Articles | Volume 14, issue 2
https://doi.org/10.5194/gmd-14-703-2021
https://doi.org/10.5194/gmd-14-703-2021
Model description paper
 | 
03 Feb 2021
Model description paper |  | 03 Feb 2021

Development of WRF/CUACE v1.0 model and its preliminary application in simulating air quality in China

Lei Zhang, Sunling Gong, Tianliang Zhao, Chunhong Zhou, Yuesi Wang, Jiawei Li, Dongsheng Ji, Jianjun He, Hongli Liu, Ke Gui, Xiaomei Guo, Jinhui Gao, Yunpeng Shan, Hong Wang, Yaqiang Wang, Huizheng Che, and Xiaoye Zhang

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Lei Zhang on behalf of the Authors (22 Oct 2020)  Author's response   Manuscript 
ED: Referee Nomination & Report Request started (19 Nov 2020) by Samuel Remy
RR by Anonymous Referee #2 (04 Dec 2020)
ED: Publish as is (11 Dec 2020) by Samuel Remy
AR by Lei Zhang on behalf of the Authors (12 Dec 2020)
Download
Short summary
Development of chemical transport models with advanced physics and chemical schemes is important for improving air-quality forecasts. This study develops the chemical module CUACE by updating with a new particle dry deposition scheme and adding heterogenous chemical reactions and couples it with the WRF model. The coupled model (WRF/CUACE) was able to capture well the variations of PM2.5, O3, NO2, and secondary inorganic aerosols in eastern China.