (TMPA)
Precipitation L3 1 day 0.25 degree x 0.25 degree V7, edited by: Savtchenko, A., Goddard Earth Sciences Data and Information Services Center (GES DISC), https://doi.org/10.5067/TRMM/TMPA/DAY/7,
2016.
Iga, S., Tomita, H., Tsushima, Y., and Satoh, M.: Climatology of a
nonhydrostatic global model with explicit cloud processes, Geophys. Res.
Lett., 34, L22814, https://doi.org/10.1029/2007GL031048, 2007.
Iwasaki, T., Yamada, S., and Tada, K.: A parameterization scheme of
orographic gravity wave drag with two different vertical partitionings Part
I: impacts on medium-range forecasts, J. Meteorol. Soc. Jpn., 67,
11–27, https://doi.org/10.2151/jmsj1965.67.1_11, 1989.
Kato, S., Rose, F. G., Rutan, D. A., Thorsen, T. J., Loeb, N. G., Doelling,
D. R., Huang, X., Smith, W. L., Su, W., and Ham, S.-H.: Surface irradiances
of edition 4.0 Clouds and the Earth's Radiant Energy System (CERES) Energy
Balanced and Filled (EBAF) data product, J. Climate, 31, 4501–4527,
https://doi.org/10.1175/JCLI-D-17-0523.1, 2018.
Kennedy, J., Titchner, H., Rayner, N., and Roberts, M.:
input4MIPs.MOHC.SSTsAndSeaIce.HighResMIP.MOHC-HadISST-2-2-0-0-0, Version
20170201, Earth System Grid Federation, https://doi.org/10.22033/ESGF/input4MIPs.1221, 2017.
Kennedy, J., Titchner, H., Rayner, N., and Roberts, M.:
input4MIPs.CMIP6.HighResMIP.MOHC.MOHC-highresSST-future-1-0-0, Version 20190215,
Earth System Grid Federation, https://doi.org/10.22033/ESGF/input4MIPs.10321,
2019.
Kikuchi, K., Kodama, C., Nasuno, T., Nakano, M., Miura, H., Satoh, M., Noda,
A. T., and Yamada, Y.: Tropical intraseasonal oscillation simulated in an
AMIP-type experiment by NICAM, Clim. Dynam., 48, 2507–2528,
https://doi.org/10.1007/s00382-016-3219-z, 2017.
Kilpatrick, T., Xie, S.-P., and Nasuno, T.: Diurnal convection-wind coupling
in the Bay of Bengal, J. Geophys. Res.-Atmos., 122, 9705–9720,
https://doi.org/10.1002/2017JD027271, 2017.
Kinter, J. L., Cash, B., Achuthavarier, D., Adams, J., Altshuler, E.,
Dirmeyer, P., Doty, B., Huang, B., Jin, E. K. K., Marx, L., Manganello, J.,
Stan, C., Wakefield, T., Palmer, T., Hamrud, M., Jung, T., Miller, M.,
Towers, P., Wedi, N., Satoh, M., Tomita, H., Kodama, C., Nasuno, T., Oouchi,
K., Yamada, Y., Taniguchi, H., Andrews, P., Baer, T., Ezell, M., Halloy, C.,
John, D., Loftis, B., Mohr, R., and Wong, K.: Revolutionizing climate
modeling with Project Athena: a multi-institutional, international
collaboration, B. Am. Meteorol. Soc., 94, 231–245,
https://doi.org/10.1175/BAMS-D-11-00043.1, 2013.
Knapp, K. R., Ansari, S., Bain, C. L., Bourassa, M. A., Dickinson, M. J.,
Funk, C., Helms, C. N., Hennon, C. C., Holmes, C. D., Huffman, G. J.,
Kossin, J. P., Lee, H.-T., Loew, A., and Magnusdottir, G.: Globally gridded
satellite observations for climate studies, B. Am. Meteorol. Soc., 92,
893–907, https://doi.org/10.1175/2011BAMS3039.1, 2011.
Knight, C. A., Cooper, W. A., Breed, D. W., Paluch, I. R., Smith, P. L., and
Vali, G.: Microphysics, in Hailstorms of the Central High Plains, edited by:
Knight, C. and Squires, P., Colorado Associated University
Press, 151–193, 1982.
Kobayashi, S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onoda, H., Onogi,
K., Kamahori, H., Kobayashi, C., Endo, H., Miyaoka, K., and Takahashi, K.:
The JRA-55 reanalysis: general specifications and basic characteristics, J.
Meteorol. Soc. Jpn., 93, 5–48, https://doi.org/10.2151/jmsj.2015-001, 2015.
Kodama, C., Noda, A. T. T., and Satoh, M.: An assessment of the cloud signals
simulated by NICAM using ISCCP, CALIPSO, and CloudSat satellite simulators,
J. Geophys. Res.-Atmos., 117, D12210, https://doi.org/10.1029/2011JD017317, 2012.
Kodama, C., Yamada, Y., Noda, A. T., Kikuchi, K., Kajikawa, Y., Nasuno, T.,
Tomita, T., Yamaura, T., Takahashi, H. G., Hara, M., Kawatani, Y., Satoh,
M., Sugi, M., and Satoh, M.: A 20-year climatology of a NICAM AMIP-type
simulation, J. Meteorol. Soc. Jpn., 93, 393–424,
https://doi.org/10.2151/jmsj.2015-024, 2015.
Kodama, C., Stevens, B., Mauritsen, T., Seiki, T., and Satoh, M.: A new
perspective for future precipitation change from intense extratropical
cyclones, Geophys. Res. Lett., 46, 12435–12444,
https://doi.org/10.1029/2019GL084001, 2019.
Kodama, C., Ohno, T., Seiki, T., Yashiro, H., Noda, A. T., Nakano, M. and Sugi, M.: The non-hydrostatic global atmospheric model for CMIP6 HighResMIP simulations (NICAM16-S) (Version NICAM16-S), Zenodo, https://doi.org/10.5281/zenodo.3727329, 2020.
Lang, S., Tao, W.-K., Simpson, J., Cifelli, R., Rutledge, S., Olson, W., and
Halverson, J.: Improving simulations of convective systems from TRMM LBA:
easterly and westerly Regimes, J. Atmos. Sci., 64, 1141–1164,
https://doi.org/10.1175/JAS3879.1, 2007.
Li, J.-L. F., Forbes, R. M., Waliser, D. E., Stephens, G., and Lee, S.:
Characterizing the radiative impacts of precipitating snow in the ECMWF
Integrated Forecast System global model, J. Geophys. Res.-Atmos., 119,
9626–9637, https://doi.org/10.1002/2014JD021450, 2014.
Li, J.-L. F., Lee, W.-L., Waliser, D., Wang, Y.-H., Yu, J.-Y., Jiang, X.,
L'Ecuyer, T., Chen, Y.-C., Kubar, T., Fetzer, E., and Mahakur, M.:
Considering the radiative effects of snow on tropical Pacific Ocean
radiative heating profiles in contemporary GCMs using A-Train observations,
J. Geophys. Res.-Atmos., 121, 1621–1636, https://doi.org/10.1002/2015JD023587, 2016.
Lin, Y.-L., Farley, R. D., and Orville, H. D.: Bulk Parameterization of the
Snow Field in a Cloud Model, J. Clim. Appl. Meteorol., 22, 1065–1092,
https://doi.org/10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2,
1983.
Lindzen, R. S. and Fox-Rabinovitz, M.: Consistent vertical and horizontal
resolution, Mon. Weather Rev., 117, 2575–2583,
https://doi.org/10.1175/1520-0493(1989)117<2575:CVAHR>2.0.CO;2,
1989.
Loeb, N. G., Doelling, D. R., Wang, H., Su, W., Nguyen, C., Corbett, J. G.,
Liang, L., Mitrescu, C., Rose, F. G., and Kato, S.: Clouds and the Earth's
Radiant Energy System (CERES) Energy Balanced and Filled (EBAF)
Top-of-Atmosphere (TOA) edition-4.0 data product, J. Climate, 31, 895–918,
https://doi.org/10.1175/JCLI-D-17-0208.1, 2018.
Louis, J.-F.: A parametric model of vertical eddy fluxes in the atmosphere,
Bound.-Lay. Meteorol., 17, 187–202, https://doi.org/10.1007/BF00117978, 1979.
LP DAAC: The Land Processes Distributed Active Archive Center (LP DAAC), available at: https://lpdaac.usgs.gov/,
last access: 21 January 2021.
Maher, P., Vallis, G. K., Sherwood, S. C., Webb, M. J., and Sansom, P. G.:
The impact of parameterized convection on climatological precipitation in
atmospheric global climate models, Geophys. Res. Lett., 45, 3728–3736,
https://doi.org/10.1002/2017GL076826, 2018.
Masunaga, H., Matsui, T., Tao, W., Hou, A. Y., Kummerow, C. D., Nakajima,
T., Bauer, P., Olson, W. S., Sekiguchi, M., and Nakajima, T. Y.: Satellite
data simulator unit, B. Am. Meteorol. Soc., 91, 1625–1632,
https://doi.org/10.1175/2010BAMS2809.1, 2010.
Matsugishi, S., Miura, H., Nasuno, T., and Satoh, M.: Impact of latent heat
flux modifications on the reproduction of a Madden–Julian Oscillation event
during the 2015 pre-YMC campaign using a global cloud-system-resolving
model, SOLA, 16A, 12–18,
https://doi.org/10.2151/sola.16A-003, 2020.
Matsui, T., Zeng, X., Tao, W.-K., Masunaga, H., Olson, W. S., and Lang, S.:
Evaluation of long-term cloud-resolving model simulations using satellite
radiance observations and multifrequency satellite simulators, J. Atmos.
Ocean. Tech., 26, 1261–1274, https://doi.org/10.1175/2008JTECHA1168.1, 2009.
Matsuoka, D., Nakano, M., Sugiyama, D., and Uchida, S.: Deep learning
approach for detecting tropical cyclones and their precursors in the
simulation by a cloud-resolving global nonhydrostatic atmospheric model,
Prog. Earth Planet. Sci., 5, 80, https://doi.org/10.1186/s40645-018-0245-y, 2018.
Matthes, K., Funke, B., Kruschke, T., and Wahl, S.:
input4MIPs.SOLARIS-HEPPA.solar.CMIP.SOLARIS-HEPPA-3-2, Version 20170103, Earth System Grid Federation, https://doi.org/10.22033/ESGF/input4MIPs.1122,
2017a.
Matthes, K., Funke, B., Andersson, M. E., Barnard, L., Beer, J., Charbonneau, P., Clilverd, M. A., Dudok de Wit, T., Haberreiter, M., Hendry, A., Jackman, C. H., Kretzschmar, M., Kruschke, T., Kunze, M., Langematz, U., Marsh, D. R., Maycock, A. C., Misios, S., Rodger, C. J., Scaife, A. A., Seppälä, A., Shangguan, M., Sinnhuber, M., Tourpali, K., Usoskin, I., van de Kamp, M., Verronen, P. T., and Versick, S.: Solar forcing for CMIP6 (v3.2), Geosci. Model Dev., 10, 2247–2302, https://doi.org/10.5194/gmd-10-2247-2017, 2017b.
McCoy, D. T., Field, P. R., Elsaesser, G. S., Bodas-Salcedo, A., Kahn, B. H., Zelinka, M. D., Kodama, C., Mauritsen, T., Vanniere, B., Roberts, M., Vidale, P. L., Saint-Martin, D., Voldoire, A., Haarsma, R., Hill, A., Shipway, B., and Wilkinson, J.: Cloud feedbacks in extratropical cyclones: insight from long-term satellite data and high-resolution global simulations, Atmos. Chem. Phys., 19, 1147–1172, https://doi.org/10.5194/acp-19-1147-2019, 2019.
McFarlane, N. A.: The effect of orographically excited gravity wave drag on
the general circulation of the lower stratosphere and troposphere, J. Atmos.
Sci., 44, 1775–1800, https://doi.org/10.1175/1520-0469(1987)044<1775:TEOOEG>2.0.CO;2, 1987.
McFarlane, N. A., Boer, G. J., Blanchet, J.-P., and Lazare, M.: The Canadian
Climate Centre second-generation general circulation model and its
equilibrium climate, J. Climate, 5, 1013–1044,
https://doi.org/10.1175/1520-0442(1992)005<1013:TCCCSG>2.0.CO;2,
1992.
Meinshausen, M. and Nicholls, Z. R. J.: UoM-REMIND-MAGPIE-ssp585-1-2-1 GHG
concentrations, Version 20181127, Earth System Grid Federation. https://doi.org/10.22033/ESGF/input4MIPs.9868, 2018.
Meinshausen, M. and Vogel, E.:
input4MIPs.UoM.GHGConcentrations.CMIP.UoM-CMIP-1-2-0, Version 20160830,
Earth System Grid Federation, https://doi.org/10.22033/ESGF/input4MIPs.1118,
2016.
Meinshausen, M., Vogel, E., Nauels, A., Lorbacher, K., Meinshausen, N., Etheridge, D. M., Fraser, P. J., Montzka, S. A., Rayner, P. J., Trudinger, C. M., Krummel, P. B., Beyerle, U., Canadell, J. G., Daniel, J. S., Enting, I. G., Law, R. M., Lunder, C. R., O'Doherty, S., Prinn, R. G., Reimann, S., Rubino, M., Velders, G. J. M., Vollmer, M. K., Wang, R. H. J., and Weiss, R.: Historical greenhouse gas concentrations for climate modelling (CMIP6), Geosci. Model Dev., 10, 2057–2116, https://doi.org/10.5194/gmd-10-2057-2017, 2017.
Michibata, T., Suzuki, K., Sekiguchi, M., and Takemura, T.: Prognostic
precipitation in the MIROC6-SPRINTARS GCM: description and evaluation
against satellite observations, J. Adv. Model. Earth Sy., 11, 839–860,
https://doi.org/10.1029/2018MS001596, 2019.
Mitchell, D. L.: Use of mass- and area-dimensional power laws for
determining precipitation particle terminal velocities, J. Atmos. Sci.,
53, 1710–1723, https://doi.org/10.1175/1520-0469(1996)053<1710:UOMAAD>2.0.CO;2, 1996.
Miyakawa, T. and Miura, H.: Resolution dependencies of tropical convection
in a global cloud/cloud-system resolving model, J. Meteorol. Soc. Jpn.,
97, 745–756, https://doi.org/10.2151/jmsj.2019-034, 2019.
Miyakawa, T., Yashiro, H., Suzuki, T., Tatebe, H., and Satoh, M.: A Madden-Julian Oscillation event remotely accelerates ocean upwelling to abruptly terminate the 1997/1998 super El Niño, Geophys. Res. Lett., 44, 9489–9495, https://doi.org/10.1002/2017GL074683, 2017.
Miyakawa, T., Noda, A. T., and Kodama, C.: The impact of hybrid usage of a
cumulus parameterization scheme on tropical convection and large-scale
circulations in a global cloud-system resolving model, J. Adv. Model. Earth
Sy., 10, 2952–2970, https://doi.org/10.1029/2018MS001302, 2018.
Moon, I.-J., Ginis, I., Hara, T., and Thomas, B.: A physics-based
parameterization of air–sea momentum flux at high wind speeds and its
impact on hurricane intensity predictions, Mon. Weather Rev., 135,
2869–2878, https://doi.org/10.1175/MWR3432.1, 2007.
Na, Y., Fu, Q., and Kodama, C.: Precipitation probability and its future
changes from a global cloud-resolving model and CMIP6 simulations, J.
Geophys. Res.-Atmos., 125, e2019JD031926, https://doi.org/10.1029/2019JD031926, 2020.
Nakajima, T., Tsukamoto, M., Tsushima, Y., Numaguti, A., and Kimura, T.:
Modeling of the radiative process in an atmospheric general circulation
model, Appl. Optics, 39, 4869–4878, 2000.
Nakanishi, M. and Niino, H.: An improved Mellor–Yamada level-3 model: Its
numerical stability and application to a regional prediction of advection
fog, Bound.-Lay. Meteorol., 119, 397–407,
https://doi.org/10.1007/s10546-005-9030-8, 2006.
Nakano, M. and Kikuchi, K.: Seasonality of intraseasonal variability in
global climate models, Geophys. Res. Lett., 46, 4441–4449,
https://doi.org/10.1029/2019GL082443, 2019.
Nappo, C.: An introduction to atmospheric gravity waves, 2nd Edn., Academic
Press, Cambridge, MA, 2012.
Nitta, T., Yoshimura, K. and Abe-Ouchi, A.: Impact of Arctic Wetlands on the
Climate System: Model Sensitivity Simulations with the MIROC5 AGCM and a
Snow-Fed Wetland Scheme, J. Hydrometeorol., 18, 2923–2936,
https://doi.org/10.1175/JHM-D-16-0105.1, 2017.
Niwano, M., Aoki, T., Kuchiki, K., Hosaka, M., Kodama, Y., Yamaguchi, S.,
Moytoyoshi, H., and Iwata, Y.: Evaluation of updated physical snowpack model
SMAP, Bull. Glaciol. Res., 32, 65–78, https://doi.org/10.5331/bgr.32.65, 2014.
Noda, A. T., Oouchi, K., Satoh, M., Tomita, H., Iga, S., and Tsushima, Y.:
Importance of the subgrid-scale turbulent moist process: Cloud distribution
in global cloud-resolving simulations, Atmos. Res., 96, 208–217,
https://doi.org/10.1016/j.atmosres.2009.05.007, 2010.
Noda, A. T., Oouchi, K., Satoh, M., and Tomita, H.: Quantitative assessment
of diurnal variation of tropical convection simulated by a global
nonhydrostatic model without cumulus parameterization, J. Climate, 25,
5119–5134, https://doi.org/10.1175/JCLI-D-11-00295.1, 2012.
Noda, A. T., Seiki, T., Satoh, M., and Yamada, Y.: High cloud size dependency
in the applicability of the fixed anvil temperature hypothesis using global
nonhydrostatic simulations, Geophys. Res. Lett., 43, 2307–2314, https://doi.org/10.1002/2016GL067742,
2016.
Noda, A. T., Kodama, C., Yamada, Y., Satoh, M., Ogura, T., and Ohno, T.:
Responses of clouds and large-scale circulation to global warming evaluated
from multidecadal simulations using a global nonhydrostatic model, J. Adv.
Model. Earth Sy., 11, 2980–2995, https://doi.org/10.1029/2019MS001658, 2019.
O'Neill, B. C., Tebaldi, C., van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., Knutti, R., Kriegler, E., Lamarque, J.-F., Lowe, J., Meehl, G. A., Moss, R., Riahi, K., and Sanderson, B. M.: The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6, Geosci. Model Dev., 9, 3461–3482, https://doi.org/10.5194/gmd-9-3461-2016, 2016.
Ohno, T., Satoh, M., and Noda, A.: Fine vertical resolution
radiative-convective equilibrium experiments: roles of turbulent mixing on
the high-cloud response to sea surface temperatures, J. Adv. Model. Earth
Sy., 11, 1637–1654, https://doi.org/10.1029/2019MS001704, 2019.
Poli, P., Hersbach, H., Dee, D. P., Berrisford, P., Simmons, A. J., Vitart,
F., Laloyaux, P., Tan, D. G. H., Peubey, C., Thépaut, J.-N.,
Trémolet, Y., Hólm, E. V., Bonavita, M., Isaksen, L., and Fisher, M.:
ERA-20C: an atmospheric reanalysis of the twentieth century, J. Climate,
29, 4083–4097, https://doi.org/10.1175/JCLI-D-15-0556.1, 2016.
Polichtchouk, I., Stockdale, T., Bechtold, P., Diamantakis, M., Malardel,
S., Sandu, I., Vána, F., and Wedi, N.: Control on stratospheric
temperature in IFS: resolution and vertical advection, ECMWF Tech. Memo.,
847, https://doi.org/10.21957/cz3t12t7e, 2019.
Roh, W. and Satoh, M.: Evaluation of precipitating hydrometeor
parameterizations in a single-moment bulk microphysics scheme for deep
convective systems over the tropical central Pacific, J. Atmos. Sci., 71,
2654–2673, https://doi.org/10.1175/JAS-D-13-0252.1, 2014.
Roh, W. and Satoh, M.: Extension of a multisensor satellite radiance-based
evaluation for cloud system resolving models, J. Meteorol. Soc. Jpn.,
96, 55–63, https://doi.org/10.2151/jmsj.2018-002, 2018.
Roh, W., Satoh, M., and Nasuno, T.: Improvement of a cloud microphysics
scheme for a global nonhydrostatic model using TRMM and a satellite
simulator, J. Atmos. Sci., 74, 167–184, https://doi.org/10.1175/JAS-D-16-0027.1,
2017.
Rossow, W. B. and Schiffer, R. A.: Advances in understanding clouds from
ISCCP, B. Am. Meteorol. Soc., 80, 2261–2287,
https://doi.org/10.1175/1520-0477(1999)080<2261:AIUCFI>2.0.CO;2,
1999.
Rutledge, S. A. and Hobbs, P. V.: The mesoscale and microscale structure and
organization of clouds and precipitation in midlatitude cyclones. XII: a
diagnostic modeling study of precipitation development in narrow
cold-frontal rainbands, J. Atmos. Sci., 41, 2949–2972,
https://doi.org/10.1175/1520-0469(1984)041<2949:TMAMSA>2.0.CO;2,
1984.
Sato, T., Miura, H., Satoh, M., Takayabu, Y. N., and Wang, Y.: Diurnal cycle
of precipitation in the tropics simulated in a global cloud-resolving model,
J. Climate, 22, 4809–4826, https://doi.org/10.1175/2009JCLI2890.1, 2009.
Sato, Y., Goto, D., Michibata, T., Suzuki, K., Takemura, T., Tomita, H., and
Nakajima, T.: Aerosol effects on cloud water amounts were successfully
simulated by a global cloud-system resolving model, Nat. Commun., 9, 985,
https://doi.org/10.1038/s41467-018-03379-6, 2018.
Satoh, M., Matsuno, T., Tomita, H., Miura, H., Nasuno, T., and Iga, S.:
Nonhydrostatic icosahedral atmospheric model (NICAM) for global cloud
resolving simulations, J. Comput. Phys., 227, 3486–3514,
https://doi.org/10.1016/j.jcp.2007.02.006, 2008.
Satoh, M., Inoue, T., and Miura, H.: Evaluations of cloud properties of
global and local cloud system resolving models using CALIPSO and CloudSat
simulators, J. Geophys. Res., 115, D00H14, https://doi.org/10.1029/2009JD012247, 2010.
Satoh, M., Tomita, H., Yashiro, H., Miura, H., Kodama, C., Seiki, T., Noda,
A. T., Yamada, Y., Goto, D., Sawada, M., Miyoshi, T., Niwa, Y., Hara, M.,
Ohno, T., Iga, S., Arakawa, T., Inoue, T., and Kubokawa, H.: The
non-hydrostatic icosahedral atmospheric model: Description and development,
Prog. Earth Planet. Sci., 1, 18, https://doi.org/10.1186/s40645-014-0018-1, 2014.
Satoh, M., Yamada, Y., Sugi, M., Kodama, C., and Noda, A. T. T.: Constraint
on future change in global frequency of tropical cyclones due to global
warming, J. Meteorol. Soc. Jpn., 93, 489–500, https://doi.org/10.2151/jmsj.2015-025,
2015.
Satoh, M., Noda, A. T., Seiki, T., Chen, Y.-W., Kodama, C., Yamada, Y.,
Kuba, N., and Sato, Y.: Toward reduction of the uncertainties in climate
sensitivity due to cloud processes using a global non-hydrostatic
atmospheric model, Prog. Earth Planet. Sci., 5, 67,
https://doi.org/10.1186/s40645-018-0226-1, 2018.
Satoh, M., Stevens, B., Judt, F., Khairoutdinov, M., Lin, S.-J., Putman, W.
M., and Düben, P.: Global cloud-resolving models, Curr. Clim. Chang.
Reports, 5, 172–184, https://doi.org/10.1007/s40641-019-00131-0, 2019.
Seiki, T. and Nakajima, T.: Aerosol effects of the condensation process on a
convective cloud simulation, J. Atmos. Sci., 71, 833–853,
https://doi.org/10.1175/JAS-D-12-0195.1, 2014.
Seiki, T., Satoh, M., Tomita, H., and Nakajima, T.: Simultaneous evaluation
of ice cloud microphysics and nonsphericity of the cloud optical properties
using hydrometeor video sonde and radiometer sonde in situ observations, J.
Geophys. Res.-Atmos., 119, 6681–6701, https://doi.org/10.1002/2013JD021086, 2014.
Seiki, T., Kodama, C., Noda, A. T. and Satoh, M.: Improvement in global
cloud-system-resolving simulations by using a double-moment bulk cloud
microphysics scheme, J. Climate, 28, 2405–2419,
https://doi.org/10.1175/JCLI-D-14-00241.1, 2015a.
Seiki, T., Kodama, C., Satoh, M., Hashino, T., Hagihara, Y., and Okamoto, H.:
Vertical grid spacing necessary for simulating tropical cirrus clouds with a
high-resolution atmospheric general circulation model, Geophys. Res. Lett.,
42, 4150–4157, https://doi.org/10.1002/2015GL064282, 2015b.
Sekiguchi, M. and Nakajima, T.: A k-distribution-based radiation code and
its computational optimization for an atmospheric general circulation model,
J. Quant. Spectrosc. Ra., 109, 2779–2793,
https://doi.org/10.1016/j.jqsrt.2008.07.013, 2008.
Shabanov, N. V., Huang, D., Yang, W., Tan, B., Knyazikhin, Y., Myneni, R.
B., Ahl, D. E., Gower, S. T., Huete, A. R., Aragao, L. E. O. C., and
Shimabukuro, Y. E.: Analysis and optimization of the MODIS leaf area index
algorithm retrievals over broadleaf forests, IEEE T. Geosci. Remote, 43, 1855–1865, https://doi.org/10.1109/TGRS.2005.852477, 2005.
Skamarock, W. C., Snyder, C., Klemp, J. B., and Park, S.-H.: Vertical
Resolution Requirements in Atmospheric Simulation, Mon. Weather Rev.,
147, 2641–2656, https://doi.org/10.1175/MWR-D-19-0043.1, 2019.
Stevens, B., Fiedler, S., Kinne, S., Peters, K., Rast, S., Müsse, J., Smith, S. J., and Mauritsen, T.: MACv2-SP: a parameterization of anthropogenic aerosol optical properties and an associated Twomey effect for use in CMIP6, Geosci. Model Dev., 10, 433–452, https://doi.org/10.5194/gmd-10-433-2017, 2017.
Stevens, B., Satoh, M., Auger, L., Biercamp, J., Bretherton, C., Düben,
P., Judt, F., Khairoutdinov, M., Klocke, D., Kornblueh, L., Kodama, C.,
Neumann, P., Lin, S., Putman, W. M., Röber, N., Shibuya, R., Vidale, P.,
and Wedi, N.: DYAMOND: The DYnamics of the Atmospheric general circulation
Modeled On Non-hydrostatic Domains, Prog. Earth Planet. Sci., 6, 1–18, https://doi.org/10.1186/s40645-019-0304-z, 2019.
Sugi, M., Yamada, Y., Yoshida, K., Mizuta, R., Nakano, M., Kodama, C., and
Satoh, M.: Future changes in the global frequency of tropical cyclone seeds,
SOLA, 16, 70–74, https://doi.org/10.2151/sola.2020-012, 2020.
Suzuki, K., Nakajima, T., Satoh, M., Tomita, H., Takemura, T., Nakajima, T.
Y., and Stephens, G. L.: Global cloud-system-resolving simulation of aerosol
effect on warm clouds, Geophys. Res. Lett., 35, L19817,
https://doi.org/10.1029/2008GL035449, 2008.
Takahashi, H. G., Kamizawa, N., Nasuno, T., Yamada, Y., Kodama, C.,
Sugimoto, S., and Satoh, M.: Response of the Asian Summer Monsoon
Precipitation to Global Warming in a High-Resolution Global Nonhydrostatic
Model, J. Climate, 33, 8147–8164, https://doi.org/10.1175/JCLI-D-19-0824.1, 2020.
Takasuka, D., Miyakawa, T., Satoh, M., and Miura, H.: Topographical effects
on internally produced MJO-like disturbances in an aqua-planet version of
NICAM, SOLA, 11, 170–176, https://doi.org/10.2151/sola.2015-038, 2015.
Takasuka, D., Satoh, M., Miyakawa, T., and Miura, H.: Initiation processes of
the tropical intraseasonal variability simulated in an aqua-planet
experiment: what is the intrinsic mechanism for MJO onset?, J. Adv. Model.
Earth Sy., 10, 1047–1073, https://doi.org/10.1002/2017MS001243, 2018.
Takata, K., Emori, S., and Watanabe, T.: Development of the minimal advanced
treatments of surface interaction and runoff, Glob. Planet. Change,
38, 209–222, https://doi.org/10.1016/S0921-8181(03)00030-4, 2003.
Takemura, T., Okamoto, H., Maruyama, Y., Numaguti, A., Higurashi, A., and
Nakajima, T.: Global three-dimensional simulation of aerosol optical
thickness distribution of various origins, J. Geophys. Res.-Atmos.,
105, 17853–17873, https://doi.org/10.1029/2000JD900265, 2000.
Takemura, T., Nakajima, T., Dubovik, O., Holben, B. N., and Kinne, S.:
Single-scattering albedo and radiative forcing of various aerosol species
with a global three-dimensional model, J. Climate, 15, 333–352,
https://doi.org/10.1175/1520-0442(2002)015<0333:SSAARF>2.0.CO;2,
2002.
Takemura, T., Nozawa, T., Emori, S., Nakajima, T. Y., and Nakajima, T.:
Simulation of climate response to aerosol direct and indirect effects with
aerosol transport-radiation model, J. Geophys. Res., 110, D02202,
https://doi.org/10.1029/2004JD005029, 2005.
Takemura, T., Egashira, M., Matsuzawa, K., Ichijo, H., O'ishi, R., and Abe-Ouchi, A.: A simulation of the global distribution and radiative forcing of soil dust aerosols at the Last Glacial Maximum, Atmos. Chem. Phys., 9, 3061–3073, https://doi.org/10.5194/acp-9-3061-2009, 2009.
Tatebe, H., Ogura, T., Nitta, T., Komuro, Y., Ogochi, K., Takemura, T., Sudo, K., Sekiguchi, M., Abe, M., Saito, F., Chikira, M., Watanabe, S., Mori, M., Hirota, N., Kawatani, Y., Mochizuki, T., Yoshimura, K., Takata, K., O'ishi, R., Yamazaki, D., Suzuki, T., Kurogi, M., Kataoka, T., Watanabe, M., and Kimoto, M.: Description and basic evaluation of simulated mean state, internal variability, and climate sensitivity in MIROC6, Geosci. Model Dev., 12, 2727–2765, https://doi.org/10.5194/gmd-12-2727-2019, 2019.
Thomason, L., Vernier, J.-P., Bourassa, A., Arfeuille, F., Bingen, C.,
Peter, T., and Luo, B.: Stratospheric Aerosol Data Set (SADS Version 2)
prospectus, available at:
http://www.wcrp-climate.org/images/modelling/WGCM/CMIP/CMIP6Forcings_StratosphericAerosolDataSet_InitialDescription_150131.pdf (last access: 28 July 2020), 2015.
Thompson, G., Field, P. R., Rasmussen, R. M., and Hall, W. D.: Explicit
forecasts of winter precipitation using an improved bulk microphysics
scheme. Part II: implementation of a new snow parameterization, Mon. Weather
Rev., 136, 5095–5115, https://doi.org/10.1175/2008MWR2387.1, 2008.
Tomita, H.: New microphysical schemes with five and six categories by
diagnostic generation of cloud ice, J. Meteorol. Soc. Jpn., 86A, 121–142,
https://doi.org/10.2151/jmsj.86A.121, 2008.
Tomita, H. and Satoh, M.: A new dynamical framework of nonhydrostatic global
model using the icosahedral grid, Fluid Dyn. Res., 34, 357–400,
https://doi.org/10.1016/j.fluiddyn.2004.03.003, 2004.
Tomita, H., Tsugawa, M., Satoh, M., and Goto, K.: Shallow water model on a
modified icosahedral geodesic grid by using spring dynamics, J. Comput.
Phys., 174, 579–613, https://doi.org/10.1006/jcph.2001.6897, 2001.
Tomita, H., Satoh, M., and Goto, K.: An optimization of the icosahedral grid
modified by spring dynamics, J. Comput. Phys., 183, 307–331,
https://doi.org/10.1006/jcph.2002.7193, 2002.
USGS EROS Archive: Digital Elevation – Global 30 Arc-Second Elevation (GTOPO30),
https://doi.org/10.5066/F7DF6PQS, 2021.
Waliser, D. E., Li, J.-L. F., L'Ecuyer, T. S., and Chen, W.-T.: The impact of
precipitating ice and snow on the radiation balance in global climate
models, Geophys. Res. Lett., 38, L06802, https://doi.org/10.1029/2010GL046478, 2011.
Watanabe, S., Sato, K., Kawatani, Y., and Takahashi, M.: Vertical resolution dependence of gravity wave momentum flux simulated by an atmospheric general circulation model, Geosci. Model Dev., 8, 1637–1644, https://doi.org/10.5194/gmd-8-1637-2015, 2015.
Williams, K. D., Bodas-Salcedo, A., Déqué, M., Fermepin, S., Medeiros, B., Watanabe, M., Jakob, C., Klein, S. A., Senior, C. A., and Williamson, D. L.: The Transpose-AMIP II Experiment and Its Application to the Understanding of Southern Ocean Cloud Biases in Climate Models, J. Climate, 26, 3258–3274, https://doi.org/10.1175/JCLI-D-12-00429.1, 2013.
WCRP: input4MIPs, available at: https://esgf-node.llnl.gov/projects/input4mips/,
last access: 21 January 2021.
Yamada, Y., Satoh, M., Sugi, M., Kodama, C., Noda, A. T., Nakano, M., and
Nasuno, T.: Response of tropical cyclone activity and structure to global
warming in a high-resolution global nonhydrostatic model, J. Climate, 30, 9703–9724, https://doi.org/10.1175/JCLI-D-17-0068.1, 2017.
Yamada, Y., Kodama, C., Satoh, M., Nakano, M., Nasuno, T., and Sugi, M.:
High-resolution ensemble simulations of intense tropical cyclones and their
internal variability during the El Niños of 1997 and 2015, Geophys. Res.
Lett., 46, 7592–7601, https://doi.org/10.1029/2019GL082086, 2019.
Yamazaki, T., Taguchi, B., and Kondo, J.: Estimation of the heat balance in a
small snow-covered forested catchment basin, Tenki, 41,
71–77, 1994 (in Japanese).
Yang, W., Tan, B., Huang, D., Rautiainen, M., Shabanov, N. V., Wang, Y.,
Privette, J. L., Huemmrich, K. F., Fensholt, R., Sandholt, I., Weiss, M.,
Ahl, D. E., Gower, S. T., Nemani, R. R., Knyazikhin, Y., and Myneni, R. B.:
MODIS leaf area index products: from validation to algorithm improvement,
IEEE T. Geosci. Remote, 44, 1885–1898,
https://doi.org/10.1109/TGRS.2006.871215, 2006.
Yashiro, H., Terai, M., Yoshida, R., Iga, S., Minami, K., and Tomita, H.:
Performance analysis and optimization of Nonhydrostatic ICosahedral
Atmospheric Model (NICAM) on the K Computer and TSUBAME2.5, in: Proceedings
of the Platform for Advanced Scientific Computing Conference on PASC '16,
ACM Press, New York, New York, USA, 1–8, https://doi.org/10.1145/2929908.2929911, 2016.
Yoshizaki, M., Iga, S., and Satoh, M.: Eastward-propagating property of
large-scale precipitation systems simulated in the coarse-resolution NICAM
and an explanation of its appearance, SOLA, 8, 21–24,
https://doi.org/10.2151/sola.2012-006, 2012.
Short summary
This paper describes the latest stable version of NICAM, a global atmospheric model, developed for high-resolution climate simulations toward the IPCC Assessment Report. Our model explicitly treats convection, clouds, and precipitation and could reduce the uncertainty of climate change projection. A series of test simulations demonstrated improvements (e.g., high cloud) and issues (e.g., low cloud, precipitation pattern), suggesting further necessity for model improvement and higher resolutions.
This paper describes the latest stable version of NICAM, a global atmospheric model, developed...
Special issue