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Abstract. The development of chemical transport models with advanced physics and chemical 

schemes could improve air-quality forecasts. In this study, the China Meteorological Administration 

Unified Atmospheric Chemistry Environment (CUACE) model, a comprehensive chemistry module 

incorporating gaseous chemistry and a size-segregated multicomponent aerosol algorithm, was 

coupled to the Weather Research and Forecasting (WRF)-Chem framework using an interface 25 

procedure to build the WRF/CUACE v1.0 model. The latest version of CUACE includes an updated 

aerosol dry deposition scheme and the introduction of heterogeneous chemical reactions on aerosol 

surfaces. We evaluated the WRF/CUACE v1.0 model by simulating PM2.5, O3, NO2 and SO2 

concentrations for January, April, July, and October (representing winter, spring, summer, and autumn, 

respectively) in 2013, 2015, and 2017 and comparing them with ground-based observations. Secondary 30 

inorganic aerosol simulations for North China Plain (NCP), Yangtze River Delta (YRD), and Pearl 

River Delta (PRD) were also evaluated. The model well captured the variations of PM2.5, O3, and NO2 

concentrations in all seasons in eastern China. However, it is difficult to accurately reproduce the 

variations of air pollutants over Sichuan Basin (SCB), due to its deep basin terrain. The simulations of 

SO2 were generally reasonable in the NCP and YRD with the bias at -15.5 % and 24.55 %, respectively, 35 

while poor in the PRD and SCB. The sulfate and nitrate simulations were substantially improved by 

introducing heterogenous chemical reactions into the CUACE model (e.g., change in bias from −95.0% 

to 4.1% for sulfate and from 124.1% to 96.0% for nitrate in the NCP). Additionally, The WRF/CUACE 

v1.0 model was revealed with better performance in simulating chemical species relative to the coupled 
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Fifth-Generation Penn State/NCAR Mesoscale Model (MM5)-CUACE model. The development of 40 

the WRF/CUACE v1.0 model represents an important step towards improving air-quality modelling 

and forecasts in China. 

1 Introduction 

The atmosphere is an extremely complex reaction system in which a large number of chemical and 

physical processes occur at every moment. Numerical modelling has become an effective means to 45 

study atmospheric environmental changes and their mechanisms due to its capability at large spatial-

temporal scales and with high resolution. Against the continuing rapid increase in fine particle 

pollution in China, chemical transport models (CTMs) have been developed in recent years and new 

physical and chemical atmospheric mechanisms have been presented, for instance, heterogenous 

chemical reactions, the production of secondary organic and inorganic aerosols, and dry deposition 50 

schemes. However, some of the mechanisms have yet to be well parameterized into CTMs for air-

quality forecasts in China. Numerical modelling in combination with field observations and 

laboratory analyses is constantly improving our understanding of atmospheric physical and chemical 

processes. There is an urgent need to develop and improve CTMs to provide more powerful tools for 

studying the atmospheric environment, in particular for the mitigation of fine particle pollution in 55 

China. 

Meteorological conditions is accepted as one of the main factors affecting atmospheric chemical 

processes and the aerial transport of noxious materials, and, in turn, chemical species can impact 

meteorological conditions by radiation feedback and cloud formation (Grell and Baklanov, 2011). 

Historically, CTMs were developed separately from meteorological models owing to the complexity 60 

of the atmosphere and the economics of computer calculations. Thus, CTMs were generally driven 

by meteorological datasets from a pre-run of the meteorological model. Information about the rapid 

meteorological processes, such as changes in wind direction and speed or the planetary boundary 

layer, are barely recorded by the low-temporal-resolution meteorological outputs (typically once or 

twice per hour), which may impact the accuracy of the air-quality forecasts. Coupled systems that 65 

realize the synchronous integration and two-way interactions of meteorology and chemistry are an 

important development for the traditional CTM approach to air-quality forecasting and there have 

been many endeavors devoted to this (Jacobson et al., 1996; Lin et al., 2020; Lu et al., 2020; Zhang 

et al., 2010). 

To tackle serious air pollution in China and East Asia, with a particular focus on haze pollution 70 

forecasting, the China Meteorological Administration (CMA) has been developing the Chinese 
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Unified Atmospheric Chemistry Environment (CUACE) model, a chemistry module that can be 

driven by meteorological models. The CUACE has been integrated into the Fifth-Generation Penn 

State/NCAR Mesoscale Model (MM5) and the mesoscale version of the Global/Regional 

Assimilation and Prediction System (GRAPES, a meteorological model developed by CMA) to build 75 

a fog-haze forecasting system (An et al., 2016; Wang et al., 2015a; Zhou et al., 2012). Both of these 

coupled systems have been running operationally at national and provincial meteorological 

administrations since 2014, and have been used for air-quality assurance for many major events in 

China. However, active development of the MM5 model ended with version 3.7.2 in 2005, and it has 

been largely superseded by the Weather Research and Forecasting (WRF) model (Skamarock, 2008). 80 

The WRF model has been shown to have a better performance relative to the MM5 model due to its 

better numerical dynamic core and greater number of physical parameterization schemes, and it is 

now used as a host model for coupling with different CTMs for scientific research and air-quality 

forecasting, such as the WRF-Chem and WRF-CMAQ models (Grell et al., 2005; Wong et al., 2012). 

The WRF model has also been used to provide pre-run meteorological fields to drive models such as 85 

CAMx and FLEXPART, as well as to provide boundary and initial fields for local-scale models. 

Therefore, it is important to develop the CUACE module by coupling it with state-of-the-art 

meteorological models.  

The chemical reaction mechanisms in the CUACE module, as well as in current CTMs, are 

proposed under clean conditions. In the context of composite air pollution in China, particularly 90 

during severe haze episodes with a rapid increase in fine particles (PM2.5), their applicability needs to 

be improved. Heterogenous chemical reactions, mechanisms missing in current models, were 

revealed as a crucial factor to explain the dramatic increase of PM2.5 during hazy days (Zheng et al., 

2015), such as the heterogenous uptake of dinitrogen pentoxide at night (Wang et al., 2017), and the 

heterogeneous oxidation of dissolved SO2 by NO2 (Gao et al., 2016; Seinfeld and Pandis, 2012). 95 

Another process focused on here is the dry deposition of particles, where the difference between 

model predictions and field measurements appears greatest for vegetated canopies and for the 

accumulation size range of airborne particles. Ongoing research is investigating the factors that give 

rise to this discrepancy and providing new approaches to predicting the deposition (Hicks et al., 

2016). However, few studies have incorporated these mechanisms into 3D CTMs (Wu et al., 2018). 100 

The objectives of this study were to develop the CUACE module from three aspects: (1) 

introduce heterogenous reactions and update the dry deposition scheme of particles; (2) couple the 

CUACE to the WRF model to build the WRF/CUACE v1.0 system; and (3) evaluate the model 

against observations of surface air pollutants.  
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2 Model description 105 

2.1 WRF model 

The Advanced Research WRF version 3 (WRF-ARW) is used to simulate meteorological 

processes and advection of atmospheric components in the WRF/CUACE v1.0 model. The WRF-

ARW is a state-of-the-science mesoscale meteorological model, making simulations that are based 

on actual atmospheric conditions or idealized conditions feasible (Langkamp and Böhner, 2011). The 110 

equation set for the WRF-ARW is fully compressible, Eulerian non-hydrostatic with a run-time 

hydrostatic option. It is conservative for scalar variables. The prognostic variables consist of velocity 

components u and v in Cartesian coordinates, vertical velocity w, perturbation potential temperature, 

perturbation geopotential, and perturbation surface pressure of dry air, as well as several optional 

prognostic variables depending on the model physical options (Skamarock et al., 2008; Wong et al., 115 

2012). 

2.2 CUACE module 

The CUACE is a unified chemistry module, which treats most of the physical and chemical 

processes, except advection and convection processes that done by its host model. The main 

processes treated in CUACE module include emissions, gas chemistry, dry and wet deposition, 120 

vertical mixing, aerosol-cloud interaction, and clear-air (i.e., aerosol produced by chemical 

transformation of their precursors together with particle nucleation, condensation and coagulation) 

(An et al., 2016; Zhou et al., 2012; Gong et al., 2003). 

The CUACE is typically configured with the second generation of the Regional Acid Deposition 

Model (RADM2) as its gas chemistry module, which represents 63 species through 21 125 

photochemical reactions and 136 gas phase reactions. As the gaseous chemistry (RADM2) in the 

CUACE module is not computationally economic and it is hard coded, which means that it is not 

conducive to adapting chemical reactions in the future, the CBM-Z photochemical mechanism 

(Zaveri and Peters, 1999) with a better computational efficiency is added with the KPP protocol 

(Damian et al., 2002) to replace the RADM2 mechanism. CBM-Z mechanism contains 55 species, 130 

114 reactions and 20 photochemical reactions. It is based on the widely used Carbon Bond 

Mechanism (CBM-IV) and uses the lumped structure approach for condensing organic species and 

reactions. CBM-Z extends the CBM-IV to include revised inorganic chemistry, explicit treatment of 

the lesser reactive paraffins, methane and ethane, revised treatments of reactive paraffin, olefin, and 

aromatic reactions, inclusion of alkyl and acyl peroxy radical interactions and their reactions with 135 
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NO3, inclusion of organic nitrates and hydroperoxides, and revised isoprene chemistry. Currently, 

stratospheric chemistry is not included in the CUACE module. Species (i.e, CH4, CO, O3, NO, NO2, 

HNO3, N2O5 and N2O) above a specified pressure level are fixed to climatological values. Between 

the specified pressure level and the tropopause level, the species was relaxed with a 10-day 

relaxation factor. 140 

The Canadian Aerosol Module (CAM) (Gong et al., 2003) is adopted as its aerosol module. 

There are totally seven types of aerosols treated in CAM, i.e. black carbon, primary organic carbon, 

sulfates, nitrates, ammonium, soil dust, and sea salts. The sea salt emissions are calculated online 

using the parametrization scheme developed by Gong et al. (2003). Soil dust emissions are simulated 

using the Marticorena–Bergametti–Alfaro scheme (Alfaro and Gomes, 2001; Marticorena and 145 

Bergametti, 1995). With the exception of ammonium, the aerosol size spectrum is divided into 12 

bins with fixed boundaries of 0.005–0.01, 0.01–0.02, 0.02–0.04, 0.04–0.08, 0.08–0.16, 0.16–0.32, 

0.32–0.64, 0.64–1.28, 1.28–2.56, 2.56–5.12, 5.12–10.24, and 10.24–20.48 µm. The detailed 

description of aerosol physical and chemical processes in the CAM module could be found in Gong 

et al. (2003). 150 

3 Development of the CUACE module 

3.1 Update with particle dry deposition scheme 

The CUACE module currently parameterizes particle dry deposition velocity according to the 

method of Zhang et al. (2001) (Z01), which tends to overestimate the dry deposition, especially for 

fine particles (Petroff and Zhang, 2010). In this study, we use the scheme developed by Petroff and 155 

Zhang (2010) (PZ10) to replace the original scheme in the CUACE module. The most significant 

difference between the Z01 and PZ10 scheme is the treatment of Rs, which stands for the dry 

velocity contributed by surface resistance, consisting of Brownian diffusion, turbulent impaction, 

interception and rebound. According to the study of Wu et al., (2018), dry deposition velocity of fine 

particles is strongly affected by the Brownian diffusion and turbulent impaction. Thereby, it could be 160 

inferred that the Z01 scheme is prone to overestimate the effect of Brownian diffusion and turbulent 

impaction. In a recent study by Emerson et al. (2020), with observationally constrained approach, the 

Z01 scheme was revised to be with weaker effect of Brownian diffusion, and as a result, got better 

performance in simulating the dry deposition velocity of fine particles. 

Both of the Z01 and PZ10 schemes use the “resistance” analogy, but with quite different 165 

formulas. The PZ10 scheme improved the surface resistance and collection efficiency of the Z01 
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scheme to overcome the problem of overestimating the dry deposition velocity of fine particles. The 

PZ10 scheme is detailed as follows: 

𝑉𝑑 = 𝑉𝑑𝑟𝑖𝑓𝑡 +
1

𝑅𝑎+𝑅𝑠
           (1) 

Here 𝑉𝑑 is the dry deposition velocity; 𝑉𝑑𝑟𝑖𝑓𝑡 represents drift velocity, which is equal to the 170 

sum of gravitational settling and phoretic velocity and is expressed as 

𝑉𝑑𝑟𝑖𝑓𝑡 = 𝑉𝑔 + 𝑉𝑝ℎ𝑜𝑟           (2) 

where 𝑉𝑔 is the gravitational settling velocity and 𝑉𝑝ℎ𝑜𝑟 accounts for the phoretic effects that 

are related to differences in temperature, water vapor, or electricity between the collecting surfaces 

and the air (Wu et al., 2018). 175 

The aerodynamic resistance (𝑅𝑎) and surface resistance (𝑅𝑠) are calculated differently for 

vegetated and unvegetated surfaces. For vegetated surfaces, 𝑅𝑎 is parameterized as 

𝑅𝑎 =
1

𝜅∗𝑢∗
[ln (

𝑧𝑅−𝑑

ℎ−𝑑
) − 𝛹ℎ (

𝑧𝑅−𝑑

𝐿𝑂
) + 𝛹ℎ (

ℎ−𝑑

𝐿𝑂
)]     (3) 

where 𝜅 is the von Karman constant (0.4), 𝑢∗ is the friction velocity above canopy, 𝑧𝑅 is the 

reference height, ℎ is the canopy height, 𝑑 is the displacement height of the canopy, 𝐿𝑂 is the 180 

Obhukov length, and 𝛹ℎ is the integrated form of the stability function for heat. 

Surface resistance (𝑅𝑠) is generally expressed as the reciprocal of the surface deposition 

velocity (𝑉𝑑𝑠), which is parameterized as 

𝑉𝑑𝑠 = 𝑢∗𝐸𝑔
1+[

𝑄

𝑄𝑔
−
𝛼

2
]
𝑡𝑎𝑛(ℎ𝜂)

𝜂

1+[
𝑄

𝑄𝑔
+𝛼]

𝑡𝑎𝑛(ℎ𝜂)

𝜂

         (4) 

where  𝐸𝑔 = 𝐸𝑔𝑏 + 𝐸𝑔𝑡 is the total collection efficiency on the ground below the vegetation. 𝐸𝑔𝑏 185 

and 𝐸𝑔𝑡 represent Brownian diffusion and turbulent impaction, respectively. 𝐸𝑔𝑏 is parameterized 

as 

𝐸𝑔𝑏 =
𝑆𝑐
−
2
3

14.5
[
1

6
𝑙𝑛

(1+𝐹)2

1−𝐹+𝐹2
+

1

√3
𝐴𝑟𝑐𝑡𝑎𝑛 (

2𝐹−1

√3
) +

𝜋

6√3
]
−1

   (5) 

where 𝐹 is a function of the Schmidt number (𝑆𝑐) and is parameterized as 𝐹 = 𝑆𝑐
1

3/2.9. 𝐸𝑔𝑡 is 

expressed as 190 

𝐸𝑔𝑡 = 2.5 × 10
−3𝐶𝐼𝑇 ∗ 𝜏𝑝ℎ

+2,         (6) 

where 𝐶𝐼𝑇 is a constant taken as 0.14 and 𝜏
𝑝ℎ
+  is a function of non-dimensional relaxation time of 

the particle (Petroff et al., 2010). 

In equation (4), the non-dimensional timescale parameter, 𝑄, represents the ratio of turbulent 

transport timescale to vegetation collection timescale, and 𝑄𝑔 is the analogy of 𝑄 used for the 195 
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transfer to the ground. 𝑄 << 1 characterizes a situation where turbulent mixing is efficient and the 

transfer of particles is limited by the collection efficiency on leaves. Meanwhile, 𝑄 >>1 corresponds 

to a situation where particles are efficiently collected by leaves and transfer of turbulent mixing is 

limited. 𝑄 and 𝑄𝑔 are defined as: 

𝑄 =
𝐿𝐴𝐼∗𝐸𝑇∗ℎ

𝑙𝑚𝑝(ℎ)
             (7) 200 

𝑄𝑔 =
𝐸𝑔∗ℎ

𝑙𝑚𝑝(ℎ)
             (8) 

where 𝐿𝐴𝐼 is the two-sided leaf area index, 𝐸𝑇 is the total collection efficiency by various physical 

processes, and 𝑙mp is the mixing length for particles. 𝐸𝑇 is expressed as: 

𝐸𝑇 =
𝑈ℎ

𝑢∗
(𝐸𝐵 + 𝐸𝐼𝑁 + 𝐸𝐼𝑀) + 𝐸𝐼𝑇        (9) 

where 𝑈ℎ is the horizontal mean wind speed at canopy height ℎ; and 𝐸B, 𝐸IN, 𝐸IM, and 𝐸IT are 205 

the collection efficiencies by Brownian diffusion, interception, inertial impaction, and turbulent 

impaction, respectively. The term 𝜂 is taken as 

𝜂 = √
𝛼2

4
+ 𝑄             (10) 

where 𝛼 is the aerodynamic extinction coefficient, and is expressed as 

𝛼 = (
𝑘𝑥∗𝐿𝐴𝐼

12𝑘2(1−
𝑑

ℎ
)
2)

1
3

𝜙𝑚

2
3 (

ℎ−𝑑

𝐿𝑂
)         (11) 210 

where 𝑘𝑥 is the inclination coefficient of the canopy elements and 𝜙m is the non-dimensional 

stability function for momentum. 

For non-vegetated surfaces, the aerodynamic resistance 𝑅𝑎 is calculated as 

𝑅𝑎 =
1

𝜅𝑢∗
[ln (

𝑧𝑅−𝑑

𝑧0
) − Ψℎ (

𝑧𝑅−𝑑

𝐿𝑂
) + Ψℎ (

𝑧0

𝐿𝑂
)]     (12) 

and the surface deposition velocity 𝑉𝑑𝑠 is expressed as 215 

𝑉𝑑𝑠 = 𝑢∗(𝐸𝑔𝑏 + 𝐸𝐼𝑇)           (13) 

3.2 Introduction of heterogeneous chemistry 

The study of heterogeneous chemical reactions mostly focuses on the surface of dust aerosols, 

but the parameterization schemes of heterogeneous chemical reactions on different types of aerosol 

have not been well established (Zheng et al., 2015). The following are the heterogeneous chemical 220 

reactions on aerosol surfaces that added to the CUACE module in this study (“Aerosol” in the 

reactions stands for all the aerosols in the model): 
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H2O2 (gas) 
  Aerosol  
→         Products        （14） 

HNO3 (gas) 
  Aerosol  
→         0.5NO

— 

3  + 0.5NOx (gas)    （15） 

HO2 (gas) + Fe(II) → Fe(III) + H2O2      （16） 225 

N2O5 (gas) 
  Aerosol  
→         2 NO

— 

3        （17） 

NO2 (gas) 
  Aerosol  
→         NO

— 

3         （18） 

NO3 (gas) 
  Aerosol  
→         NO

— 

3         （19） 

O3 (gas) 
  Aerosol  
→         Products       （20） 

OH (gas) 
  Aerosol  
→         Products       （21） 230 

SO2 (gas) 
  Aerosol  
→          SO

2— 

4         （22） 

Reactions (15) and (17)–(19) describe the formation of sulfate and nitrate on the surface of sand 

dust, and the other four reactions describe mineral aerosols as sinks of gaseous substances. In this 

study, these nine heterogeneous reactions were extended to all types of aerosol surface in the 

CUACE, referring to the approach of Zheng et al. (2015) for the CMAQ model. The first-order 235 

chemical kinetic equation for calculating the adsorption efficiency of a gas on an aerosol surface is: 

𝑑𝐶𝑖

𝑑𝑡
= −𝑘𝑖𝐶𝑖            (23) 

where 𝐶𝑖 represents the concentration of gas 𝑖 and 𝑘𝑖 is the pseudo-first-order rate constant and is 

supposed to be irreversible. The value of 𝑘𝑖 is defined referring to Jacob (2000) as: 

𝑘𝑖 = (
𝑎

𝐷𝑖
+

4

𝑣𝑖𝛾𝑖
)
−1
𝐴          (24) 240 

where  𝑎 is the aerosol diameter, 𝐷𝑖 is the diffusion coefficient for gas reactant 𝑖, 𝑣𝑖 is the mean 

molecule speed of gas reactant 𝑖, 𝛾𝑖 is the uptake coefficient of the heterogeneous reaction for the 

gas reactant 𝑖, and 𝐴 is the surface area of aerosols in unit volume air. The value of 𝛾𝑖 is obtained 

from previous laboratory studies (Table 1) and other parameters are calculated in the WRF/CUACE 

v1.0 model. 245 

4 Coupling of the CUACE module with the WRF model 

The coupling of the WRF/CUACE v1.0 model is based on the framework of WRF/Chem model 

and uses most of its existing infrastructure. WRF-Chem is a meteorology-chemistry coupled model. 

In the chemical module of the WRF-Chem, the processes are split to emissions, vertical mixing, dry 

deposition, convection, gas chemistry, cloud chemistry, aerosol chemistry and wet deposition, all of 250 

which are integrated in an interface procedure (chem_driver). Advection process is treated in the 

WRF model. Information, such as rainfall rates, vertical mixing coefficients and convective updraft 

properties, is provided by WRF to calculate the processes treated in the chemical module. WRF-

Chem uses registry tools for automatic generation of application code. Physical and chemical 
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variables, as well as options of parameterization schemes are coded in files (such as registry.chem) in 255 

the directory of WRFV3/Registry, which provides the convenience for developers to add variables 

and options.  

Following the registry tools in WRF-Chem model, a registry file (registry.cuace) is written to 

store the chemical variables and startup option of the CUACE module. The flow of the major process 

splitting in the coupled WRF/CUACE v1.0 model is illustrated in Fig. 1 with the structure of related 260 

subroutines given in Fig. S1 in the supplement. The WRF/CUACE v1.0 model uses several modules 

of the original WRF/Chem model, i.e., modules of advection, vertical mixing, convection, biomass 

emissions, anthropogenic gas emissions, photolysis and gas dry/wet deposition (Fig. S1). As 

described in Section 2.2, the CBM-Z mechanism is newly added with the KPP protocol (Damian et 

al., 2002) to replace the RADM2 mechanism in the original CUACE module. An interface 265 

procedure, cuace_driver, is designed to integrate the core sections of the aerosol physical and 

chemical processes of the CUACE module with the WRF framework (Fig. S1). 

No spatial interpolation of the meteorological and chemical data is required as both the CUACE 

and the WRF models can be configured to the same gird configurations and coordinate systems. The 

feedback of chemical species on meteorology in the current WRF/CUACE version is not realized, 270 

but is under development and will be released in a future paper. 

5 Performance of WRF/CUACE v1.0 in air-quality simulation 

5.1 Model configuration 

At present, there are four major polluted areas in China, namely, the North China Plain (NCP), 

the Yangtze River Delta (YRD), the Pearl River Delta (PRD), and Sichuan Basin (SCB). To include 275 

all these regions, the simulation area is configured as in Fig. 2. There are two domains in total. The 

boundary field of the inner domain is obtained by the interpolation of its outer domain. The outer 

region covers the whole of East Asia and its adjacent areas with a horizontal resolution of 54 km and 

a total of 120×110 grids centered at 30.46° N and 105.82° E. The inner region covers most of China 

on the east side of the Qinghai-Tibet Plateau with a horizontal resolution of 18 km and 193×175 280 

grids. There are 32 vertical layers with the top pressure at about 100 hPa. The main physical and 

chemical options in the model are shown in Table 2. With WRF used in non-hydrostatic mode, we 

performed two simulations. One for January, April, July, and October in three years, 2013, 2015, and 

2017, to evaluate the model on a long timescale, and one for three periods during which SIA 

observations were conducted (i.e., 5–16 January 2019 in Langfang, 3–29 December 2013 in Nanjing, 285 
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and 1–10 January 2017 in Chengdu), to investigate improvements in simulating SIA with 

heterogenous chemistry. 

The model uses the FNL global reanalysis data of the NCEP (National Centers for 

Environmental Prediction) to provide the meteorological initial and boundary fields with spatial and 

temporal resolution of 6 h and 1°×1°, respectively. The initial and boundary chemistry conditions are 290 

based on the vertical profiles of O3, SO2, NO2, VOCs (volatile organic compounds), and other air 

pollutants from the NOAA Aeronomy Lab Regional Oxidant Model (NALROM) (Liu et al., 1996). 

Anthropogenic emissions are derived from the MIX emission inventory representative for 2010 

(http://www.meicmodel.org/dataset-mix.html) (Li et al., 2017), which is an Asian anthropogenic 

emissions inventory developed for the third phase of the East Asian Model Comparison Plan (MICS-295 

Asia III) and the United Nations Hemispheric Atmospheric Pollution Transport Plan (HTAP). The 

inventory provides monthly grid emission data with 0.25° spatial resolution for five emission sectors 

(electricity, industry, civil, transportation, and agriculture), including PM2.5, PM10, nitrogen oxides 

(NOx), sulfur dioxide (SO2), carbon monoxide (CO), NH3, black carbon (BC), organic carbon (OC), 

and non-methane volatile organic compounds (NMVOCs). During the simulation span from 2013 to 300 

2017, China carried out strict air pollution control measures, which had a considerable impact on 

anthropogenic emissions. To make the anthropogenic emissions more suitable for the real emissions 

scenarios in the simulated years, the emissions in mainland China were replaced with the MEIC 

emissions inventory representative for 2012, 2014, and 2016 to represent the emissions scenarios in 

2013, 2015, and 2017, respectively. Figure S2 in the supplement shows the MEIC emissions of 305 

PM2.5, NOx, SO2 and CO in the three years, from which it can be seen that anthropogenic emissions 

of PM2.5, SO2 and CO reduced remarkably from 2012 to 2016. 

For the vertical interpolation, we used the settings of Wang et al. (2010) and Zhou et al. (2017). 

The industrial emissions were allocated as 50, 30, and 20% in layers one to three of the model, 

respectively, and the power plant emission sources were allocated as 14, 46, 35, and 5% in model 310 

layers two to five, respectively. The emissions from transportation, residential, and agriculture were 

95% and 5%, respectively, in the first and second layers of the model. Then, the inventory was 

distributed into hourly emissions using the monthly, weekly, and hourly profiles established by 

Tsinghua University (2006). VOCs released from vegetation was calculated online using the 

MEGAN model (Guenther, 2006). 315 

5.2 Evaluation against ground-based observations 

5.2.1 Meteorological evaluation 
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The simulated hourly temperature at 2 m (T2), hourly relative humidity at 2 m (RH2) and 

hourly wind speed at 10 m (WS10) were selected for evaluation. Table S1 in the supplement shows 

the observation mean, simulation mean, correlation coefficient (R), MB, ME and RMSE of the 320 

meteorological fields in the NCP, YRD, PRD and SCB, respectively. The MB and RMSE for T2 vary 

from 0.48 to 1.14 ℃ and from 2.01 to 2.50 ℃, respectively, indicating surface temperatures are 

slightly overestimated in the four regions. The R value for T2, ranging from 0.88 to 0.93, indicates 

the variation trends are well captured by the model. The model underestimates RH2 in the four 

regions with the MB ranging from -6.22 to -14.30 % and the RMSE ranging from 13.95 to 18.77 %, 325 

which are comparable with previous studies in China (Wang et al., 2014; Gao et al., 2016). The 

RMSE for WS10 in the four regions vary from 1.47 to 1.61 m s-1, fall within the “good” model 

performance criteria (little than 2 m s-1) proposed by Emery et al. (2001). However, it should be 

noted that the R for WS10 in the SCB is relatively poor, indicating the variation trends were not well 

captured. The simulations of T2 and RH2 in the SCB are relatively poor than other regions as well. 330 

For example, the R, MB and RMSE values of T2 in the SCB are 0.88, 1.52 ℃ and 2.50 ℃, 

respectively, while the values in the other three regions vary from 0.91 to 0.93, 0.48 to 1.14 ℃ and 

2.01 to 2.39 ℃. Generally, the model performed best in the YRD, followed by the PRD and NCP, 

and performed worst in the SCB for meteorological fields. 

5.2.2 Chemical evaluation 335 

In view of the spatial-temporal differences in the haze pollution that occur in the four different 

regions (i.e. NCP, YRD, PRD, and SCB), here we assessed surface PM2.5, O3, NO2 and SO2 

simulated in the WRF/CUACE v1.0 model by region and season. Figure 3 presents a comparison of 

the modelled and observed daily mean PM2.5 concentrations in spring, summer, autumn, and winter 

in the four regions. Overall, the WRF/CUACE v1.0 model well captured the variations in the PM2.5 340 

concentration, but with different performance in different regions and seasons. The correlation 

coefficients (R) for the NCP, YRD, and PRD are mostly above 0.60 and passed the 99% significance 

test. The R value between the YRD and PRD is the highest (generally higher than 0.65), followed by 

the NCP. The NCP, YRD, and SCB simulations in autumn and winter are generally better than that in 

spring and summer according to the R values, while that in the PRD is the opposite with a better 345 

performance during spring and summer seasons. The simulations are relatively poor in the SCB, 

where the complex terrain poses great challenges to meteorological field simulations (Table S1 in the 

supplement). 

It is noteworthy that the WRF/CUACE v1.0 model systematically underestimated the daily 
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PM2.5 concentrations in the NCP when it exceeded about 200 μg m−3, which mostly happened during 350 

winter (Fig. 4a). By comparing the time series of observations and simulations (not shown), we 

found that the underestimation mainly occurred in the period of heavy haze pollution in some cities 

(such as Shijiazhuang, Hengshui, Handan, etc.). Two factors might be responsible for this. One is the 

uncertainty of emission sources. The formulation of an accurate emissions source inventory is always 

a difficult problem, especially in China. In the NCP, the seasonal difference in emission sources is 355 

substantial. A large number of unorganized loose coal combustion emissions during the winter 

heating season cannot be promptly accounted for by the emissions source inventory system, which 

increases the uncertainty of the local emission sources. The other factor might be problems in the 

chemical reaction mechanisms. The haze pollution study found that PM2.5 was mainly composed of 

secondary particulate matter, including sulfate, nitrate, ammonium salt, and SOA (Huang et al., 360 

2014). During heavy haze episodes, the concentration of sulfate increased substantially, but its 

formation mechanism remains not well recognized. The main international atmospheric chemical 

models (such as CMAQ, WRF-Chem, CAMx, etc.) are also found to be not ideal enough to simulate 

sulfate and SOA during heavy haze pollution in North China. Zheng et al. (2015) and Gao et al. 

(2016) initially added SO2 heterogeneous processes in the CMAQ and WRF-Chem models, and the 365 

simulation results of sulfate improved. Although heterogeneous chemical reaction mechanisms are 

introduced in this study, the simulation effect of sulfate needs to be further evaluated, and the 

simulation of SOA is more challenging, involving thousands of VOC species and determination of 

their saturation, atmospheric oxidation, free radicals, acidity, and basicity. The development of a 

volatility basis set (VBS) is a major breakthrough that treats the organic gas/particle partitioning with 370 

a spectrum of volatilities using a saturation vapor concentration as the surrogate of volatility 

(Ahmadov et al., 2012; Donahue et al., 2006; Wang et al., 2015b). 

The WRF/CUACE v1.0 model was further evaluated using hourly PM2.5 concentrations and R, 

mean bias (MB), mean error (ME), normalized mean bias (NMB), normalized mean error (NME), 

mean fractional bias (MFB), and mean fractional error (MFE) (Table 3). As can be seen from Table 375 

3, the correlation coefficients R for the NCP, YRD, PRD, and SCB are 0.59, 0.71, 0.68, and 0.59, 

respectively, all of which passed the 99% significance test. The YRD has the best correlation, 

followed by the PRD. MB values reflect that the performance of the model is reasonable in all 

regions, among which those in NCP and PRD are the best, with the MB values reaching −5.0 and 5.3 

μg m−3, respectively. However, the MB values show that the simulated concentration of PM2.5 in 380 

NCP during winter is generally underestimated by 45 μg m−3 and overestimated by 33.9 μg m−3. The 

dramatic positive bias in summer in the NCP is mainly due to the uncertainty in anthropogenic 

emissions. It is known that PM2.5 concentration is mainly driven by primary emissions, meteorology 
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and chemical reactions. Table S2 in the supplement shows the statistical metrics for hourly 

meteorological fields in winter and summer in the NCP. It can be seen that the bias of summer 385 

meteorological fields is reasonable, and is comparable to those in winter (Table S2) as well as to 

those in the YRD and PRD (Table S1), which indicate bias in meteorological fields is not the reason. 

Additionally, In the YRD and PRD, where the uncertainties of anthropogenic emissions are generally 

known as less than that of NCP, the bias of PM2.5 between winter and summer are comparable (Table 

3), implying chemical formation of PM2.5 in summer is not overestimated by the WRF/CUACE v1.0 390 

model. 

From the point of view of relative deviation, the overall level of standard mean deviation NMB 

in the NCP is slightly better than that in the YRD and PRD, but the seasonal difference is significant, 

and the NMB values of the latter two (especially in the PRD) are more uniform in different seasons, 

maintaining at about 20%, indicating that the simulation level of the model is relatively stable in the 395 

region. The NMB of SCB is 12.2%, which is similar to that of NCP with a significant seasonal 

difference (11.5% in winter and 60.4% in summer). The NMBs in the NCP, YRD and PRD are 

basically the same, about 45%, slightly better than 50.3% in SCB. 

Morris et al. (2005) provided a reference standard for MFB and MFE using hourly 

concentrations of simulated and observed PM2.5. The simulation performance is identified to be 400 

excellent when MFB < 15% and MFE < 35%, identified to be good when MFB < 30% and MFE < 

50%, and identified to be average when MFB < 60% and MFE < 75%, which are marked as bold, 

normal, and italic font, respectively, in Table 3. It can be seen that simulations in the YRD and PRD 

fall within the good level with the MFB/MFE reaching 21.1/42.9% and 8.6/40.1%, respectively. Both 

reached excellent levels in winter, which are 8.5/34.1% and 5.5/34.4%. respectively, indicating that 405 

the WRF/CUACE v1.0 model accurately captures the hourly variations of PM2.5 in the two regions. 

In the NCP region, the model still maintains a good simulation level (3.3/49.1%) in the area, with 

obvious overestimates in summer but still maintaining an average level (44.9/56.3%). The SCB 

region as a whole is at the average level (20.7/51.4%). The simulation of winter and spring is better 

than that of spring and summer. The reason why the simulation in SCB is relatively poor is that its 410 

topography is complex, which leads to inaccurate simulation of meteorological fields and further 

affects the simulation of chemical species. In addition, the uncertainty of emission sources over there 

is also a major factor (Zhang et al., 2019). 

As a whole, the seven statistical error indicators R, MB, ME, NMB, NME, MFB, and MFE in 

the four regions reached 0.63 (99% significance test), 2.7 μg m−3, 33.3 μg m−3, 2.8 %, 46.8 %, 415 

10.6 %, and 46.2%, respectively, which showed that the WRF/CUACE v1.0 model can reasonably 

reproduce the changes in PM2.5. 
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Statistical metrics for O3, NO2 and SO2, including index of agreement (IOA, see its definition in 

the supplement) (Willmott et al., 1980), NMB, and R, are shown in Table 4, along with a benchmark 

derived from the EPA (2005, 2007). In general, the R values of O3 and NO2 in the four regions are 420 

about 0.6, which pass the 99% significance test. For O3, NMBs indicate that the concentrations in the 

NCP, YRD, and PRD were well reproduced by simulations. The high consistency of the time series 

between the simulations and measurements was also reflected by the high values of IOA (>0.8). It 

should be noted that the NMB indicates that the O3 concentrations in SCB were overestimated, 

which is also reflected in the scatter plot (Fig. 4d), partially due to the relatively poor simulation of 425 

meteorological fields (Table S1). As the precursor of O3, simulation of NO2 over the NCP, YRD, 

PRD, and SCB was acceptable, with the NMBs all falling within the benchmark and IOAs greater 

than 0.70. In general, the statistical metrics for O3 and NO2 are comparable with other studies (Gao et 

al., 2018; Hu et al., 2016). The variations of SO2 in NCP and YRD were generally reproduced by the 

model with bias at -15.5 % and 24.55 %, respectively. However, in the PRD and SCB, SO2 430 

concentrations were substantially overestimated (Table 4 and Fig. 4k-l). As previous studies revealed, 

emissions of SO2 in eastern China were overestimated by national emission inventories (Zhang et al., 

2018; Zhou et al., 2019; Gao et al., 2016), which might partially contribute to the overestimation of 

SO2 in YRD and PRD. On the basis of the above analysis results, the simulation results are 

satisfactory, with the exception of SCB. 435 

5.3 Evaluation of SIA simulations with heterogeneous chemical reactions 

Heterogeneous chemical reactions have been shown to have important effects on the formation 

of SIA, especially during severe haze events with high humidity (Li et al., 2011; Wang et al., 2006; 

Zhao et al., 2013). The ground observations of SIA from 5 to 16 January 2019 in Langfang (NCP), 

from 3 to 29 December 2013 in Nanjing (YRD), and from 1 to 10 January 2017 in Chengdu (SCB) 440 

were collected for the evaluation of SIA simulations. Following the model configurations in Section 

4.2, we performed WRF/CUACE v1.0 simulations with (Exp_WH) and without (Exp_WoH) 

heterogenous chemistry on the three periods.  

Figure 5 illustrates the hourly variations of observed SIA concentration from the Exp_WH and 

Exp_WoH experiments. For Langfang site, the simulation without heterogenous chemistry 445 

(Exp_WoH) barely capture the sulfate increase (Fig. 5a). This was substantially improved when 

heterogenous chemistry was included (Exp_WH), although some observed peak values are not well 

captured, such as those on 14 January. The overestimation of nitrate was also improved, with the 

NMBs changing from 124.1% to 96.0% (Fig. 5b). It should be noted that the responses of sulfate and 



15 
 

nitrate to heterogenous chemistry are inverse, which might be attributed to the complex 450 

thermodynamic processes of SIA formation (Zheng et al., 2015). Sulfate and nitrate will compete for 

ammonium, which is now the only cation currently in the CUACE model, resulting in less 

ammonium nitrate and more ammonium sulfate because of the more thermodynamically stable 

features of ammonium sulfate. As a result of the dramatical increase in sulfate in Exp_WH, the 

ammonium concentrations slightly increase relative to that in Exp_WoH to achieve anion–cation 455 

balance, which leads to more overestimations in the Exp_WH experiment (Fig. 5c). For Nanjing and 

Chengdu site, the underestimation of sulfate (Fig. 5d and 5g) and overestimation of nitrate (Fig. 5e 

and 5h) were also improved to varying degrees, with bias of sulfate changing from −95.3 % to -

68.4 % in Nanjing and from -88.7 % to -80.1 % in Chengdu and the bias of nitrate changing from 

83.0 % to 54.6 % in Nanjing and from 67.6 % to 23.5 % in Chengdu. Nonetheless, deviations in SIA 460 

simulations are still too large to neglect in those regions. 

5.4 Comparison between the MM5/CUACE model and the WRF/CUACE v1.0 model 

It is necessary to compare the MM5/CUACE model with the new WRF/CUACE model for the 

purpose of assessing the viability of the newly developed model. To this end, a simulation was 

performed using the MM5/CUACE model for a winter month, i.e., January 2013, during which a long-465 

lasting haze event occurred in central and eastern China. The domain setting, anthropogenic emission 

inventory, initial and boundary fields of meteorology and chemistry are as the same as those of the 

WRF/CUACE in section 5.1. It should be known that the gas-phase chemistry mechanism and particle 

dry deposition scheme in MM5/CUACE model is RADM2 and Z01, respectively, that updated to 

CBM-Z and PZ10 in the new WRF/CUACE model. Physical parameterization used in the 470 

MM5/CUACE is shown in Table S3 in the supplement. 

Figure 6 presents a comparison of the modelled and observed daily concentrations of PM2.5, O3, 

NO2 and SO2 in the four regions. It can be seen that the concentrations of PM2.5, NO2 and SO2 simulated 

in WRF/CUACE are closer to the observations relative to those of MM5/CUACE model (change in 

bias from -23.0 % to -19.2 % for PM2.5, from 14.7 % to -2.4 % for NO2 and from -46.2 % to -37.5 % 475 

for SO2). The daily variations of the three species are also relatively better captured by the 

WRF/CUACE model (reflected by the R values changing from 0.45 to 0.62 for PM2.5, from 0.41 to 

0.49 for NO2 and from 0.19 to 0.32 for SO2). For O3, the differences of statistical metrics between the 

two models are not obvious. The MM5/CUACE model performed with a slightly smaller bias of -10.7 % 

but with a lower R value of 0.50, which are 14.3 % and 0.55, respectively in the WRF/CUACE 480 

simulation. In summary, the new WRF/CUACE model performed better than the MM5/CUACE model 
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in simulating air pollutants. 

6 Summary and future work 

This study develops the chemical module CUACE by adding heterogenous chemical reactions 

and introducing a particle dry deposition scheme developed by Petroff and Zhang (2010). The 485 

CUACE module is then incorporated into the WRF-Chem model to build the WRF/CUACE v1.0 

modelling system to take advantage of the better numerical dynamic core and the greater number of 

physical parameterization schemes of the WRF model compared with the MM5 model.  

We perform a three-year (2013, 2015, and 2017) model simulation using the WRF/CUACE v1.0 

model to evaluate its performance on reproducing surface concentration variations of PM2.5, O3, and 490 

NO2, which are now the main pollutants in China. A heavy haze pollution event that occurred during 

9–15 January 2019 in the NCP is also selected to evaluate the SIA simulations compared with 

intensive ground SIA observations. The results show that WRF/CUACE v1.0 can well capture the 

daily and hourly variations of PM2.5, especially in the YRD and PRD regions throughout the three 

years. For the NCP in winter, observed high concentrations larger than 200 μg m−3 are not well 495 

reproduced, which might be mainly due to uncertainties in the emissions inventory and the lack of 

some chemical reactions in the model. For NO2 and O3, the model shows small biases in the NCP, 

YRD, and PRD regions with correlation coefficients all larger than 0.60 and the NMBs all fall within 

the EPA benchmark (2005, 2007). The model shows relatively notable biases in the SCB region 

compared with the NCP, YRD, and PRD regions for the three pollutants, which may be mainly due to 500 

the complex terrain in the SCB (Zhang et al., 2019) and insufficient meteorological data available for 

the region for assimilation in the NCEP-FNL reanalysis data. Simulations of SIA are generally 

improved, especially for sulfate in the NCP. However, large uncertainties remain in the mechanisms 

of the heterogenous chemical reactions in the model, such as the determination of the uptake 

coefficients, which is based on previous studies on dust surfaces. 505 

There are still several limitations in the current version of the WRF/CUACE v1.0 model that 

need to be addressed in future development. The feedback of particles, which can be divided into 

direct and indirect effects, is recognized to be crucial in online coupled models, especially during 

periods with high particle loading. Currently in the WRF-Chem model, the direct effects of aerosols 

are processed following the methodology described by Ghan et al. (2001). Our future work will first 510 

focus on implementing the direct effects of aerosols, i.e. radiation feedback, following the Mie 

calculation to realize the direct aerosol forcing. The second step is to implement the VBS scheme to 

add the missing processes of SOA, which has been implied to be a main cause in the underestimation 
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of OA formation (Gao et al., 2017; Heald et al., 2005; Spracklen et al., 2011). Although the original 

particle dry deposition scheme is updated with that developed by Petroff and Zhang (2010), it is 515 

difficult to evaluate whether the dry deposition process is improved as the limited technology of dry 

deposition observations restricts direct observations of particle dry deposition. With the observed 

PM2.5 concentrations, model improvements with and without the updated dry deposition scheme are 

preliminary evaluated (Figure S3 in the supplement). With regards to particle dry deposition, our aim 

is to implement several schemes in the CUACE module, such as the schemes developed by Emerson 520 

et al. (2020), Zhang and He (2014), Zhang and Shao (2014), and Kouznetsov and Sofiev (2012), to 

evaluate uncertainties in the schemes on aerosol simulation, which might help the development of the 

particle dry deposition scheme. 
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 710 

Figure 1. Schematic of modules in the WRF/CUACE v1.0 system. 
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Figure 2. Model domains with the terrain distribution. Red circles indicate the cities where the surface observations of air 

pollutants are used for model evaluation. The Langfang, Nanjing and Chengdu sites marked in this figure indicate where the 715 

SIA observations are collected for evaluation of SIA simulations.   
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Figure 3. Scatter plots and correlation coefficients of daily PM2.5 concentrations (μg m−3) between observed and simulated 

values in different seasons in the (a) NCP, (b) YRD, (c) PRD, and (d) SCB regions. 

 720 
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Figure 4. Scatter plots of modelled and observed hourly concentrations of (a-d) O3, (e-h) NO2 and (i-l) SO2 in the NCP, YRD, 

PRD, and SCB regions. 

  725 
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Figure 5. Observed and simulated hourly SIA concentrations from the Exp_WH and Exp_WoH experiments at the (a-c) 

Langfang, (d-f) Nanjing and (g-i) Chengdu sites. 
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 730 

Figure 6. Scatter plots of simulated, with (blue) MM5/CUACE and (red) WRF/CUACE, and observed daily 

concentrations of (a) PM2.5, (b) O3, (c) NO2 and (d) SO2. 
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Table 1 Uptake coefficients for reactions (14)-(22). 

Gas species Uptake coefficients References 

H2O2 𝛾 =1.0×10-4 Bian and Zender (2003) 

HNO3 𝛾 =1.0×10-1 Seisel et al. (2004) 

HO2 𝛾 =1.0×10-1 Phadnis and Carmichael (2000) 

N2O5 

𝛾 =

{
 
 

 
 
𝛾𝑙𝑜𝑤 , 𝑅𝐻 ∈ [0,50%]

𝛾𝑙𝑜𝑤 +
(𝛾ℎ𝑖𝑔ℎ − 𝛾𝑙𝑜𝑤)

(𝑅𝐻𝑚𝑎𝑥 − 0.5)
∗ (𝑅𝐻 − 0.5), 𝑅𝐻 ∈ (50%,𝑅𝐻𝑚𝑎𝑥]

𝛾ℎ𝑖𝑔ℎ, 𝑅𝐻 ∈ (𝑅𝐻𝑚𝑎𝑥, 100%]

 

Wang et al. (2012) 

Zheng et al. (2015) NO2 

NO3 

SO2 

O3 𝛾 =3.0×10-5 Michel et al. (2003) 

OH 𝛾 =1.0×10-4 Zhang and Carmichael (1999) 

* The γlow and γhigh are the lower and upper limits of γ values. The RHmax is the RH value at which the γ reaches the 735 

upper limit. The values of γlow, γhigh and RHmax are referred to the work of Zheng et al. (2015) and Wang et al., 

(2012). That is, values of γlow for N2O5, NO2, NO3 and SO2 are 1E-3, 4.4E-5, 0.1 and 2E-5, respectively 

corresponding to the values of γhigh at 0.1, 2E-4, 0.23, 5E-5. The RHmax is 70 % for NxOy, and is 100 % for SO2. 

 

 740 

Table 2 Physical parameterization schemes used in the modelling study. 

Physical management Parameterization References 

Microphysics scheme 

Shortwave radiation 

Longwage radiation 

Land surface scheme 

Boundary layer scheme 

Cumulus scheme 

Lin 

Goddard 

RRTM 

Noah 

MYJ 

Grell-3D 

Lin et al. (1983) 

Chou and Suarez (1994) 

Mlawer et al. (1997) 

Chen and Dudhia (2001) 

Janjić (1994) 

Grell (1993) 
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Table 3 Statistical metrics for hourly PM2.5 in four haze contaminated areas (2013–2017), in which bold, 

normal , and italic font for MFB and MFE correspond to the “excellent”, “good”, and “average” levels in 745 

Morris et al. (2005), respectively. 

 R MB 

μg m-3 

ME 

μg m-3 

NMB 

% 

NME 

% 

MFB 

% 

MFE 

% 

NCP 

Winter 

Spring 

Summer 

Autumn 

0.59 

0.59 

0.57 

0.47 

0.63 

-5.0 

-45.0 

-9.5 

33.9 

-0.8 

44.5 

67.7 

28.0 

42.9 

39.2 

-5.4 

-28.4 

-14.0 

55.1 

-0.9 

47.5 

42.7 

41.1 

69.8 

45.4 

3.3 

-22.5 

-20.7 

44.9 

9.0 

49.1 

47.0 

47.4 

56.3 

45.9 

YRD 

Winter 

Spring 

Summer 

Autumn 

0.71 

0.75 

0.49 

0.56 

0.66 

12.9 

6.0 

14.2 

16.4 

15.1 

26.9 

30.6 

26.3 

23.3 

27.3 

21.8 

6.4 

25.4 

47.8 

28.7 

45.3 

32.5 

47.1 

67.9 

51.8 

21.1 

8.5 

19.1 

26.7 

29.5 

42.9 

34.1 

40.0 

49.4 

48.0 

PRD 

Winter 

Spring 

Summer 

Autumn 

0.68 

0.56 

0.64 

0.68 

0.54 

5.3 

3.0 

6.9 

2.8 

8.6 

17.1 

20.5 

17.6 

8.5 

21.8 

13.1 

5.0 

19.5 

14.8 

17.7 

42.1 

34.6 

49.7 

44.4 

45.2 

8.6 

5.5 

4.2 

5.9 

18.3 

40.1 

34.4 

45.6 

39.0 

41.9 

SCB 

Winter 

Spring 

Summer 

Autumn 

0.59 

0.41 

0.49 

0.40 

0.58 

7.6 

-13.3 

4.1 

21.6 

15.9 

31.3 

46.7 

22.4 

28.2 

28.2 

12.2 

-11.5 

8.4 

60.4 

31.4 

50.3 

40.4 

45.9 

78.6 

55.7 

20.7 

-8.3 

11.4 

38.7 

37.2 

51.4 

45.2 

46.1 

58.9 

54.3 
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Table 4 Statistical metrics for O3 and NO2 concentrations. Criteria for O3 are from the EPA (2005, 2007). The 

values that do not meet the criteria are in bold. 750 

Variables  NCP YRD PRD SCB Criteria 

O3 

 

 

R 

NMB (%) 

IOA 

0.64 

-0.60 

0.80 

0.66 

-8.21 

0.80 

0.77 

7.24 

0.87 

0.60 

77.61 

0.67 

 

≤±15 

NO2 

 

 

R 

NMB (%) 

IOA 

0.60 

-6.62 

0.77 

0.64 

14.42 

0.77 

0.67 

-2.45 

0.81 

0.57 

-14.36 

0.71 

 

 

SO2 R 

NMB (%) 

IOA 

0.65 

-15.48 

0.72 

0.41 

24.55 

0.60 

0.57 

125.74 

0.49 

0.47 

159.44 

0.32 

 

 

 


