Model description paper
02 Dec 2021
Model description paper
| 02 Dec 2021
Machine-learning models to replicate large-eddy simulations of air pollutant concentrations along boulevard-type streets
Moritz Lange et al.
Related authors
No articles found.
Minttu Havu, Liisa Kulmala, Pasi Kolari, Timo Vesala, Anu Riikonen, and Leena Järvi
Biogeosciences, 19, 2121–2143, https://doi.org/10.5194/bg-19-2121-2022, https://doi.org/10.5194/bg-19-2121-2022, 2022
Short summary
Short summary
The carbon sequestration potential of two street tree species and the soil beneath them was quantified with the urban land surface model SUEWS and the soil carbon model Yasso. The street tree plantings turned into a modest sink of carbon from the atmosphere after 14 years. Overall, the results indicate the importance of soil in urban carbon sequestration estimations, as soil respiration exceeded the carbon uptake in the early phase, due to the high initial carbon loss from the soil.
Sasu Karttunen, Ewan O'Connor, Olli Peltola, and Leena Järvi
Atmos. Meas. Tech., 15, 2417–2432, https://doi.org/10.5194/amt-15-2417-2022, https://doi.org/10.5194/amt-15-2417-2022, 2022
Short summary
Short summary
To study the complex structure of the lowest tens of metres of atmosphere in urban areas, measurement methods with great spatial and temporal coverage are needed. In our study, we analyse measurements with a promising and relatively new method, distributed temperature sensing, capable of providing detailed information on the near-surface atmosphere. We present multiple ways to utilise these kinds of measurements, as well as important considerations for planning new studies using the method.
Jarmo Mäkelä, Laila Melkas, Ivan Mammarella, Tuomo Nieminen, Suyog Chandramouli, Rafael Savvides, and Kai Puolamäki
Biogeosciences, 19, 2095–2099, https://doi.org/10.5194/bg-19-2095-2022, https://doi.org/10.5194/bg-19-2095-2022, 2022
Short summary
Short summary
Causal structure discovery algorithms have been making headway into Earth system sciences, and they can be used to increase our understanding on biosphere–atmosphere interactions. In this paper we present a procedure on how to utilize prior knowledge of the domain experts together with these algorithms in order to find more robust causal structure models. We also demonstrate how to avoid pitfalls such as over-fitting and concept drift during this process.
Shang Gao, Mona Kurppa, Chak K. Chan, and Keith Ngan
Atmos. Chem. Phys., 22, 2703–2726, https://doi.org/10.5194/acp-22-2703-2022, https://doi.org/10.5194/acp-22-2703-2022, 2022
Short summary
Short summary
The contribution of cooking emissions to organic aerosols may exceed that of motor vehicles. However, little is known about how cooking-generated aerosols evolve in the outdoor environment. In this paper, we present a numerical study of the dispersion of cooking emissions. For plausible choices of the emission strength, cooking can yield much higher concentrations than traffic. This has important implications for public health and city planning.
Chao Yan, Yicheng Shen, Dominik Stolzenburg, Lubna Dada, Ximeng Qi, Simo Hakala, Anu-Maija Sundström, Yishuo Guo, Antti Lipponen, Tom Kokkonen, Jenni Kontkanen, Runlong Cai, Jing Cai, Tommy Chan, Liangduo Chen, Biwu Chu, Chenjuan Deng, Wei Du, Xiaolong Fan, Xu-Cheng He, Juha Kangasluoma, Joni Kujansuu, Mona Kurppa, Chang Li, Yiran Li, Zhuohui Lin, Yiliang Liu, Yuliang Liu, Yiqun Lu, Wei Nie, Jouni Pulliainen, Xiaohui Qiao, Yonghong Wang, Yifan Wen, Ye Wu, Gan Yang, Lei Yao, Rujing Yin, Gen Zhang, Shaojun Zhang, Feixue Zheng, Ying Zhou, Antti Arola, Johanna Tamminen, Pauli Paasonen, Yele Sun, Lin Wang, Neil M. Donahue, Yongchun Liu, Federico Bianchi, Kaspar R. Daellenbach, Douglas R. Worsnop, Veli-Matti Kerminen, Tuukka Petäjä, Aijun Ding, Jingkun Jiang, and Markku Kulmala
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-1079, https://doi.org/10.5194/acp-2021-1079, 2022
Preprint under review for ACP
Short summary
Short summary
Atmospheric new particle formation (NPF) is a dominant source of atmospheric ultrafine particles. In the urban environment, traffic emission is a major source of primary pollutants, but its contribution to NPF remains under debate. During the COVID-19 lockdown, traffic emissions were significantly reduced, providing a unique chance to examine its relevance to NPF. Based on our comprehensive measurements, we demonstrate an insignificant role of traffic emission in NPF.
Michal Belda, Jaroslav Resler, Jan Geletič, Pavel Krč, Björn Maronga, Matthias Sühring, Mona Kurppa, Farah Kanani-Sühring, Vladimír Fuka, Kryštof Eben, Nina Benešová, and Mikko Auvinen
Geosci. Model Dev., 14, 4443–4464, https://doi.org/10.5194/gmd-14-4443-2021, https://doi.org/10.5194/gmd-14-4443-2021, 2021
Short summary
Short summary
The analysis summarizes how sensitive the modelling of urban environment is to changes in physical parameters describing the city (e.g. reflectivity of surfaces) and to several heat island mitigation scenarios in a city quarter in Prague, Czech Republic. We used the large-eddy simulation modelling system PALM 6.0. Surface parameters connected to radiation show the highest sensitivity in this configuration. For heat island mitigation, urban vegetation is shown to be the most effective measure.
Benjamin Foreback, Lubna Dada, Kaspar Dällenbach, Chao Yan, Lili Wang, Biwu Chu, Ying Zhou, Tom V. Kokkonen, Mona Kurppa, Rosaria E. Pileci, Yonghong Wang, Tommy Chan, Juha Kangasluoma, Lin Zhuohui, Yishou Guo, Chang Li, Rima Baalbaki, Joni Kujansuu, Xiaolong Fan, Zemin Feng, Pekka Rantala, Shahzad Gani, Federico Bianchi, Veli-Matti Kerminen, Tuukka Petäjä, Markku Kulmala, Yongchun Liu, and Pauli Paasonen
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-192, https://doi.org/10.5194/acp-2021-192, 2021
Revised manuscript accepted for ACP
Short summary
Short summary
This study analysed air quality in Beijing during the Chinese New Year over seven years, including data from a new in-depth measurement station. This is one of few studies to look at long-term impacts, including the outcome of firework restrictions starting in 2018. Results show that firework pollution has gone down since 2016, indicating a positive result from the restrictions. Results of this study may be useful in making future decisions about the use of fireworks to improve air quality.
Basit Khan, Sabine Banzhaf, Edward C. Chan, Renate Forkel, Farah Kanani-Sühring, Klaus Ketelsen, Mona Kurppa, Björn Maronga, Matthias Mauder, Siegfried Raasch, Emmanuele Russo, Martijn Schaap, and Matthias Sühring
Geosci. Model Dev., 14, 1171–1193, https://doi.org/10.5194/gmd-14-1171-2021, https://doi.org/10.5194/gmd-14-1171-2021, 2021
Short summary
Short summary
An atmospheric chemistry model has been implemented in the microscale PALM model system 6.0. This article provides a detailed description of the model, its structure, input requirements, various features and limitations. Several pre-compiled ready-to-use chemical mechanisms are included in the chemistry model code; however, users can also easily implement other mechanisms. A case study is presented to demonstrate the application of the new chemistry model in the urban environment.
Mona Kurppa, Pontus Roldin, Jani Strömberg, Anna Balling, Sasu Karttunen, Heino Kuuluvainen, Jarkko V. Niemi, Liisa Pirjola, Topi Rönkkö, Hilkka Timonen, Antti Hellsten, and Leena Järvi
Geosci. Model Dev., 13, 5663–5685, https://doi.org/10.5194/gmd-13-5663-2020, https://doi.org/10.5194/gmd-13-5663-2020, 2020
Short summary
Short summary
High-resolution modelling is needed to solve the aerosol concentrations in a complex urban area. Here, the performance of an aerosol module within the PALM model to simulate the detailed horizontal and vertical distribution of aerosol particles is studied. Further, sensitivity to the meteorological and aerosol boundary conditions is assessed using both model and observation data. The horizontal distribution is sensitive to the wind speed and stability, and the vertical to the wind direction.
Björn Maronga, Sabine Banzhaf, Cornelia Burmeister, Thomas Esch, Renate Forkel, Dominik Fröhlich, Vladimir Fuka, Katrin Frieda Gehrke, Jan Geletič, Sebastian Giersch, Tobias Gronemeier, Günter Groß, Wieke Heldens, Antti Hellsten, Fabian Hoffmann, Atsushi Inagaki, Eckhard Kadasch, Farah Kanani-Sühring, Klaus Ketelsen, Basit Ali Khan, Christoph Knigge, Helge Knoop, Pavel Krč, Mona Kurppa, Halim Maamari, Andreas Matzarakis, Matthias Mauder, Matthias Pallasch, Dirk Pavlik, Jens Pfafferott, Jaroslav Resler, Sascha Rissmann, Emmanuele Russo, Mohamed Salim, Michael Schrempf, Johannes Schwenkel, Gunther Seckmeyer, Sebastian Schubert, Matthias Sühring, Robert von Tils, Lukas Vollmer, Simon Ward, Björn Witha, Hauke Wurps, Julian Zeidler, and Siegfried Raasch
Geosci. Model Dev., 13, 1335–1372, https://doi.org/10.5194/gmd-13-1335-2020, https://doi.org/10.5194/gmd-13-1335-2020, 2020
Short summary
Short summary
In this paper, we describe the PALM model system 6.0. PALM is a Fortran-based turbulence-resolving code and has been applied for studying a variety of atmospheric and oceanic boundary layers for about 20 years. The model is optimized for use on massively parallel computer architectures. During the last years, PALM has been significantly improved and now offers a variety of new components that are especially designed to simulate the urban atmosphere at building-resolving resolution.
Tom V. Kokkonen, Sue Grimmond, Sonja Murto, Huizhi Liu, Anu-Maija Sundström, and Leena Järvi
Atmos. Chem. Phys., 19, 7001–7017, https://doi.org/10.5194/acp-19-7001-2019, https://doi.org/10.5194/acp-19-7001-2019, 2019
Short summary
Short summary
This is the first study to evaluate and correct the WATCH WFDEI reanalysis product in a highly polluted urban environment. It gives an important understanding of the uncertainties in reanalysis products in local-scale urban modelling in polluted environments and identifies and corrects the most important variables in hydrological modelling. This is also the first study to examine the effects of haze on the local-scale urban hydrological cycle.
Mona Kurppa, Antti Hellsten, Pontus Roldin, Harri Kokkola, Juha Tonttila, Mikko Auvinen, Christoph Kent, Prashant Kumar, Björn Maronga, and Leena Järvi
Geosci. Model Dev., 12, 1403–1422, https://doi.org/10.5194/gmd-12-1403-2019, https://doi.org/10.5194/gmd-12-1403-2019, 2019
Short summary
Short summary
This paper describes the implementation of a sectional aerosol module, SALSA, into the PALM model system 6.0. The first evaluation study shows excellent agreements with measurements. Furthermore, we show that ignoring the dry deposition of aerosol particles can overestimate aerosol number concentrations by 20 %, whereas condensation and dissolutional growth increase the total aerosol mass by over 10 % in this specific urban environment.
Leena Järvi, Üllar Rannik, Tom V. Kokkonen, Mona Kurppa, Ari Karppinen, Rostislav D. Kouznetsov, Pekka Rantala, Timo Vesala, and Curtis R. Wood
Atmos. Meas. Tech., 11, 5421–5438, https://doi.org/10.5194/amt-11-5421-2018, https://doi.org/10.5194/amt-11-5421-2018, 2018
Short summary
Short summary
Identical EC systems on two sides of a building in central Helsinki were used to assess the uncertainty of the vertical fluxes on the single measurement point from July 2013 to September 2015. Sampling at only one point yielded up to 12% underestimation in the cumulative carbon fluxes; for sensible and latent heat the respective values were up to 5 and 8%. The commonly used statistics, kurtosis and skewness, are not necessarily suitable for filtering out data in a densely built urban area.
Mikko Auvinen, Leena Järvi, Antti Hellsten, Üllar Rannik, and Timo Vesala
Geosci. Model Dev., 10, 4187–4205, https://doi.org/10.5194/gmd-10-4187-2017, https://doi.org/10.5194/gmd-10-4187-2017, 2017
Short summary
Short summary
Correct spatial interpretation of a micrometeorological measurement requires the determination of its effective source area, or footprint. In urban areas the use of analytical models becomes highly questionable. This work introduces a computational methodology that enables the generation of footprints for complex urban sites. The methodology is based on conducting high-resolution flow and particle analysis on a model that features a detailed topographic description of a real city environment.
Hanna K. Lappalainen, Veli-Matti Kerminen, Tuukka Petäjä, Theo Kurten, Aleksander Baklanov, Anatoly Shvidenko, Jaana Bäck, Timo Vihma, Pavel Alekseychik, Meinrat O. Andreae, Stephen R. Arnold, Mikhail Arshinov, Eija Asmi, Boris Belan, Leonid Bobylev, Sergey Chalov, Yafang Cheng, Natalia Chubarova, Gerrit de Leeuw, Aijun Ding, Sergey Dobrolyubov, Sergei Dubtsov, Egor Dyukarev, Nikolai Elansky, Kostas Eleftheriadis, Igor Esau, Nikolay Filatov, Mikhail Flint, Congbin Fu, Olga Glezer, Aleksander Gliko, Martin Heimann, Albert A. M. Holtslag, Urmas Hõrrak, Juha Janhunen, Sirkku Juhola, Leena Järvi, Heikki Järvinen, Anna Kanukhina, Pavel Konstantinov, Vladimir Kotlyakov, Antti-Jussi Kieloaho, Alexander S. Komarov, Joni Kujansuu, Ilmo Kukkonen, Ella-Maria Duplissy, Ari Laaksonen, Tuomas Laurila, Heikki Lihavainen, Alexander Lisitzin, Alexsander Mahura, Alexander Makshtas, Evgeny Mareev, Stephany Mazon, Dmitry Matishov, Vladimir Melnikov, Eugene Mikhailov, Dmitri Moisseev, Robert Nigmatulin, Steffen M. Noe, Anne Ojala, Mari Pihlatie, Olga Popovicheva, Jukka Pumpanen, Tatjana Regerand, Irina Repina, Aleksei Shcherbinin, Vladimir Shevchenko, Mikko Sipilä, Andrey Skorokhod, Dominick V. Spracklen, Hang Su, Dmitry A. Subetto, Junying Sun, Arkady Y. Terzhevik, Yuri Timofeyev, Yuliya Troitskaya, Veli-Pekka Tynkkynen, Viacheslav I. Kharuk, Nina Zaytseva, Jiahua Zhang, Yrjö Viisanen, Timo Vesala, Pertti Hari, Hans Christen Hansson, Gennady G. Matvienko, Nikolai S. Kasimov, Huadong Guo, Valery Bondur, Sergej Zilitinkevich, and Markku Kulmala
Atmos. Chem. Phys., 16, 14421–14461, https://doi.org/10.5194/acp-16-14421-2016, https://doi.org/10.5194/acp-16-14421-2016, 2016
Short summary
Short summary
After kick off in 2012, the Pan-Eurasian Experiment (PEEX) program has expanded fast and today the multi-disciplinary research community covers ca. 80 institutes and a network of ca. 500 scientists from Europe, Russia, and China. Here we introduce scientific topics relevant in this context. This is one of the first multi-disciplinary overviews crossing scientific boundaries, from atmospheric sciences to socio-economics and social sciences.
Ivan Mammarella, Olli Peltola, Annika Nordbo, Leena Järvi, and Üllar Rannik
Atmos. Meas. Tech., 9, 4915–4933, https://doi.org/10.5194/amt-9-4915-2016, https://doi.org/10.5194/amt-9-4915-2016, 2016
Short summary
Short summary
In this study we have performed an inter-comparison between EddyUH and EddyPro, two public and commonly used software packages for eddy covariance data processing and calculation. The aims are to estimate the flux uncertainty due to the use of different software packages, and to assess the most critical processing steps, determining the largest deviations in the calculated fluxes. We focus not only on water vapour and carbon dioxide fluxes, but also on the methane flux.
Pekka Rantala, Leena Järvi, Risto Taipale, Terhi K. Laurila, Johanna Patokoski, Maija K. Kajos, Mona Kurppa, Sami Haapanala, Erkki Siivola, Tuukka Petäjä, Taina M. Ruuskanen, and Janne Rinne
Atmos. Chem. Phys., 16, 7981–8007, https://doi.org/10.5194/acp-16-7981-2016, https://doi.org/10.5194/acp-16-7981-2016, 2016
Short summary
Short summary
Fluxes of volatile organic compounds (VOCs) were measured above an urban landscape in Helsinki, northern Europe. We found that traffic was a major source for many oxygenated and aromatic VOCs, whereas isoprene originated mostly from the urban vegetation. Overall, the VOC fluxes were quite small in comparison with the earlier urban VOC flux measurements.
L. Järvi, C. S. B. Grimmond, M. Taka, A. Nordbo, H. Setälä, and I. B. Strachan
Geosci. Model Dev., 7, 1691–1711, https://doi.org/10.5194/gmd-7-1691-2014, https://doi.org/10.5194/gmd-7-1691-2014, 2014
Related subject area
Numerical methods
Improved double Fourier series on a sphere and its application to a semi-implicit semi-Lagrangian shallow-water model
SciKit-GStat 1.0: a SciPy-flavored geostatistical variogram estimation toolbox written in Python
Flow-Py v1.0: a customizable, open-source simulation tool to estimate runout and intensity of gravitational mass flows
Emulation of high-resolution land surface models using sparse Gaussian processes with application to JULES
A three-dimensional variational data assimilation system for aerosol optical properties based on WRF-Chem v4.0: design, development, and application of assimilating Himawari-8 aerosol observations
Implementation of a Gaussian Markov random field sampler for forward uncertainty quantification in the Ice-sheet and Sea-level System Model v4.19
A method for assessment of the general circulation model quality using the K-means clustering algorithm: a case study with GETM v2.5
AIEADA 1.0: Efficient high-dimensional variational data assimilation with machine-learned reduced-order models
An explicit GPU-based material point method solver for elastoplastic problems (ep2-3De v1.0)
MagIC v5.10: a two-dimensional message-passing interface (MPI) distribution for pseudo-spectral magnetohydrodynamics simulations in spherical geometry
Recalculation of error growth models' parameters for the ECMWF forecast system
How biased are our models? – a case study of the alpine region
B-flood 1.0: an open-source Saint-Venant model for flash-flood simulation using adaptive refinement
A micro-genetic algorithm (GA v1.7.1a) for combinatorial optimization of physics parameterizations in the Weather Research and Forecasting model (v4.0.3) for quantitative precipitation forecast in Korea
SymPKF (v1.0): a symbolic and computational toolbox for the design of parametric Kalman filter dynamics
NDCmitiQ v1.0.0: a tool to quantify and analyse greenhouse gas mitigation targets
Combining ensemble Kalman filter and reservoir computing to predict spatiotemporal chaotic systems from imperfect observations and models
The Coastline Evolution Model 2D (CEM2D) V1.1
An iterative process for efficient optimisation of parameters in geoscientific models: a demonstration using the Parallel Ice Sheet Model (PISM) version 0.7.3
Blockworlds 0.1.0: A demonstration of anti-aliased geophysics for probabilistic inversions of implicit and kinematic geological models
Ocean Plastic Assimilator v0.2: assimilation of plastic concentration data into Lagrangian dispersion models
Development of a moving point source model for shipping emission dispersion modeling in EPISODE–CityChem v1.3
Efficient Bayesian inference for large chaotic dynamical systems
Constraining stochastic 3-D structural geological models with topology information using approximate Bayesian computation in GemPy 2.1
Retrieval of process rate parameters in the general dynamic equation for aerosols using Bayesian state estimation: BAYROSOL1.0
A discontinuous Galerkin finite-element model for fast channelized lava flows v1.0
A nested multi-scale system implemented in the large-eddy simulation model PALM model system 6.0
Extending legacy climate models by adaptive mesh refinement for single-component tracer transport: a case study with ECHAM6-HAMMOZ (ECHAM6.3-HAM2.3-MOZ1.0)
Using the Després and Lagoutière (1999) antidiffusive transport scheme: a promising and novel method against excessive vertical diffusion in chemistry-transport models
Porosity and permeability prediction through forward stratigraphic simulations using GPM™ and Petrel™: application in shallow marine depositional settings
Effects of transient processes for thermal simulations of the Central European Basin
On numerical broadening of particle size spectra: a condensational growth study using PyMPDATA 1.0
A note on precision-preserving compression of scientific data
An N-dimensional Fortran interpolation programme (NterGeo.v2020a) for geophysics sciences – application to a back-trajectory programme (Backplumes.v2020r1) using CHIMERE or WRF outputs
A framework to evaluate IMEX schemes for atmospheric models
Inequality-constrained free-surface evolution in a full Stokes ice flow model (evolve_glacier v1.1)
A fast and efficient MATLAB-based MPM solver: fMPMM-solver v1.1
Necessary conditions for algorithmic tuning of weather prediction models using OpenIFS as an example
Lossy Checkpoint Compression in Full Waveform Inversion
Development of a submerged aquatic vegetation growth model in the Coupled Ocean–Atmosphere–Wave–Sediment Transport (COAWST v3.4) model
Retrieving monthly and interannual total-scale pH (pHT) on the East China Sea shelf using an artificial neural network: ANN-pHT-v1
Development of a semi-Lagrangian advection scheme for the NEMO ocean model (3.1)
Efficient multi-scale Gaussian process regression for massive remote sensing data with satGP v0.1.2
PDE-NetGen 1.0: from symbolic partial differential equation (PDE) representations of physical processes to trainable neural network representations
Simple algorithms to compute meridional overturning and barotropic streamfunctions on unstructured meshes
Development of a two-way-coupled ocean–wave model: assessment on a global NEMO(v3.6)–WW3(v6.02) coupled configuration
Surrogate-assisted Bayesian inversion for landscape and basin evolution models
Towards an objective assessment of climate multi-model ensembles – a case study: the Senegalo-Mauritanian upwelling region
QuickSampling v1.0: a robust and simplified pixel-based multiple-point simulation approach
A full Stokes subgrid scheme in two dimensions for simulation of grounding line migration in ice sheets using Elmer/ICE (v8.3)
Hiromasa Yoshimura
Geosci. Model Dev., 15, 2561–2597, https://doi.org/10.5194/gmd-15-2561-2022, https://doi.org/10.5194/gmd-15-2561-2022, 2022
Short summary
Short summary
This paper proposes a new double Fourier series (DFS) method on a sphere that improves the numerical stability of a model compared with conventional DFS methods. The shallow-water model and the advection model using the new DFS method give stable results without the appearance of high-wavenumber noise near the poles. The model using the new DFS method is faster than the model using spherical harmonics (especially at high resolutions) and gives almost the same results.
Mirko Mälicke
Geosci. Model Dev., 15, 2505–2532, https://doi.org/10.5194/gmd-15-2505-2022, https://doi.org/10.5194/gmd-15-2505-2022, 2022
Short summary
Short summary
I preset SciKit-GStat, a well-documented and tested Python package for variogram estimation. The variogram is the core means of geostatistics, which almost all other methods rely on. Geostatistical interpolation and field generation are widely spread in geoscience, i.e., for data assimilation or modeling.
While SciKit-GStat focuses on effective and intuitive variogram estimation, it can interface with other prominent packages and make its variograms available for a multitude of methods.
Christopher J. L. D'Amboise, Michael Neuhauser, Michaela Teich, Andreas Huber, Andreas Kofler, Frank Perzl, Reinhard Fromm, Karl Kleemayr, and Jan-Thomas Fischer
Geosci. Model Dev., 15, 2423–2439, https://doi.org/10.5194/gmd-15-2423-2022, https://doi.org/10.5194/gmd-15-2423-2022, 2022
Short summary
Short summary
The term gravitational mass flow (GMF) covers various natural hazard processes such as snow avalanches, rockfall, landslides, and debris flows. Here we present the open-source GMF simulation tool Flow-Py. The model equations are based on simple geometrical relations in three-dimensional terrain. We show that Flow-Py is an educational, innovative GMF simulation tool with three computational experiments: 1. validation of implementation, 2. performance, and 3. expandability.
Evan Baker, Anna B. Harper, Daniel Williamson, and Peter Challenor
Geosci. Model Dev., 15, 1913–1929, https://doi.org/10.5194/gmd-15-1913-2022, https://doi.org/10.5194/gmd-15-1913-2022, 2022
Short summary
Short summary
We have adapted machine learning techniques to build a model of the land surface in Great Britain. The model was trained using data from a very complex land surface model called JULES. Our model is faster at producing simulations and predictions and can investigate many different scenarios, which can be used to improve our understanding of the climate and could also be used to help make local decisions.
Daichun Wang, Wei You, Zengliang Zang, Xiaobin Pan, Yiwen Hu, and Yanfei Liang
Geosci. Model Dev., 15, 1821–1840, https://doi.org/10.5194/gmd-15-1821-2022, https://doi.org/10.5194/gmd-15-1821-2022, 2022
Short summary
Short summary
This paper presents a 3D variational data assimilation system for aerosol optical properties, including aerosol optical thickness (AOT) retrievals and lidar-based aerosol profiles, which was developed for a size-resolved sectional model in WRF-Chem. To directly assimilate aerosol optical properties, an observation operator based on the Mie scattering theory was designed. The results show that Himawari-8 AOT assimilation can significantly improve model aerosol analyses and forecasts.
Kevin Bulthuis and Eric Larour
Geosci. Model Dev., 15, 1195–1217, https://doi.org/10.5194/gmd-15-1195-2022, https://doi.org/10.5194/gmd-15-1195-2022, 2022
Short summary
Short summary
We present and implement a stochastic solver to sample spatially and temporal varying uncertain input parameters in the Ice-sheet and Sea-level System Model, such as ice thickness or surface mass balance. We represent these sources of uncertainty using Gaussian random fields with Matérn covariance function. We generate random samples of this random field using an efficient computational approach based on solving a stochastic partial differential equation.
Urmas Raudsepp and Ilja Maljutenko
Geosci. Model Dev., 15, 535–551, https://doi.org/10.5194/gmd-15-535-2022, https://doi.org/10.5194/gmd-15-535-2022, 2022
Short summary
Short summary
A model's ability to reproduce the state of a simulated object is always a subject of discussion. A new method for the multivariate assessment of numerical model skills uses the K-means algorithm for clustering model errors. All available data that fall into the model domain and simulation period are incorporated into the skill assessment. The clustered errors are used for spatial and temporal analysis of the model accuracy. The method can be applied to different types of geoscientific models.
Romit Maulik, Vishwas Rao, Jiali Wang, Gianmarco Mengaldo, Emil Constantinescu, Bethany Lusch, Prasanna Balaprakash, Ian Foster, and Rao Kotamarthi
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-415, https://doi.org/10.5194/gmd-2021-415, 2022
Revised manuscript accepted for GMD
Short summary
Short summary
In numerical weather prediction, data assimilation is frequently utilized to enhance the accuracy of forecasts from equation-based models. In this work – we use a machine learning framework that approximates a complex dynamical system given by the geopotential height. Instead of using an equation-based model, we utilize this machine-learned alternative to dramatically accelerate both the forecast and the assimilation of data thereby reducing need for large computational resources.
Emmanuel Wyser, Yury Alkhimenkov, Michel Jaboyedoff, and Yury Y. Podladchikov
Geosci. Model Dev., 14, 7749–7774, https://doi.org/10.5194/gmd-14-7749-2021, https://doi.org/10.5194/gmd-14-7749-2021, 2021
Short summary
Short summary
We propose an implementation of the material point method using graphical processing units (GPUs) to solve elastoplastic problems in three-dimensional configurations, such as the granular collapse or the slumping mechanics, i.e., landslide. The computational power of GPUs promotes fast code executions, compared to a traditional implementation using central processing units (CPUs). This allows us to study complex three-dimensional problems tackling high spatial resolution.
Rafael Lago, Thomas Gastine, Tilman Dannert, Markus Rampp, and Johannes Wicht
Geosci. Model Dev., 14, 7477–7495, https://doi.org/10.5194/gmd-14-7477-2021, https://doi.org/10.5194/gmd-14-7477-2021, 2021
Short summary
Short summary
In this work we discuss a two-dimensional distributed parallelization of MagIC, an open-source code for the numerical solution of the magnetohydrodynamics equations. Such a parallelization involves several challenges concerning the distribution of work and data. We detail our algorithm and compare it with the established, optimized, one-dimensional distribution in the context of the dynamo benchmark and discuss the merits of both implementations.
Hynek Bednář, Aleš Raidl, and Jiří Mikšovský
Geosci. Model Dev., 14, 7377–7389, https://doi.org/10.5194/gmd-14-7377-2021, https://doi.org/10.5194/gmd-14-7377-2021, 2021
Short summary
Short summary
Forecast errors in numerical weather prediction systems grow in time. To quantify the impacts of this growth, parametric error growth models may be employed. This study recalculates and newly defines parameters for several statistic models approximating error growth in the ECMWF forecasting system. Accurate values of parameters are important because they are used to evaluate improvements of the forecasting systems or to estimate predictability.
Denise Degen, Cameron Spooner, Magdalena Scheck-Wenderoth, and Mauro Cacace
Geosci. Model Dev., 14, 7133–7153, https://doi.org/10.5194/gmd-14-7133-2021, https://doi.org/10.5194/gmd-14-7133-2021, 2021
Short summary
Short summary
In times of worldwide energy transitions, an understanding of the subsurface is increasingly important to provide renewable energy sources such as geothermal energy. To validate our understanding of the subsurface we require data. However, the data are usually not distributed equally and introduce a potential misinterpretation of the subsurface. Therefore, in this study we investigate the influence of measurements on temperature distribution in the European Alps.
Geoffroy Kirstetter, Olivier Delestre, Pierre-Yves Lagrée, Stéphane Popinet, and Christophe Josserand
Geosci. Model Dev., 14, 7117–7132, https://doi.org/10.5194/gmd-14-7117-2021, https://doi.org/10.5194/gmd-14-7117-2021, 2021
Short summary
Short summary
The development of forecasting tools may help to limit the impacts of flash floods. Our purpose here is to demonstrate the possibility of using b-flood, which is a 2D tool based on shallow-water equations and adaptive mesh refinement.
Sojung Park and Seon K. Park
Geosci. Model Dev., 14, 6241–6255, https://doi.org/10.5194/gmd-14-6241-2021, https://doi.org/10.5194/gmd-14-6241-2021, 2021
Short summary
Short summary
One of the biggest uncertainties in numerical weather predictions (NWPs) comes from treating subgrid-scale physical processes. Physical processes, such as cumulus, microphysics, and planetary boundary layer processes, are parameterized in NWP models by empirical and theoretical backgrounds. We developed an interface between a micro-genetic algorithm and the WRF model for a combinatorial optimization of physics for heavy rainfall events in Korea. The system improved precipitation forecasts.
Olivier Pannekoucke and Philippe Arbogast
Geosci. Model Dev., 14, 5957–5976, https://doi.org/10.5194/gmd-14-5957-2021, https://doi.org/10.5194/gmd-14-5957-2021, 2021
Short summary
Short summary
This contributes to research on uncertainty prediction, which is important either for determining the weather today or estimating the risk in prediction. The problem is that uncertainty prediction is numerically very expensive. An alternative has been proposed wherein uncertainty is presented in a simplified form with only the dynamics of certain parameters required. This tool allows for the determination of the symbolic equations of these parameter dynamics and their numerical computation.
Annika Günther, Johannes Gütschow, and Mairi Louise Jeffery
Geosci. Model Dev., 14, 5695–5730, https://doi.org/10.5194/gmd-14-5695-2021, https://doi.org/10.5194/gmd-14-5695-2021, 2021
Short summary
Short summary
The mitigation components of the nationally determined contributions (NDCs) under the Paris Agreement are essential in our fight against climate change. Regular updates with increased ambition are requested to limit global warming to 1.5–2 °C. The new and easy-to-update open-source tool NDCmitiQ can be used to quantify the NDCs' mitigation targets and construct resulting emissions pathways. In use cases, we show target uncertainties from missing clarity, data, and methodological challenges.
Futo Tomizawa and Yohei Sawada
Geosci. Model Dev., 14, 5623–5635, https://doi.org/10.5194/gmd-14-5623-2021, https://doi.org/10.5194/gmd-14-5623-2021, 2021
Short summary
Short summary
A new method to predict chaotic systems from observation and process-based models is proposed by combining machine learning with data assimilation. Our method is robust to the sparsity of observation networks and can predict more accurately than a process-based model when it is biased. Our method effectively works when both observations and models are imperfect, which is often the case in geoscience. Therefore, our method is useful to solve a wide variety of prediction problems in this field.
Chloe Leach, Tom Coulthard, Andrew Barkwith, Daniel R. Parsons, and Susan Manson
Geosci. Model Dev., 14, 5507–5523, https://doi.org/10.5194/gmd-14-5507-2021, https://doi.org/10.5194/gmd-14-5507-2021, 2021
Short summary
Short summary
Numerical models can be used to understand how coastal systems evolve over time, including likely responses to climate change. However, many existing models are aimed at simulating 10- to 100-year time periods do not represent a vertical dimension and are thus unable to include the effect of sea-level rise. The Coastline Evolution Model 2D (CEM2D) presented in this paper is an advance in this field, with the inclusion of the vertical coastal profile against which the water level can be altered.
Steven J. Phipps, Jason L. Roberts, and Matt A. King
Geosci. Model Dev., 14, 5107–5124, https://doi.org/10.5194/gmd-14-5107-2021, https://doi.org/10.5194/gmd-14-5107-2021, 2021
Short summary
Short summary
Simplified schemes, known as parameterisations, are sometimes used to describe physical processes within numerical models. However, the values of the parameters are uncertain. This introduces uncertainty into the model outputs. We develop a simple approach to identify plausible ranges for model parameters. Using a model of the Antarctic Ice Sheet, we find that the value of one parameter can depend on the values of others. We conclude that a single optimal set of parameter values does not exist.
Richard Scalzo, Mark Lindsay, Mark Jessell, Guillaume Pirot, Jeremie Giraud, Edward Cripps, and Sally Cripps
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-187, https://doi.org/10.5194/gmd-2021-187, 2021
Revised manuscript accepted for GMD
Short summary
Short summary
This paper addresses numerical challenges in reasoning about geological models constrained by sensor data, especially models that describe the history of an area in terms of a sequence of events. Our method ensures that small changes in simulated geological features, such as the position of a boundary between two rock layers, does not result in unrealistically large changes to resulting sensor measurements, as occurs presently using several popular modeling packages.
Axel Peytavin, Bruno Sainte-Rose, Gael Forget, and Jean-Michel Campin
Geosci. Model Dev., 14, 4769–4780, https://doi.org/10.5194/gmd-14-4769-2021, https://doi.org/10.5194/gmd-14-4769-2021, 2021
Short summary
Short summary
We present a new algorithm developed at The Ocean Cleanup to update ocean plastic models based on measurements from the field to improve future cleaning operations. Prepared in collaboration with MIT researchers, this initial study presents its use in several analytical and real test cases in which two observers in a flow field record regular observations to update a plastic forecast. We demonstrate this improves the prediction, even with inaccurate knowledge of the water flows driving plastic.
Kang Pan, Mei Qi Lim, Markus Kraft, and Epaminondas Mastorakos
Geosci. Model Dev., 14, 4509–4534, https://doi.org/10.5194/gmd-14-4509-2021, https://doi.org/10.5194/gmd-14-4509-2021, 2021
Short summary
Short summary
A new moving point source (MPS) model was developed to simulate the dispersion of emissions generated by the moving ships. Compared to the commonly used line source (LS) or fixed point source (FPS) model, the MPS model provides more emission distribution details generated by the moving ships and matches reasonably with the measurements. Therefore, the MPS model should be a valuable alternative for the environmental society to evaluate the pollutant dispersion contributed from the moving ships.
Sebastian Springer, Heikki Haario, Jouni Susiluoto, Aleksandr Bibov, Andrew Davis, and Youssef Marzouk
Geosci. Model Dev., 14, 4319–4333, https://doi.org/10.5194/gmd-14-4319-2021, https://doi.org/10.5194/gmd-14-4319-2021, 2021
Short summary
Short summary
Model predictions always contain uncertainty. But in some cases, such as weather forecasting or climate modeling, chaotic unpredictability increases the difficulty to say exactly how much uncertainty there is. We combine two recently proposed mathematical methods to show how the uncertainty can be analyzed in models that are simplifications of true weather models. The results can be extended in the future to show how forecasts from large-scale models can be improved.
Alexander Schaaf, Miguel de la Varga, Florian Wellmann, and Clare E. Bond
Geosci. Model Dev., 14, 3899–3913, https://doi.org/10.5194/gmd-14-3899-2021, https://doi.org/10.5194/gmd-14-3899-2021, 2021
Short summary
Short summary
Uncertainty is an inherent property of any model of the subsurface. We show how geological topology information – how different regions of rocks in the subsurface are connected – can be used to train uncertain geological models to reduce uncertainty. More widely, the method demonstrates the use of probabilistic machine learning (Bayesian inference) to train structural geological models on auxiliary geological knowledge that can be encoded in graph structures.
Matthew Ozon, Aku Seppänen, Jari P. Kaipio, and Kari E. J. Lehtinen
Geosci. Model Dev., 14, 3715–3739, https://doi.org/10.5194/gmd-14-3715-2021, https://doi.org/10.5194/gmd-14-3715-2021, 2021
Short summary
Short summary
Experimental research has provided large amounts of high-quality data on aerosol over the last 2 decades. However, inference of the process rates (e.g., the rates at which particles are generated) is still typically done by simple curve-fitting methods and does not assess the credibility of the estimation. The devised method takes advantage of the Bayesian framework to not only retrieve the state of the observed aerosol system but also to estimate the process rates (e.g., growth rate).
Colton J. Conroy and Einat Lev
Geosci. Model Dev., 14, 3553–3575, https://doi.org/10.5194/gmd-14-3553-2021, https://doi.org/10.5194/gmd-14-3553-2021, 2021
Short summary
Short summary
Lava flows present a natural hazard to communities around volcanoes and are usually slow-moving (< 1-5 cm/s). Lava flows during the 2018 eruption of Kilauea volcano, Hawai’i, however, reached speeds as high as 11 m/s. To investigate these dynamics we develop a new lava flow computer model that incorporates a nonlinear expression for the fluid viscosity. Model results indicate that the lava flows at Site 8 of the eruption displayed shear thickening behavior due to the flow's high bubble content.
Antti Hellsten, Klaus Ketelsen, Matthias Sühring, Mikko Auvinen, Björn Maronga, Christoph Knigge, Fotios Barmpas, Georgios Tsegas, Nicolas Moussiopoulos, and Siegfried Raasch
Geosci. Model Dev., 14, 3185–3214, https://doi.org/10.5194/gmd-14-3185-2021, https://doi.org/10.5194/gmd-14-3185-2021, 2021
Short summary
Short summary
Large-eddy simulation (LES) of the urban atmospheric boundary layer involves a large separation of turbulent scales, leading to prohibitive computational costs. An online LES–LES nesting scheme is implemented into the PALM model system 6.0 to overcome this problem. Test results show that the accuracy within the high-resolution nest domains approach the non-nested high-resolution reference results. The nesting can reduce the CPU by time up to 80 % compared to the fine-resolution reference runs.
Yumeng Chen, Konrad Simon, and Jörn Behrens
Geosci. Model Dev., 14, 2289–2316, https://doi.org/10.5194/gmd-14-2289-2021, https://doi.org/10.5194/gmd-14-2289-2021, 2021
Short summary
Short summary
Mesh adaptivity can reduce overall model error by only refining meshes in specific areas where it us necessary in the runtime. Here we suggest a way to integrate mesh adaptivity into an existing Earth system model, ECHAM6, without having to redesign the implementation from scratch. We show that while the additional computational effort is manageable, the error can be reduced compared to a low-resolution standard model using an idealized test and relatively realistic dust transport tests.
Sylvain Mailler, Romain Pennel, Laurent Menut, and Mathieu Lachâtre
Geosci. Model Dev., 14, 2221–2233, https://doi.org/10.5194/gmd-14-2221-2021, https://doi.org/10.5194/gmd-14-2221-2021, 2021
Short summary
Short summary
Representing the advection of thin polluted plumes in numerical models is a challenging task since these models usually tend to excessively diffuse these plumes in the vertical direction. This numerical diffusion process is the cause of major difficulties in representing such dense and thin polluted plumes in numerical models. We propose here, and test in an academic framework, a novel method to solve this problem through the use of an antidiffusive advection scheme in the vertical direction.
Daniel Otoo and David Hodgetts
Geosci. Model Dev., 14, 2075–2095, https://doi.org/10.5194/gmd-14-2075-2021, https://doi.org/10.5194/gmd-14-2075-2021, 2021
Short summary
Short summary
The forward stratigraphic simulation method is used to predict lithofacies, porosity, and permeability in a reservoir model. The objective of using this approach is to enhance subsurface property modelling through geologic realistic 3-D stratigraphic patterns.
Results show realistic stratigraphic sequences. Given this, we can derive spatial and geometric data as secondary data to constrain property simulation in a reservoir model. The approach can reduce the uncertainty of property modelling.
Denise Degen and Mauro Cacace
Geosci. Model Dev., 14, 1699–1719, https://doi.org/10.5194/gmd-14-1699-2021, https://doi.org/10.5194/gmd-14-1699-2021, 2021
Short summary
Short summary
In this work, we focus on improving the understanding of subsurface processes with respect to interactions with climate dynamics. We present advanced, open-source mathematical methods that enable us to investigate the influence of various model properties on the final outcomes. By relying on our approach, we have been able to showcase their importance in improving our understanding of the subsurface and highlighting the current shortcomings of currently adopted models.
Michael Olesik, Sylwester Arabas, Jakub Banaśkiewicz, Piotr Bartman, Manuel Baumgartner, and Simon Unterstrasser
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-404, https://doi.org/10.5194/gmd-2020-404, 2021
Revised manuscript accepted for GMD
Rostislav Kouznetsov
Geosci. Model Dev., 14, 377–389, https://doi.org/10.5194/gmd-14-377-2021, https://doi.org/10.5194/gmd-14-377-2021, 2021
Short summary
Short summary
Resetting of non-significant figures (precision trimming) enables efficient data compression and helps to avoid excessive use of storage space and network bandwidth while having well-constrained distortion to the data. The paper analyses accuracy losses and artifacts caused by trimming methods and by the widely used linear packing method. The paper presents several methods with implementation, evaluation, and illustrations and includes subroutines directly usable in geoscientific models.
Bertrand Bessagnet, Laurent Menut, and Maxime Beauchamp
Geosci. Model Dev., 14, 91–106, https://doi.org/10.5194/gmd-14-91-2021, https://doi.org/10.5194/gmd-14-91-2021, 2021
Short summary
Short summary
This paper presents a new interpolator useful for geophysics applications. It can explore N-dimensional meshes, grids or look-up tables. The code accepts irregular but structured grids. Written in Fortran, it is easy to implement in existing codes and very fast and portable. We have compared it with a Python library. Python is convenient but suffers from portability and is sometimes not optimized enough. As an application case, this method is applied to atmospheric sciences.
Oksana Guba, Mark A. Taylor, Andrew M. Bradley, Peter A. Bosler, and Andrew Steyer
Geosci. Model Dev., 13, 6467–6480, https://doi.org/10.5194/gmd-13-6467-2020, https://doi.org/10.5194/gmd-13-6467-2020, 2020
Anna Wirbel and Alexander Helmut Jarosch
Geosci. Model Dev., 13, 6425–6445, https://doi.org/10.5194/gmd-13-6425-2020, https://doi.org/10.5194/gmd-13-6425-2020, 2020
Short summary
Short summary
We present an open-source numerical tool to simulate the free-surface evolution of gravity-driven flows (e.g. glaciers) constrained by bed topography. No ad hoc post-processing is required to enforce positive ice thickness and mass conservation. We utilise finite elements, define benchmark tests, and showcase glaciological examples. In addition, we provide a thorough analysis of the applicability and robustness of different spatial stabilisation and time discretisation methods.
Emmanuel Wyser, Yury Alkhimenkov, Michel Jaboyedoff, and Yury Y. Podladchikov
Geosci. Model Dev., 13, 6265–6284, https://doi.org/10.5194/gmd-13-6265-2020, https://doi.org/10.5194/gmd-13-6265-2020, 2020
Short summary
Short summary
In this work, we present an efficient and fast material point method (MPM) implementation in MATLAB. We first discuss the vectorization strategies to adapt this numerical method to a MATLAB implementation. We report excellent agreement of the solver compared with classical analysis among the MPM community, such as the cantilever beam problem. The solver achieves a performance gain of 28 compared with a classical iterative implementation.
Lauri Tuppi, Pirkka Ollinaho, Madeleine Ekblom, Vladimir Shemyakin, and Heikki Järvinen
Geosci. Model Dev., 13, 5799–5812, https://doi.org/10.5194/gmd-13-5799-2020, https://doi.org/10.5194/gmd-13-5799-2020, 2020
Short summary
Short summary
This paper presents general guidelines on how to utilise computer algorithms efficiently in order to tune weather models so that they would produce better forecasts. The main conclusions are that the computer algorithms work most efficiently with a suitable cost function, certain forecast length and ensemble size. We expect that our results will facilitate the use of algorithmic methods in the tuning of weather models.
Navjot Kukreja, Jan Hückelheim, Mathias Louboutin, John Washbourne, Paul H. J. Kelly, and Gerard J. Gorman
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-325, https://doi.org/10.5194/gmd-2020-325, 2020
Revised manuscript accepted for GMD
Short summary
Short summary
Full Waveform Inversion is a PDE-constrained optimization problem that is notorious for its high computational load and memory footprint. In this paper we present a method that combines recomputation with lossy compression to accelerate the computation with minimal loss of precision in the results. We show this using experiments running FWI with a variety of compression settings on a popular academic dataset.
Tarandeep S. Kalra, Neil K. Ganju, and Jeremy M. Testa
Geosci. Model Dev., 13, 5211–5228, https://doi.org/10.5194/gmd-13-5211-2020, https://doi.org/10.5194/gmd-13-5211-2020, 2020
Short summary
Short summary
The paper covers the description of a 3-D open-source model that dynamically couples the biophysical interactions between submerged aquatic vegetation (SAV), hydrodynamics (currents, waves), sediment dynamics, and nutrient loading. Based on SAV growth model, SAV can use growth or dieback while contributing and sequestering nutrients from the water column (modifying the biological environment) and subsequently affect the hydrodynamics and sediment transport (modifying the physical environment).
Xiaoshuang Li, Richard Garth James Bellerby, Jianzhong Ge, Philip Wallhead, Jing Liu, and Anqiang Yang
Geosci. Model Dev., 13, 5103–5117, https://doi.org/10.5194/gmd-13-5103-2020, https://doi.org/10.5194/gmd-13-5103-2020, 2020
Short summary
Short summary
We have developed an ANN model to predict pH using 11 cruise datasets from 2013 to 2017,
demonstrated its reliability using three cruise datasets during 2018 and applied it to
retrieve monthly pH for the period 2000 to 2016 on the East China Sea shelf using the
ANN model in combination with input variables from the Changjiang biology Finite-Volume
Coastal Ocean Model. This approach may be a valuable tool for understanding the seasonal
variation of pH in poorly observed regions.
Christopher Subich, Pierre Pellerin, Gregory Smith, and Frederic Dupont
Geosci. Model Dev., 13, 4379–4398, https://doi.org/10.5194/gmd-13-4379-2020, https://doi.org/10.5194/gmd-13-4379-2020, 2020
Short summary
Short summary
This work presents a semi-Lagrangian advection module for the NEMO (OPA) ocean model. Semi-Lagrangian advection transports fluid properties (temperature, salinity, velocity) between time steps by following fluid motion and interpolating from upstream locations of fluid parcels.
This method is commonly used in atmospheric models to extend time step size, but it has not previously been applied to operational ocean models. Overcoming this required a new approach for solid boundaries (coastlines).
Jouni Susiluoto, Alessio Spantini, Heikki Haario, Teemu Härkönen, and Youssef Marzouk
Geosci. Model Dev., 13, 3439–3463, https://doi.org/10.5194/gmd-13-3439-2020, https://doi.org/10.5194/gmd-13-3439-2020, 2020
Short summary
Short summary
We describe a new computer program that is able produce maps of carbon dioxide or other quantities based on data collected by satellites that orbit the Earth. When working with such data there is often too much data in one area and none in another. The program is able to describe the fields even when data is not available. To be able to do so, new computational methods were developed. The program is also able to describe how uncertain the estimated carbon dioxide or other fields are.
Olivier Pannekoucke and Ronan Fablet
Geosci. Model Dev., 13, 3373–3382, https://doi.org/10.5194/gmd-13-3373-2020, https://doi.org/10.5194/gmd-13-3373-2020, 2020
Short summary
Short summary
Learning physics from data using a deep neural network is a challenge that requires an appropriate but unknown network architecture. The package introduced here helps to design an architecture by translating known physical equations into a network, which the experimenter completes to capture unknown physical processes. A test bed is introduced to illustrate how this learning allows us to focus on truly unknown physical processes in the hope of making better use of data and digital resources.
Dmitry Sidorenko, Sergey Danilov, Nikolay Koldunov, Patrick Scholz, and Qiang Wang
Geosci. Model Dev., 13, 3337–3345, https://doi.org/10.5194/gmd-13-3337-2020, https://doi.org/10.5194/gmd-13-3337-2020, 2020
Short summary
Short summary
Computation of barotropic and meridional overturning streamfunctions for models formulated on unstructured meshes is commonly preceded by interpolation to a regular mesh. This operation destroys the original conservation, which can be then be artificially imposed to make the computation possible. An elementary method is proposed that avoids interpolation and preserves conservation in a strict model sense.
Xavier Couvelard, Florian Lemarié, Guillaume Samson, Jean-Luc Redelsperger, Fabrice Ardhuin, Rachid Benshila, and Gurvan Madec
Geosci. Model Dev., 13, 3067–3090, https://doi.org/10.5194/gmd-13-3067-2020, https://doi.org/10.5194/gmd-13-3067-2020, 2020
Short summary
Short summary
Within the framework of the Copernicus Marine Environment Monitoring Service (CMEMS), an objective is to demonstrate the contribution of coupling the high-resolution analysis and forecasting system with a wave model. This study describes the necessary steps and discusses the various choices made for coupling a wave model and an oceanic model for global-scale applications.
Rohitash Chandra, Danial Azam, Arpit Kapoor, and R. Dietmar Müller
Geosci. Model Dev., 13, 2959–2979, https://doi.org/10.5194/gmd-13-2959-2020, https://doi.org/10.5194/gmd-13-2959-2020, 2020
Short summary
Short summary
Forward landscape and sedimentary basin evolution models pose a major challenge in the development of efficient inference and optimization methods. Bayesian inference provides a methodology for estimation and uncertainty quantification of free model parameters. In this paper, we present an application of a surrogate-assisted Bayesian parallel tempering method where that surrogate mimics a landscape evolution model. We use the method for parameter estimation and uncertainty quantification.
Juliette Mignot, Carlos Mejia, Charles Sorror, Adama Sylla, Michel Crépon, and Sylvie Thiria
Geosci. Model Dev., 13, 2723–2742, https://doi.org/10.5194/gmd-13-2723-2020, https://doi.org/10.5194/gmd-13-2723-2020, 2020
Short summary
Short summary
The most robust representation of climate is usually obtained by averaging a large number of simulations, thereby cancelling individual model errors. Here, we work towards an objective way of selecting the least biased models over a certain region, based on physical parameters. This statistical method based on a neural classifier and multi-correspondence analysis is illustrated here for the Senegalo-Mauritanian region, but it could potentially be developed for any other region or process.
Mathieu Gravey and Grégoire Mariethoz
Geosci. Model Dev., 13, 2611–2630, https://doi.org/10.5194/gmd-13-2611-2020, https://doi.org/10.5194/gmd-13-2611-2020, 2020
Short summary
Short summary
Stochastic simulations are key tools to generate complex spatial structures uses as input in geoscientific models. In this paper, we present a new open-source tool that enables to simulate complex structures in a straightforward and efficient manner, based on analogues. The method is tested on a variety of use cases to demonstrate the generality of the framework.
Gong Cheng, Per Lötstedt, and Lina von Sydow
Geosci. Model Dev., 13, 2245–2258, https://doi.org/10.5194/gmd-13-2245-2020, https://doi.org/10.5194/gmd-13-2245-2020, 2020
Short summary
Short summary
A full Stokes subgrid scheme in two dimensions for the grounding line migration problem is presented in the open-source finite-element framework Elmer/ICE. This method can achieve comparable results to previous research using a more than 20 times larger mesh size, which can be used to improve the efficiency in marine ice sheet simulations.
Cited articles
Adams, M. D. and Kanaroglou, P. S.: Mapping real-time air pollution health risk
for environmental management: Combining mobile and stationary air pollution
monitoring with neural network models, J. Environ. Manag.,
168, 133–141, https://doi.org/10.1016/j.jenvman.2015.12.012, 2016. a, b, c
Araki, S., Shima, M., and Yamamoto, K.: Spatiotemporal land use random forest
model for estimating metropolitan NO2 exposure in Japan, Sci. Total
Environ., 634, 1269–1277, https://doi.org/10.1016/j.scitotenv.2018.03.324, 2018. a
Auvinen, M., Boi, S., Hellsten, A., Tanhuanpää, T., and
Järvi, L.: Study of realistic urban boundary layer turbulence with
high-resolution large-eddy simulation, Atmosphere, 11, 201,
https://doi.org/10.3390/atmos11020201, 2020. a
Benoit, K.: Linear regression models with logarithmic transformations, London
School of Economics, London, 22, 23–36, 2011. a
Britter, R. E. and Hanna, S. R.: Flow and dispersion in urban areas, Ann.
Rev. Fluid Mech., 35, 469–496,
https://doi.org/10.1146/annurev.fluid.35.101101.161147, 2003. a
Cristianini, N. and Shawe-Taylor, J.: An Introduction to Support Vector
Machines and Other Kernel-based Learning Methods, Cambridge University Press, Cambridge, United Kingdom,
https://doi.org/10.1017/CBO9780511801389, 2000. a
Feng, R., Zheng, H.-J., Gao, H., Zhang, A.-R., Huang, C., Zhang, J.-X., Luo,
K., and Fan, J.-R.: Recurrent Neural Network and random forest for analysis
and accurate forecast of atmospheric pollutants: A case study in Hangzhou,
China, J. Cleaner Product., 231, 1005–1015,
https://doi.org/10.1016/j.jclepro.2019.05.319, 2019. a
Fernández-Delgado, M., Cernadas, E., Barro, S., and Amorim, D.: Do We Need
Hundreds of Classifiers to Solve Real World Classification Problems?, J.
Mach. Learn. Res., 15, 3133–3181, 2014. a
Gama, J. A., Žliobaitundefined, I., Bifet, A., Pechenizkiy, M., and
Bouchachia, A.: A Survey on Concept Drift Adaptation, ACM Comput. Surv., 46, 44,
https://doi.org/10.1145/2523813, 2014. a
Gómez-Dans, J. L., Lewis, P. E., and Disney, M.: Efficient Emulation of
Radiative Transfer Codes Using Gaussian Processes and Application to Land
Surface Parameter Inferences, Remote Sensing, 8, https://doi.org/10.3390/rs8020119,
2016. a
Heus, T., van Heerwaarden, C. C., Jonker, H. J. J., Pier Siebesma, A., Axelsen,
S., van den Dries, K., Geoffroy, O., Moene, A. F., Pino, D., de Roode, S. R.,
and Vilà-Guerau de Arellano, J.: Formulation of the Dutch Atmospheric
Large-Eddy Simulation (DALES) and overview of its applications, Geosci. Model
Dev., 3, 415–444, https://doi.org/10.5194/gmd-3-415-2010, 2010. a
Hu, K., Rahman, A., Bhrugubanda, H., and Sivaraman, V.: HazeEst:
Machine Learning Based Metropolitan Air Pollution Estimation From Fixed and
Mobile Sensors, IEEE Sensors J., 17, 3517–3525,
https://doi.org/10.1109/JSEN.2017.2690975, 2017. a, b, c
Karttunen, S., Kurppa, M., Auvinen, M., Hellsten, A., and Järvi, L.:
Large-eddy simulation of the optimal street-tree layout for pedestrian-level
aerosol particle concentrations – A case study from a city-boulevard, Atmos.
Environ., 6, 100073, https://doi.org/10.1016/j.aeaoa.2020.100073, 2020. a, b, c, d
Karttunen, S. and Kurppa, M.: Input data for article “Large eddy simulation of the optimal street-tree layout for pedestrian-level aerosol particle concentrations”, Zenodo [data set], https://doi.org/10.5281/zenodo.3556287, 2021a. a
Karttunen, S. and Kurppa, M.: Input and output files and datasets for a LES case study of city-boulevard ventilation, Fairdata [data set], available at: http://urn.fi/urn:nbn:fi:att:ee275362-3f56-477c-bbbc-6fcacd9c7f95, last access: 22 November 2021. a
King, R. N., Adcock, C., Annoni, J., and Dykes, K.: Data-Driven Machine
Learning for Wind Plant Flow Modeling, J. Phys. Conf. Ser.,
1037, 072004, https://doi.org/10.1088/1742-6596/1037/7/072004, 2018. a
Krecl, P., Cipoli, Y. A., Targino, A. C., de Oliveira Toloto, M., Segersson,
D., Ãlvaro Parra, Polezer, G., Godoi, R. H. M., and Gidhagen, L.: Modelling
urban cyclists' exposure to black carbon particles using high spatiotemporal
data: A statistical approach, Sci. Total Environ., 679,
115–125, https://doi.org/10.1016/j.scitotenv.2019.05.043, 2019. a, b, c
Kumar, P., Ketzel, M., Vardoulakis, S., Pirjola, L., and Britter, R.: Dynamics
and dispersion modelling of nanoparticles from road traffic in the urban
atmospheric environment – A review, J. Aerosol Sci., 42, 580–603,
https://doi.org/10.1016/j.jaerosci.2011.06.001, 2011. a
Kurppa, M., Hellsten, A., Roldin, P., Kokkola, H., Tonttila, J., Auvinen, M.,
Kent, C., Kumar, P., Maronga, B., and Järvi, L.: Implementation of the
sectional aerosol module SALSA2.0 into the PALM model system 6.0: model
development and first evaluation, Geosci. Model Dev., 12,
1403–1422, https://doi.org/10.5194/gmd-12-1403-2019, 2019. a
Kurppa, M., Helssten, A., Auvinen, M., and Järvi, L.: Assessing pollutant ventilation in a city-boulevard using large-eddy simulation, Fairdata [data set], available at: http://urn.fi/urn:nbn:fi:att:cfe1bd77-6697-44b5-bdd7-ee74f36c7dcd, last access: 22 November 2021. a
Lambert, D.: Zero-Inflated Poisson Regression, With an Application to Defects
in Manufacturing, Technometrics, 34, 1–14, 1992. a
Lange, M., Suominen, H., Kurppa, M., Järvi, L., Oikarinen, E., Savvides, R., and Puolamäki, K.: Datasets of Air Pollutants on Boulevard Type Streets and Software to Replicate Large-Eddy Simulations of Air Pollutant Concentrations Along Boulevard-Type Streets (1.0.0), Zenodo [data set and code], https://doi.org/10.5281/zenodo.3999302, 2021. a
Lelieveld, J., Evans, J. S., Fnais, M., Giannadaki, D., and Pozzer, A.: The
contribution of outdoor air pollution sources to premature mortality on a
global scale, Nature, 525, 367–371, https://doi.org/10.1038/nature15371, 2015. a
Lelieveld, J., Klingmüller, K., Pozzer, A., Pöschl, U., Fnais, M.,
Daiber, A., and Münzel, T.: Cardiovascular disease burden from ambient
air pollution in Europe reassessed using novel hazard ratio functions, Eur.
Heart J., 40, 1590–1596, https://doi.org/10.1093/eurheartj/ehz135, 2019. a
Maronga, B., Gryschka, M., Heinze, R., Hoffmann, F., Kanani-Sühring, F.,
Keck, M., Ketelsen, K., Letzel, M. O., Sühring, M., and Raasch, S.: The
Parallelized Large-Eddy Simulation Model (PALM) version 4.0 for atmospheric
and oceanic flows: model formulation, recent developments, and future
perspectives, Geosci. Model Dev., 8, 2515–2551,
https://doi.org/10.5194/gmd-8-2515-2015, 2015. a
Maronga, B., Banzhaf, S., Burmeister, C., Esch, T., Forkel, R., Fröhlich, D., Fuka, V., Gehrke, K. F., Geletič, J., Giersch, S., Gronemeier, T., Groß, G., Heldens, W., Hellsten, A., Hoffmann, F., Inagaki, A., Kadasch, E., Kanani-Sühring, F., Ketelsen, K., Khan, B. A., Knigge, C., Knoop, H., Krč, P., Kurppa, M., Maamari, H., Matzarakis, A., Mauder, M., Pallasch, M., Pavlik, D., Pfafferott, J., Resler, J., Rissmann, S., Russo, E., Salim, M., Schrempf, M., Schwenkel, J., Seckmeyer, G., Schubert, S., Sühring, M., von Tils, R., Vollmer, L., Ward, S., Witha, B., Wurps, H., Zeidler, J., and Raasch, S.: Overview of the PALM model system 6.0, Geosci. Model Dev., 13, 1335–1372, https://doi.org/10.5194/gmd-13-1335-2020, 2020. a
Nosek, Š., Kukačka, L., Kellnerová, R., Jurčáková,
K., and Jaňour, Z.: Ventilation Processes in a Three-Dimensional Street
Canyon, Bound.-Lay. Meteorol., 159, 259–284,
https://doi.org/10.1007/s10546-016-0132-2, 2016.
a
Oikarinen, E., Tiittanen, H., Henelius, A., and Puolamäki, K.: Detecting
virtual concept drift of regressors without ground truth values, Data Min. Knowl. Disc., 35, 726–747, https://doi.org/10.1007/s10618-021-00739-7,
2021. a, b, c
Peng, H., Lima, A. R., Teakles, A., Jin, J., Cannon, A. J., and Hsieh, W. W.:
Evaluating hourly air quality forecasting in Canada with nonlinear updatable
machine learning methods, Air Quality, Atmos. Health, 10, 195–211,
https://doi.org/10.1007/s11869-016-0414-3, 2017. a, b
R Core Team: R: A Language and Environment for Statistical Computing, R
Foundation for Statistical Computing, Vienna, Austria,
avilable at: https://www.R-project.org/ (last access: 22 November 2021), 2020. a
Rybarczyk, Y. and Zalakeviciute, R.: Machine Learning Approaches for Outdoor
Air Quality Modelling: A Systematic Review, Appl. Sci., 8, 2570,
https://doi.org/10.3390/app8122570, 2018. a, b
Salim, S. M., Buccolieri, R., Chan, A., and Sabatino, S. D.: Numerical
simulation of atmospheric pollutant dispersion in an urban street canyon:
Comparison between RANS and LES, J. Wind Eng. Ind. Aerod., 99, 103–113, https://doi.org/10.1016/j.jweia.2010.12.002, 2011. a
Tominaga, Y. and Stathopoulos, T.: CFD modeling of pollution dispersion in a
street canyon: Comparison between LES and RANS, J. Wind Eng. Ind. Aerod.,
99, 340–348, https://doi.org/10.1016/j.jweia.2010.12.005, 2011. a
Van den Bossche, J., Baets, B. D., Verwaeren, J., Botteldooren, D., and
Theunis, J.: Development and evaluation of land use regression models for
black carbon based on bicycle and pedestrian measurements in the urban
environment, Environ. Model. Softw., 99, 58–69,
https://doi.org/10.1016/j.envsoft.2017.09.019, 2018. a, b, c, d
WHO (World Health Organization): Ambient air pollution: A global assessment of exposure and burden of
disease, available at: https://apps.who.int/iris/handle/10665/250141 (last access: 22 November 2021), 2016. a
Yang, W., Deng, M., Xu, F., and Wang, H.: Prediction of hourly PM2.5 using a
space-time support vector regression model, Atmos. Environ., 181, 12–19, https://doi.org/10.1016/j.atmosenv.2018.03.015, 2018. a
Yuan, C., Ng, E., and Norford, L. K.: Improving air quality in high-density
cities by understanding the relationship between air pollutant dispersion and
urban morphologies, Build. Environ., 71, 245–258,
https://doi.org/10.1016/j.buildenv.2013.10.008, 2014. a
Short summary
This study aims to replicate computationally expensive high-resolution large-eddy simulations (LESs) with regression models to simulate urban air quality and pollutant dispersion. The model development, including feature selection, model training and cross-validation, and detection of concept drift, has been described in detail. Of the models applied, log-linear regression shows the best performance. A regression model can replace LES unless high accuracy is needed.
This study aims to replicate computationally expensive high-resolution large-eddy simulations...