Articles | Volume 14, issue 12
Model description paper
02 Dec 2021
Model description paper |  | 02 Dec 2021

Machine-learning models to replicate large-eddy simulations of air pollutant concentrations along boulevard-type streets

Moritz Lange, Henri Suominen, Mona Kurppa, Leena Järvi, Emilia Oikarinen, Rafael Savvides, and Kai Puolamäki

Related authors

A novel probabilistic source apportionment approach: Bayesian auto-correlated matrix factorization
Anton Rusanen, Anton Björklund, Manousos I. Manousakas, Jianhui Jiang, Markku T. Kulmala, Kai Puolamäki, and Kaspar R. Daellenbach
Atmos. Meas. Tech., 17, 1251–1277,,, 2024
Short summary
Soil respiration across a variety of tree-covered urban green spaces in Helsinki, Finland
Esko Karvinen, Leif Backman, Leena Järvi, and Liisa Kulmala
EGUsphere,,, 2024
Short summary
Sap flow and leaf gas exchange response to a drought and heatwave in urban green spaces in a Nordic city
Joyson Ahongshangbam, Liisa Kulmala, Jesse Soininen, Yasmin Frühauf, Esko Karvinen, Yann Salmon, Anna Lintunen, Anni Karvonen, and Leena Järvi
Biogeosciences, 20, 4455–4475,,, 2023
Short summary
Effect of radiation interaction and aerosol processes on ventilation and aerosol concentrations in a real urban neighbourhood in Helsinki
Jani Strömberg, Xiaoyu Li, Mona Kurppa, Heino Kuuluvainen, Liisa Pirjola, and Leena Järvi
Atmos. Chem. Phys., 23, 9347–9364,,, 2023
Short summary
Simulating heat and CO2 fluxes in Beijing using SUEWS V2020b: sensitivity to vegetation phenology and maximum conductance
Yingqi Zheng, Minttu Havu, Huizhi Liu, Xueling Cheng, Yifan Wen, Hei Shing Lee, Joyson Ahongshangbam, and Leena Järvi
Geosci. Model Dev., 16, 4551–4579,,, 2023
Short summary

Related subject area

Numerical methods
NorSand4AI: a comprehensive triaxial test simulation database for NorSand constitutive model materials
Luan Carlos de Sena Monteiro Ozelim, Michéle Dal Toé Casagrande, and André Luís Brasil Cavalcante
Geosci. Model Dev., 17, 3175–3197,,, 2024
Short summary
ParticleDA.jl v.1.0: a distributed particle-filtering data assimilation package
Daniel Giles, Matthew M. Graham, Mosè Giordano, Tuomas Koskela, Alexandros Beskos, and Serge Guillas
Geosci. Model Dev., 17, 2427–2445,,, 2024
Short summary
HETerogeneous vectorized or Parallel (HETPv1.0): an updated inorganic heterogeneous chemistry solver for the metastable-state NH4+–Na+–Ca2+–K+–Mg2+–SO42−–NO3–Cl–H2O system based on ISORROPIA II
Stefan J. Miller, Paul A. Makar, and Colin J. Lee
Geosci. Model Dev., 17, 2197–2219,,, 2024
Short summary
Three-dimensional geological modelling of igneous intrusions in LoopStructural v1.5.10
Fernanda Alvarado-Neves, Laurent Ailleres, Lachlan Grose, Alexander R. Cruden, and Robin Armit
Geosci. Model Dev., 17, 1975–1993,,, 2024
Short summary
Estimating volcanic ash emissions using retrieved satellite ash columns and inverse ash transport modeling using VolcanicAshInversion v1.2.1, within the operational eEMEP (emergency European Monitoring and Evaluation Programme) volcanic plume forecasting system (version rv4_17)
André R. Brodtkorb, Anna Benedictow, Heiko Klein, Arve Kylling, Agnes Nyiri, Alvaro Valdebenito, Espen Sollum, and Nina Kristiansen
Geosci. Model Dev., 17, 1957–1974,,, 2024
Short summary

Cited articles

Adams, M. D. and Kanaroglou, P. S.: Mapping real-time air pollution health risk for environmental management: Combining mobile and stationary air pollution monitoring with neural network models, J. Environ. Manag., 168, 133–141,, 2016. a, b, c
Araki, S., Shima, M., and Yamamoto, K.: Spatiotemporal land use random forest model for estimating metropolitan NO2 exposure in Japan, Sci. Total Environ., 634, 1269–1277,, 2018. a
Auvinen, M., Boi, S., Hellsten, A., Tanhuanpää, T., and Järvi, L.: Study of realistic urban boundary layer turbulence with high-resolution large-eddy simulation, Atmosphere, 11, 201,, 2020. a
Benoit, K.: Linear regression models with logarithmic transformations, London School of Economics, London, 22, 23–36, 2011. a
Britter, R. E. and Hanna, S. R.: Flow and dispersion in urban areas, Ann. Rev. Fluid Mech., 35, 469–496,, 2003. a
Short summary
This study aims to replicate computationally expensive high-resolution large-eddy simulations (LESs) with regression models to simulate urban air quality and pollutant dispersion. The model development, including feature selection, model training and cross-validation, and detection of concept drift, has been described in detail. Of the models applied, log-linear regression shows the best performance. A regression model can replace LES unless high accuracy is needed.