Articles | Volume 14, issue 11
https://doi.org/10.5194/gmd-14-6847-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-14-6847-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Ice Algae Model Intercomparison Project phase 2 (IAMIP2)
Hakase Hayashida
CORRESPONDING AUTHOR
Institute for Marine and Antarctic Studies, University of Tasmania,
Hobart, TAS, Australia
Australian Research Council Centre of Excellence for Climate Extremes, Australia
Meibing Jin
School of Marine Sciences, Nanjing University of Information Science
and Technology, Nanjing, China
Southern Laboratory of Ocean Science and Engineering, Zhuhai, China
International Arctic Research Center, University of Alaska Fairbanks,
Fairbanks, AK, USA
Nadja S. Steiner
Fisheries and Oceans Canada, Institute of Ocean Sciences, Sidney, BC,
Canada
Canadian Centre for Climate Modelling and Analysis, Environment and
Climate Change Canada, Victoria, BC, Canada
Neil C. Swart
Canadian Centre for Climate Modelling and Analysis, Environment and
Climate Change Canada, Victoria, BC, Canada
Eiji Watanabe
Japan Agency for Marine-Earth Science and Technology, Yokosuka,
Kanagawa, Japan
Russell Fiedler
CSIRO Oceans and Atmosphere, Hobart, TAS, Australia
Andrew McC. Hogg
Australian Research Council Centre of Excellence for Climate Extremes, Australia
Research School of Earth Sciences, Australian National University,
Canberra, ACT, Australia
Andrew E. Kiss
Australian Research Council Centre of Excellence for Climate Extremes, Australia
Research School of Earth Sciences, Australian National University,
Canberra, ACT, Australia
Richard J. Matear
Australian Research Council Centre of Excellence for Climate Extremes, Australia
CSIRO Oceans and Atmosphere, Hobart, TAS, Australia
Peter G. Strutton
Institute for Marine and Antarctic Studies, University of Tasmania,
Hobart, TAS, Australia
Australian Research Council Centre of Excellence for Climate Extremes, Australia
Related authors
Sonya L. Fiddes, Matthew T. Woodhouse, Marc D. Mallet, Liam Lamprey, Ruhi S. Humphries, Alain Protat, Simon P. Alexander, Hakase Hayashida, Samuel G. Putland, Branka Miljevic, and Robyn Schofield
EGUsphere, https://doi.org/10.5194/egusphere-2024-3125, https://doi.org/10.5194/egusphere-2024-3125, 2024
Short summary
Short summary
The interaction between natural marine aerosols, clouds and radiation in the Southern Ocean is a major source of uncertainty in climate models. We evaluate the Australian climate model using aerosol observations and find it underestimates aerosol number often by over 50 %. Model changes were tested to improve aerosol concentrations, but some of our changes had severe negative effects on the larger climate system, highlighting issues in aerosol-cloud interaction modelling.
Laurie C. Menviel, Paul Spence, Andrew E. Kiss, Matthew A. Chamberlain, Hakase Hayashida, Matthew H. England, and Darryn Waugh
Biogeosciences, 20, 4413–4431, https://doi.org/10.5194/bg-20-4413-2023, https://doi.org/10.5194/bg-20-4413-2023, 2023
Short summary
Short summary
As the ocean absorbs 25% of the anthropogenic emissions of carbon, it is important to understand the impact of climate change on the flux of carbon between the ocean and the atmosphere. Here, we use a very high-resolution ocean, sea-ice, carbon cycle model to show that the capability of the Southern Ocean to uptake CO2 has decreased over the last 40 years due to a strengthening and poleward shift of the southern hemispheric westerlies. This trend is expected to continue over the coming century.
James R. Christian, Kenneth L. Denman, Hakase Hayashida, Amber M. Holdsworth, Warren G. Lee, Olivier G. J. Riche, Andrew E. Shao, Nadja Steiner, and Neil C. Swart
Geosci. Model Dev., 15, 4393–4424, https://doi.org/10.5194/gmd-15-4393-2022, https://doi.org/10.5194/gmd-15-4393-2022, 2022
Short summary
Short summary
The ocean chemistry and biology modules of the latest version of the Canadian Earth System Model (CanESM5) are described in detail and evaluated against observations and other Earth system models. In the basic CanESM5 model, ocean biogeochemistry is similar to CanESM2 but embedded in a new ocean circulation model. In addition, an entirely new model, the Canadian Ocean Ecosystem model (CanESM5-CanOE), was developed. The most significant difference is that CanOE explicitly includes iron.
Guillaume Liniger, Delphine Lannuzel, Sébastien Moreau, Michael S. Dinniman, and Peter G. Strutton
EGUsphere, https://doi.org/10.5194/egusphere-2025-3149, https://doi.org/10.5194/egusphere-2025-3149, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Our study investigates the links between the phytoplankton bloom and environmental parameters in the Amundsen polynyas (areas of open water within sea ice). Between 1998 and 2017, we find that changes in melting ice shelves may have different impacts on biological productivity between the Pine Island (PIP) and Amundsen Sea (ASP) polynyas. While ice shelf melting seems to play an important role for phytoplankton growth in the ASP, light and warmer waters appear to be more important in the PIP.
Robert Massom, Phillip Reid, Stephen Warren, Bonnie Light, Donald Perovich, Luke Bennetts, Petteri Uotila, Siobhan O'Farrell, Michael Meylan, Klaus Meiners, Pat Wongpan, Alexander Fraser, Alessandro Toffoli, Giulio Passerotti, Peter Strutton, Sean Chua, and Melissa Fedrigo
EGUsphere, https://doi.org/10.5194/egusphere-2025-3166, https://doi.org/10.5194/egusphere-2025-3166, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
Ocean waves play a previously-neglected role in the rapid annual melting of Antarctic sea ice by flooding and pulverising floes, removing the snow cover and reducing the albedo by an estimated 0.38–0.54 – to increase solar absorption and enhance the vertical melt rate by up to 5.2 cm/day. Ice algae further decrease the albedo, to increase the melt-rate enhancement to up to 6.1 cm/day. Melting is accelerated by four previously-unconsidered wave-driven positive feedbacks.
Wilma G. C. Huneke, Andy McC. Hogg, Martin Dix, Daohua Bi, Arnold Sullivan, Shayne McGregor, Chiara Holgate, Siobhan P. O'Farrell, and Micael J. T. Oliveira
EGUsphere, https://doi.org/10.5194/egusphere-2025-1006, https://doi.org/10.5194/egusphere-2025-1006, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
A new configuration of the Australian Community Climate and Earth System Simulator coupled model, ACCESS-CM2, with a higher resolution ocean-sea ice component is introduced. The new version of the coupled climate model was designed to better capture smaller-scale ocean motions. While this configuration improves the representation of many aspects of the climate system, some biases from the existing lower-resolution version persist.
Pearse James Buchanan, P. Jyoteeshkumar Reddy, Richard J. Matear, Matthew A. Chamberlain, Tyler Rohr, Dougal Squire, and Elizabeth H. Shadwick
EGUsphere, https://doi.org/10.5194/egusphere-2024-4026, https://doi.org/10.5194/egusphere-2024-4026, 2025
Short summary
Short summary
We developed a cost-effective method to improve ocean models for studying the global carbon cycle. Using machine learning, we optimized parameters in the WOMBAT-lite model, enhancing its accuracy in predicting chlorophyll levels, air-sea carbon dioxide exchange, and phytoplankton nutrient use. This approach increases model reliability and offers a pathway for scientists to better understand and predict ocean changes, contributing to improved insights into Earth's climate system.
Claire K. Yung, Madelaine G. Rosevear, Adele K. Morrison, Andrew McC Hogg, and Yoshihiro Nakayama
EGUsphere, https://doi.org/10.5194/egusphere-2024-3513, https://doi.org/10.5194/egusphere-2024-3513, 2024
Short summary
Short summary
Ocean models are used to understand how the ocean interacts with the Antarctic Ice Sheet, but they are too coarse in resolution to capture the small-scale ocean processes driving melting and require a parameterisation to predict melt. Previous parameterisations ignore key processes occurring in some regions of Antarctica. We develop a parameterisation with the feedback of stratification on melting and test it in idealised and regional ocean models, finding changes to melt rate and circulation.
Sonya L. Fiddes, Matthew T. Woodhouse, Marc D. Mallet, Liam Lamprey, Ruhi S. Humphries, Alain Protat, Simon P. Alexander, Hakase Hayashida, Samuel G. Putland, Branka Miljevic, and Robyn Schofield
EGUsphere, https://doi.org/10.5194/egusphere-2024-3125, https://doi.org/10.5194/egusphere-2024-3125, 2024
Short summary
Short summary
The interaction between natural marine aerosols, clouds and radiation in the Southern Ocean is a major source of uncertainty in climate models. We evaluate the Australian climate model using aerosol observations and find it underestimates aerosol number often by over 50 %. Model changes were tested to improve aerosol concentrations, but some of our changes had severe negative effects on the larger climate system, highlighting issues in aerosol-cloud interaction modelling.
Qiang Wang, Qi Shu, Alexandra Bozec, Eric P. Chassignet, Pier Giuseppe Fogli, Baylor Fox-Kemper, Andy McC. Hogg, Doroteaciro Iovino, Andrew E. Kiss, Nikolay Koldunov, Julien Le Sommer, Yiwen Li, Pengfei Lin, Hailong Liu, Igor Polyakov, Patrick Scholz, Dmitry Sidorenko, Shizhu Wang, and Xiaobiao Xu
Geosci. Model Dev., 17, 347–379, https://doi.org/10.5194/gmd-17-347-2024, https://doi.org/10.5194/gmd-17-347-2024, 2024
Short summary
Short summary
Increasing resolution improves model skills in simulating the Arctic Ocean, but other factors such as parameterizations and numerics are at least of the same importance for obtaining reliable simulations.
Laurie C. Menviel, Paul Spence, Andrew E. Kiss, Matthew A. Chamberlain, Hakase Hayashida, Matthew H. England, and Darryn Waugh
Biogeosciences, 20, 4413–4431, https://doi.org/10.5194/bg-20-4413-2023, https://doi.org/10.5194/bg-20-4413-2023, 2023
Short summary
Short summary
As the ocean absorbs 25% of the anthropogenic emissions of carbon, it is important to understand the impact of climate change on the flux of carbon between the ocean and the atmosphere. Here, we use a very high-resolution ocean, sea-ice, carbon cycle model to show that the capability of the Southern Ocean to uptake CO2 has decreased over the last 40 years due to a strengthening and poleward shift of the southern hemispheric westerlies. This trend is expected to continue over the coming century.
Benoît Pasquier, Mark Holzer, Matthew A. Chamberlain, Richard J. Matear, Nathaniel L. Bindoff, and François W. Primeau
Biogeosciences, 20, 2985–3009, https://doi.org/10.5194/bg-20-2985-2023, https://doi.org/10.5194/bg-20-2985-2023, 2023
Short summary
Short summary
Modeling the ocean's carbon and oxygen cycles accurately is challenging. Parameter optimization improves the fit to observed tracers but can introduce artifacts in the biological pump. Organic-matter production and subsurface remineralization rates adjust to compensate for circulation biases, changing the pathways and timescales with which nutrients return to the surface. Circulation biases can thus strongly alter the system’s response to ecological change, even when parameters are optimized.
Anne Marie Treguier, Clement de Boyer Montégut, Alexandra Bozec, Eric P. Chassignet, Baylor Fox-Kemper, Andy McC. Hogg, Doroteaciro Iovino, Andrew E. Kiss, Julien Le Sommer, Yiwen Li, Pengfei Lin, Camille Lique, Hailong Liu, Guillaume Serazin, Dmitry Sidorenko, Qiang Wang, Xiaobio Xu, and Steve Yeager
Geosci. Model Dev., 16, 3849–3872, https://doi.org/10.5194/gmd-16-3849-2023, https://doi.org/10.5194/gmd-16-3849-2023, 2023
Short summary
Short summary
The ocean mixed layer is the interface between the ocean interior and the atmosphere and plays a key role in climate variability. We evaluate the performance of the new generation of ocean models for climate studies, designed to resolve
ocean eddies, which are the largest source of ocean variability and modulate the mixed-layer properties. We find that the mixed-layer depth is better represented in eddy-rich models but, unfortunately, not uniformly across the globe and not in all models.
Sergey Kravtsov, Ilijana Mastilovic, Andrew McC. Hogg, William K. Dewar, and Jeffrey R. Blundell
Geosci. Model Dev., 15, 7449–7469, https://doi.org/10.5194/gmd-15-7449-2022, https://doi.org/10.5194/gmd-15-7449-2022, 2022
Short summary
Short summary
Climate is a complex system whose behavior is shaped by multitudes of processes operating on widely different spatial scales and timescales. In hierarchical modeling, one goes back and forth between highly idealized process models and state-of-the-art models coupling the entire range of climate subsystems to identify specific phenomena and understand their dynamics. The present contribution highlights an intermediate climate model focussing on midlatitude ocean–atmosphere interactions.
James R. Christian, Kenneth L. Denman, Hakase Hayashida, Amber M. Holdsworth, Warren G. Lee, Olivier G. J. Riche, Andrew E. Shao, Nadja Steiner, and Neil C. Swart
Geosci. Model Dev., 15, 4393–4424, https://doi.org/10.5194/gmd-15-4393-2022, https://doi.org/10.5194/gmd-15-4393-2022, 2022
Short summary
Short summary
The ocean chemistry and biology modules of the latest version of the Canadian Earth System Model (CanESM5) are described in detail and evaluated against observations and other Earth system models. In the basic CanESM5 model, ocean biogeochemistry is similar to CanESM2 but embedded in a new ocean circulation model. In addition, an entirely new model, the Canadian Ocean Ecosystem model (CanESM5-CanOE), was developed. The most significant difference is that CanOE explicitly includes iron.
Charles D. Koven, Vivek K. Arora, Patricia Cadule, Rosie A. Fisher, Chris D. Jones, David M. Lawrence, Jared Lewis, Keith Lindsay, Sabine Mathesius, Malte Meinshausen, Michael Mills, Zebedee Nicholls, Benjamin M. Sanderson, Roland Séférian, Neil C. Swart, William R. Wieder, and Kirsten Zickfeld
Earth Syst. Dynam., 13, 885–909, https://doi.org/10.5194/esd-13-885-2022, https://doi.org/10.5194/esd-13-885-2022, 2022
Short summary
Short summary
We explore the long-term dynamics of Earth's climate and carbon cycles under a pair of contrasting scenarios to the year 2300 using six models that include both climate and carbon cycle dynamics. One scenario assumes very high emissions, while the second assumes a peak in emissions, followed by rapid declines to net negative emissions. We show that the models generally agree that warming is roughly proportional to carbon emissions but that many other aspects of the model projections differ.
Matthew A. Chamberlain, Peter R. Oke, Russell A. S. Fiedler, Helen M. Beggs, Gary B. Brassington, and Prasanth Divakaran
Earth Syst. Sci. Data, 13, 5663–5688, https://doi.org/10.5194/essd-13-5663-2021, https://doi.org/10.5194/essd-13-5663-2021, 2021
Short summary
Short summary
BRAN2020 is a dynamical reconstruction of the ocean, combining observations with a high-resolution global ocean model. BRAN2020 currently spans January 1993 to December 2019, assimilating in situ temperature and salinity, as well as satellite-based sea level and sea surface temperature. A new multiscale approach to data assimilation constrains the broad-scale ocean properties and turbulent mesoscale dynamics in two steps, showing closer agreement to observations than all previous versions.
Claudia Tebaldi, Kevin Debeire, Veronika Eyring, Erich Fischer, John Fyfe, Pierre Friedlingstein, Reto Knutti, Jason Lowe, Brian O'Neill, Benjamin Sanderson, Detlef van Vuuren, Keywan Riahi, Malte Meinshausen, Zebedee Nicholls, Katarzyna B. Tokarska, George Hurtt, Elmar Kriegler, Jean-Francois Lamarque, Gerald Meehl, Richard Moss, Susanne E. Bauer, Olivier Boucher, Victor Brovkin, Young-Hwa Byun, Martin Dix, Silvio Gualdi, Huan Guo, Jasmin G. John, Slava Kharin, YoungHo Kim, Tsuyoshi Koshiro, Libin Ma, Dirk Olivié, Swapna Panickal, Fangli Qiao, Xinyao Rong, Nan Rosenbloom, Martin Schupfner, Roland Séférian, Alistair Sellar, Tido Semmler, Xiaoying Shi, Zhenya Song, Christian Steger, Ronald Stouffer, Neil Swart, Kaoru Tachiiri, Qi Tang, Hiroaki Tatebe, Aurore Voldoire, Evgeny Volodin, Klaus Wyser, Xiaoge Xin, Shuting Yang, Yongqiang Yu, and Tilo Ziehn
Earth Syst. Dynam., 12, 253–293, https://doi.org/10.5194/esd-12-253-2021, https://doi.org/10.5194/esd-12-253-2021, 2021
Short summary
Short summary
We present an overview of CMIP6 ScenarioMIP outcomes from up to 38 participating ESMs according to the new SSP-based scenarios. Average temperature and precipitation projections according to a wide range of forcings, spanning a wider range than the CMIP5 projections, are documented as global averages and geographic patterns. Times of crossing various warming levels are computed, together with benefits of mitigation for selected pairs of scenarios. Comparisons with CMIP5 are also discussed.
Ann Keen, Ed Blockley, David A. Bailey, Jens Boldingh Debernard, Mitchell Bushuk, Steve Delhaye, David Docquier, Daniel Feltham, François Massonnet, Siobhan O'Farrell, Leandro Ponsoni, José M. Rodriguez, David Schroeder, Neil Swart, Takahiro Toyoda, Hiroyuki Tsujino, Martin Vancoppenolle, and Klaus Wyser
The Cryosphere, 15, 951–982, https://doi.org/10.5194/tc-15-951-2021, https://doi.org/10.5194/tc-15-951-2021, 2021
Short summary
Short summary
We compare the mass budget of the Arctic sea ice in a number of the latest climate models. New output has been defined that allows us to compare the processes of sea ice growth and loss in a more detailed way than has previously been possible. We find that that the models are strikingly similar in terms of the major processes causing the annual growth and loss of Arctic sea ice and that the budget terms respond in a broadly consistent way as the climate warms during the 21st century.
Cameron M. O'Neill, Andrew McC. Hogg, Michael J. Ellwood, Bradley N. Opdyke, and Stephen M. Eggins
Clim. Past, 17, 171–201, https://doi.org/10.5194/cp-17-171-2021, https://doi.org/10.5194/cp-17-171-2021, 2021
Short summary
Short summary
We undertake a model–data study of the last glacial–interglacial cycle of atmospheric CO2, spanning 0–130 ka. We apply a carbon cycle box model, constrained with glacial–interglacial observations, and solve for optimal model parameter values against atmospheric and ocean proxy data. The results indicate that the last glacial drawdown in atmospheric CO2 was delivered mainly by slowing ocean circulation, lower sea surface temperatures and also increased Southern Ocean biological productivity.
Cited articles
Bell, G. D. and Halpert, M. S.: Climate Assessment for 1997, Bull. Am. Meteorol. Soc., 79, S1–S50, 1998.
Bi, D., Dix, M., Marsland, S., O'Farrell, S., Sullivan, A., Bodman, R., Law,
R., Harman, I., Srbinovsky, J., Rashid, H., Dobrohotoff, P., Mackallah C., Yan, H., Hirst, A., Savita, A., Dias, F. B., Woodhouse, M., Fiedler, R., and Heerdegen A.: Configuration and
spin-up of ACCESS-CM2, the new generation Australian Community Climate and
Earth System Simulator Coupled Model, J. South. Hemisphere Earth Syst. Sci.
Submitt., 70, 225–251, https://doi.org/10.1071/ES19040, 2020.
Bitz, C. M. and Lipscomb, W. H.: An energy-conserving thermodynamic
model of sea ice, J. Geophys. Res.-Oceans, 104, 15669–15677, 1999.
Bitz, C. M., Holland, M. M., Weaver, A. J., and Eby, M.: Simulating the
ice-thickness distribution in a coupled climate model, J. Geophys. Res.-Oceans, 106, 2441–2463, 2001.
Bock, J., Michou, M., Nabat, P., Abe, M., Mulcahy, J. P., Olivié, D. J. L., Schwinger, J., Suntharalingam, P., Tjiputra, J., van Hulten, M., Watanabe, M., Yool, A., and Séférian, R.: Evaluation of ocean dimethylsulfide concentration and emission in CMIP6 models, Biogeosciences, 18, 3823–3860, https://doi.org/10.5194/bg-18-3823-2021, 2021.
Bouillon, S., Maqueda, M. A. M., Legat, V., and Fichefet, T.: An
elastic–viscous–plastic sea ice model formulated on Arakawa B and C grids,
Ocean Model, 27, 174–184, 2009.
Castellani, G., Schaafsma, F. L., Arndt, S., Lange, B. A., Peeken, I.,
Ehrlich, J., David, C., Ricker, R., Krumpen, T., Hendricks, S., et al., Large-Scale Variability of Physical and Biological Sea-Ice
Properties in Polar Oceans, Front. Mar. Sci., 7, 536
https://doi.org/10.3389/fmars.2020.00536, 2020.
Cavan, E. L., Belcher, A., Atkinson, A., Hill, S. L., Kawaguchi, S.,
McCormack, S., Meyer, B., Nicol, S., Ratnarajah, L., Schmidt, K., Steinberg, D. K., Tarling, G. A., and Boyd, P. W.:
The importance of Antarctic krill in biogeochemical cycles, Nat.
Commun., 10, 4742, https://doi.org/10.1038/s41467-019-12668-7, 2019.
Cimoli, E., Lucieer, V., Meiners, K. M., Chennu, A., Castrisios, K., Ryan,
K. G., Lund-Hansen, L. C., Martin, A., Kennedy, F., and Lucieer, A.:
Mapping the in situ microspatial distribution of ice algal biomass through
hyperspectral imaging of sea-ice cores, Sci. Rep., 10, 21848, https://doi.org/10.1038/s41598-020-79084-6, 2020.
Consortium for Ocean-Sea Ice Modelling in Australia (COSIMA): Ice Algae Model Intercomparison Project phase 2 (IAMIP2), COSIMA [code], available at: http://cosima.org.au/index.php/working-groups/iamip2 (last access: 3 November 2021).
Darnis, G., Robert, D., Pomerleau, C., Link, H., Archambault, P., Nelson,
R. J., Geoffroy, M., Tremblay, J.-É., Lovejoy, C., Ferguson, S. H., Hunt, B. P. V., and Fortier, L.: Current state and trends in Canadian Arctic marine ecosystems: II.
Heterotrophic food web, pelagic-benthic coupling, and biodiversity, Clim.
Change, 115, 179–205, 2012.
Duarte, P., Assmy, P., Hop, H., Spreen, G., Gerland, S., and Hudson, S. R.:
The importance of vertical resolution in sea ice algae production
models, J. Mar. Syst., 145, 69–90, 2015.
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016.
Fichefet, T. and Maqueda, M. A. M.: Sensitivity of a global sea ice
model to the treatment of ice thermodynamics and dynamics, J. Geophys. Res.-Oceans, 102, 12609–12646, 1997.
Galí, M., Devred, E., Babin, M., and Levasseur, M.: Decadal
increase in Arctic dimethylsulfide emission, P. Natl. Acad. Sci.,
201904378, 116
https://doi.org/10.1073/pnas.1904378116, 2019.
Garcia, H. E., Locarnini, R. A., Boyer, T. P., Antonov, J. I., Baranova, O. K.,
Zweng, M. M., Reagan, J. R., Johnson, D. R., Mishonov, A. V., and Levitus, S.:
World ocean atlas 2013, Dissolved inorganic nutrients
(phosphate, nitrate, silicate), 4, 76, https://doi.org/10.7289/V5J67DWD, 2013.
Gong, D. and Wang, S.: Definition of Antarctic Oscillation index,
Geophys. Res. Lett., 26, 459–462, 1999.
Griffies, S. M., Danabasoglu, G., Durack, P. J., Adcroft, A. J., Balaji, V., Böning, C. W., Chassignet, E. P., Curchitser, E., Deshayes, J., Drange, H., Fox-Kemper, B., Gleckler, P. J., Gregory, J. M., Haak, H., Hallberg, R. W., Heimbach, P., Hewitt, H. T., Holland, D. M., Ilyina, T., Jungclaus, J. H., Komuro, Y., Krasting, J. P., Large, W. G., Marsland, S. J., Masina, S., McDougall, T. J., Nurser, A. J. G., Orr, J. C., Pirani, A., Qiao, F., Stouffer, R. J., Taylor, K. E., Treguier, A. M., Tsujino, H., Uotila, P., Valdivieso, M., Wang, Q., Winton, M., and Yeager, S. G.: OMIP contribution to CMIP6: experimental and diagnostic protocol for the physical component of the Ocean Model Intercomparison Project, Geosci. Model Dev., 9, 3231–3296, https://doi.org/10.5194/gmd-9-3231-2016, 2016
Hasumi, H.: CCSR Ocean Component Model (COCO) version 4.0 (University of Tokyo), 111 pp, 2015, https://ccsr.aori.u-tokyo.ac.jp/~hasumi/COCO/coco4.pdf (last access date: 3 November 2021), 2006.
Hayashida, H.: EC-Earth3 SSP585 atmospheric forcing dataset for the Ice Algae Model Intercomparison Project phase 2 (IAMIP2) projection experiment v1.0, NCI National Research Data Collection [data set], https://doi.org/10.25914/606edd5d96a88, 2021a.
Hayshida, H.: Atmospheric forcing datasets for the Ice Algae Model Intercomparison Project phase 2 (IAMIP2) projection experiments v1.0, NCI National Research Data Collection [data set], https://doi.org/10.25914/611f4e2a27300, 2021b.
Hayashida H.: hakaseh/prep_iamip2_forcing: Atmospheric forcing datasets for the IAMIP2 projection experiments (4 projections) (v1.1), Zenodo, [data set], https://doi.org/10.5281/zenodo.5140591, 2021c.
Hayashida, H.: hakaseh/iamip2_cmip6_analysis: IAMIP2 protocol paper (GMD) (Version v1), Zenodo [data set], https://doi.org/10.5281/zenodo.5637381, 2021d.
Hayashida, H., Christian, J. R., Holdsworth, A. M., Hu, X., Monahan, A. H., Mortenson, E., Myers, P. G., Riche, O. G. J., Sou, T., and Steiner, N. S.: CSIB v1 (Canadian Sea-ice Biogeochemistry): a sea-ice biogeochemical model for the NEMO community ocean modelling framework, Geosci. Model Dev., 12, 1965–1990, https://doi.org/10.5194/gmd-12-1965-2019, 2019.
Holdsworth, A. M. and Myers, P. G.: The Influence of High-Frequency
Atmospheric Forcing on the Circulation and Deep Convection of the Labrador
Sea, J. Clim., 28, 4980–4996, 2015.
Hunke, E. C. and Dukowicz, J. K.: An elastic-viscous-plastic model for
sea ice dynamics, J. Phys. Oceanogr., 27, 1849–1867, 1997.
Hu, X. and Myers, P. G.: A Lagrangian view of Pacific water inflow
pathways in the Arctic Ocean during model spin-up, Ocean Model, 71, 66–80, 2013.
Jeffery, N., Elliott, S. M., Hunke, E. C., Lipscomb, W. H., and Turner, A. K.: Biogeochemistry of Cice: The Los Alamos Sea Ice Model Documentation
and Software User's Manual Zbgc_ colpkg Modifications to
Version 5 (Los Alamos National Lab, (LANL), Los Alamos, NM (United States)), https://doi.org/10.2172/1329842, 2016.
Jeffery, N., Maltrud, M. E., Hunke, E. C., Wang, S., Wolfe, J., Turner, A. K.,
Burrows, S. M., Shi, X., Lipscomb, W. H., Maslowski, W., and Calvin, K. V.: Investigating controls on sea ice algal production using E3SMv1.1-BGC, Ann.
Glaciol, 61, 51–72, https://doi.org/10.1017/aog.2020.7, 2020.
Jin, M., Deal, C. J., Wang, J., Shin, K.-H., Tanaka, N., Whitledge, T. E.,
Lee, S. H., and Gradinger, R. R.: Controls of the landfast ice–ocean
ecosystem offshore Barrow, Alaska, Ann. Glaciol., 44, 63–72, 2006.
Jin, M., Deal, C., Maslowski, W., Matrai, P., Roberts, A., Osinski, R., Lee,
Y. J., Frants, M., Elliott, S., Jeffery, N., Hunke, E., Wang, S.: Effects of Model
Resolution and Ocean Mixing on Forced Ice-Ocean Physical and Biogeochemical
Simulations Using Global and Regional System Models, J. Geophys. Res.-Oceans, 123, 358–377, 2018.
Kishi, M. J., Kashiwai, M., Ware, D. M., Megrey, B. A., Eslinger, D. L., Werner,
F. E., Noguchi-Aita, M., Azumaya, T., Fujii, M., Hashimoto, Huang, D., Iizumi, H., Ishida, Y., Kang, S., Kantakov, G. A.,Kim H., Komatsu, K., Navrotsky, V. V., Smith, S.L., Tadokoro, K., Tsuda, A., Yamamura, O., Yamanaka, Y., Yokouchi, K., Yoshie, N., Zhang, J., Zuenko, Y. I., and Zvalinsky, V. I.: NEMURO – a lower trophic level model for the North Pacific marine
ecosystem, Ecol. Model., 202, 12–25, 2007.
Kiss, A. E., Hogg, A. McC., Hannah, N., Boeira Dias, F., Brassington, G. B., Chamberlain, M. A., Chapman, C., Dobrohotoff, P., Domingues, C. M., Duran, E. R., England, M. H., Fiedler, R., Griffies, S. M., Heerdegen, A., Heil, P., Holmes, R. M., Klocker, A., Marsland, S. J., Morrison, A. K., Munroe, J., Nikurashin, M., Oke, P. R., Pilo, G. S., Richet, O., Savita, A., Spence, P., Stewart, K. D., Ward, M. L., Wu, F., and Zhang, X.: ACCESS-OM2 v1.0: a global ocean–sea ice model at three resolutions, Geosci. Model Dev., 13, 401–442, https://doi.org/10.5194/gmd-13-401-2020, 2020.
Lange, B. A., Katlein, C., Castellani, G., Fernández-Méndez, M.,
Nicolaus, M., Peeken, I., and Flores, H.: Characterizing Spatial
Variability of Ice Algal Chlorophyll a and Net Primary Production between
Sea Ice Habitats Using Horizontal Profiling Platforms, Front. Mar. Sci., 4, 349, https://doi.org/10.3389/fmars.2017.00349, 2017.
Lannuzel, D., Tedesco, L., van Leeuwe, M., Campbell, K., Flores, H.,
Delille, B., Miller, L., Stefels, J., Assmy, P., Bowman, J., Brown, K., Castellani, G., Chierici, M., Crabeck, O., Damm, E., Else, B., Fransson, A., Fripiat, F., Geilfus, N.-X., Jacques, C., Jones, E., Kaartokallio, H., Kotovitch, H., Meiners, K., Moreau, S., Nomura, D., Peeken, I., Rintala, J.-M., Steiner, N., Tison, J.-L., Vancoppenolle, M., Van der Linden, F., Vichi, M., and Wongpan, P.:
The future of Arctic sea-ice biogeochemistry and ice-associated ecosystems,
Nat. Clim. Change, 10, 983–992, https://doi.org/10.1038/s41558-020-00940-4, 2020.
Large, W. G. and Yeager, S. G.: The global climatology of an
interannually varying air–sea flux data set, Clim. Dyn., 33, 341–364, 2009.
Lauvset, S. K., Key, R. M., Olsen, A., van Heuven, S., Velo, A., Lin, X., Schirnick, C., Kozyr, A., Tanhua, T., Hoppema, M., Jutterström, S., Steinfeldt, R., Jeansson, E., Ishii, M., Perez, F. F., Suzuki, T., and Watelet, S.: A new global interior ocean mapped climatology: the 1° × 1° GLODAP version 2, Earth Syst. Sci. Data, 8, 325–340, https://doi.org/10.5194/essd-8-325-2016, 2016.
Lavoie, D., Denman, K. L., and Macdonald, R. W.: Effects of future
climate change on primary productivity and export fluxes in the Beaufort
Sea, J. Geophys. Res.-Oceans, 115, C04018, https://doi.org/10.1029/2009JC005493, 2010.
Lebeaupin Brossier, C., Béranger, K., and Drobinski, P.:
Sensitivity of the northwestern Mediterranean Sea coastal and thermohaline
circulations simulated by the ∘ -resolution ocean model
NEMO-MED12 to the spatial and temporal resolution of atmospheric forcing,
Ocean Model, 43–44, 94–107, 2012.
Leu, E., Mundy, C. J., Assmy, P., Campbell, K., Gabrielsen, T. M., Gosselin,
M., Juul-Pedersen, T., and Gradinger, R.: Arctic spring awakening –
Steering principles behind the phenology of vernal ice algal blooms, Prog.
Oceanogr., 139, 151–170, 2015.
Levasseur, M.: Impact of Arctic meltdown on the microbial cycling of sulphur, Nat. Geosci., 6, 691–700, 2013.
Li, J. and Wang, J. X. L.: A modified zonal index and its physical
sense, Geophys. Res. Lett., 30, 1632, https://doi.org/10.1029/2003GL017441, 2003.
Lipscomb, W. H.: Remapping the thickness distribution in sea ice
models, J. Geophys. Res.-Oceans, 106, 13989–14000, 2001.
Locarnini, R. A., Mishonov, A. V., Antonov, J. I., Boyer, T. P., Garcia, H. E.,
Baranova, O. K., Zweng, M. M., Paver, C. R., Reagan, J. R., and Johnson, D. R.:
World ocean atlas 2013, Temperature, 1, 73, 40 pp., https://doi.org/10.7289/V55X26VD, 2013.
Madec, G. and the NEMO team: NEMO ocean engine, version3.4 (Institut
Pierre-Simon Laplace Note du Pole de Modélisation), 2012.
Meiners, K. M., Vancoppenolle, M., Thanassekos, S., Dieckmann, G. S., Thomas,
D. N., Tison, J.-L., Arrigo, K. R., Garrison, D. L., McMinn, A., Lannuzel, D., Lannuzel, D., van der Merwe, P., Swadling, K. M., Smith Jr., W.O., Melnikov, I., and Raymond, B.: Chlorophyll a in Antarctic sea ice from historical ice core
data, Geophys. Res. Lett., 39, L21602, https://doi.org/10.1029/2012GL053478, 2012.
Meiners, K. M., Vancoppenolle, M., Carnat, G., Castellani, G., Delille, B.,
Delille, D., Dieckmann, G. S., Flores, H., Fripiat, F., Grotti, Lange, B. A., Lannuzel, D., Martin A., McMinn, A., Nomura, D., Peeken, I., Rivaro, P., Ryan, K. G., Stefels, J., Swadling, K. M., Thomas, D. N., Tison, J.-L., van der Merwe, P., van Leeuwe, M. A., Weldrick, C., and Yang, E. J.: Chlorophyll-a in Antarctic Landfast Sea Ice: A First Synthesis of
Historical Ice Core Data, J. Geophys. Res.-Oceans, 123, 8444–8459, 2018.
Meinshausen, M., Vogel, E., Nauels, A., Lorbacher, K., Meinshausen, N., Etheridge, D. M., Fraser, P. J., Montzka, S. A., Rayner, P. J., Trudinger, C. M., Krummel, P. B., Beyerle, U., Canadell, J. G., Daniel, J. S., Enting, I. G., Law, R. M., Lunder, C. R., O'Doherty, S., Prinn, R. G., Reimann, S., Rubino, M., Velders, G. J. M., Vollmer, M. K., Wang, R. H. J., and Weiss, R.: Historical greenhouse gas concentrations for climate modelling (CMIP6), Geosci. Model Dev., 10, 2057–2116, https://doi.org/10.5194/gmd-10-2057-2017, 2017.
Meinshausen, M., Nicholls, Z. R. J., Lewis, J., Gidden, M. J., Vogel, E., Freund, M., Beyerle, U., Gessner, C., Nauels, A., Bauer, N., Canadell, J. G., Daniel, J. S., John, A., Krummel, P. B., Luderer, G., Meinshausen, N., Montzka, S. A., Rayner, P. J., Reimann, S., Smith, S. J., van den Berg, M., Velders, G. J. M., Vollmer, M. K., and Wang, R. H. J.: The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500, Geosci. Model Dev., 13, 3571–3605, https://doi.org/10.5194/gmd-13-3571-2020, 2020.
Miller, L. A., Fripiat, F., Else, B. G. T., Bowman, J. S., Brown, K. A., Collins,
R. E., Ewert, M., Fransson, A., Gosselin, M., Lannuzel, D., Meiners, K. M., Michel, C., Nishioka, J., Nomura, D., Papadimitriou, S., Russell, L. M., Sørensen, L. L., Thomas, D. N., Tison, J.-L., van Leeuwe, M. A., Vancoppenolle, M., Wolff, E. W., and Zhou, J.: Methods for biogeochemical studies of sea ice: The state of the art,
caveats, and recommendations, Elem. Sci. Anthr., 3, 000038, 53,
https://doi.org/10.12952/journal.elementa.000038, 2015.
Moore, J. K., Lindsay, K., Doney, S. C., Long, M. C., and Misumi, K.:
Marine Ecosystem Dynamics and Biogeochemical Cycling in the Community Earth
System Model [CESM1(BGC)]: Comparison of the 1990s with the 2090s under the
RCP4.5 and RCP8.5 Scenarios, J. Clim., 26, 9291–9312, 2013.
Mortenson, E., Hayashida, H., Steiner, N., Monahan, A., Blais, M., Gale,
M. A., Galindo, V., Gosselin, M., Hu, X., Lavoie, D., Mundy, C. J.: A
model-based analysis of physical and biological controls on ice algal and
pelagic primary production in Resolute Passage, Elem. Sci. Anth., 5, 39,
https://doi.org/10.1525/elementa.229, 2017.
Mortenson, E., Steiner, N., Monahan, A. H., Hayashida, H., Sou, T., and Shao,
A.: Modeled Impacts of Sea Ice Exchange Processes on Arctic Ocean
Carbon Uptake and Acidification (1980–2015), J. Geophys. Res.-Oceans, 125,
e2019JC015782, https://doi.org/10.1029/2019JC015782, 2020.
Naughten, K. A., Meissner, K. J., Galton-Fenzi, B. K., England, M. H.,
Timmermann, R., and Hellmer, H. H.: Future Projections of Antarctic
Ice Shelf Melting Based on CMIP5 Scenarios, J. Clim., 31, 5243–5261, 2018.
O'Neill, B. C., Tebaldi, C., van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., Knutti, R., Kriegler, E., Lamarque, J.-F., Lowe, J., Meehl, G. A., Moss, R., Riahi, K., and Sanderson, B. M.: The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6, Geosci. Model Dev., 9, 3461–3482, https://doi.org/10.5194/gmd-9-3461-2016, 2016.
Orr, J. C., Najjar, R. G., Aumont, O., Bopp, L., Bullister, J. L., Danabasoglu, G., Doney, S. C., Dunne, J. P., Dutay, J.-C., Graven, H., Griffies, S. M., John, J. G., Joos, F., Levin, I., Lindsay, K., Matear, R. J., McKinley, G. A., Mouchet, A., Oschlies, A., Romanou, A., Schlitzer, R., Tagliabue, A., Tanhua, T., and Yool, A.: Biogeochemical protocols and diagnostics for the CMIP6 Ocean Model Intercomparison Project (OMIP), Geosci. Model Dev., 10, 2169–2199, https://doi.org/10.5194/gmd-10-2169-2017, 2017.
Pogson, L., Tremblay, B., Lavoie, D., Michel, C., and Vancoppenolle, M.:
Development and validation of a one-dimensional snow-ice algae model
against observations in Resolute Passage, Canadian Arctic Archipelago, J.
Geophys. Res., 116, C04010, https://doi.org/10.1029/2010JC006119, 2011.
Saenko, O. A., Zhai, X., Merryfield, W. J., and Lee, W. G.: The Combined
Effect of Tidally and Eddy-Driven Diapycnal Mixing on the Large-Scale Ocean
Circulation, J. Phys. Oceanogr., 42, 526–538, 2012.
Saenko, O. A., Yang, D., and Gregory, J. M.: Impact of Mesoscale Eddy
Transfer on Heat Uptake in an Eddy-Parameterizing Ocean Model, J. Clim.,
31, 8589–8606, 2018.
Schulzweida, U.: CDO User Guide (2.0.0), Zenodo [software], https://doi.org/10.5281/zenodo.5614769, 2020.
Smith, D. M., Screen, J. A., Deser, C., Cohen, J., Fyfe, J. C., García-Serrano, J., Jung, T., Kattsov, V., Matei, D., Msadek, R., Peings, Y., Sigmond, M., Ukita, J., Yoon, J.-H., and Zhang, X.: The Polar Amplification Model Intercomparison Project (PAMIP) contribution to CMIP6: investigating the causes and consequences of polar amplification, Geosci. Model Dev., 12, 1139–1164, https://doi.org/10.5194/gmd-12-1139-2019, 2019.
Stewart, K. D., Kim, W. M., Urakawa, S., Hogg, A. McC., Yeager, S., Tsujino,
H., Nakano, H., Kiss, A. E., and Danabasoglu, G.: JRA55-do-based
repeat year forcing datasets for driving ocean–sea-ice models, Ocean Model,
147, 101557, https://doi.org/10.1016/j.ocemod.2019.101557 2020.
Swart, N. C., Cole, J. N. S., Kharin, V. V., Lazare, M., Scinocca, J. F., Gillett, N. P., Anstey, J., Arora, V., Christian, J. R., Hanna, S., Jiao, Y., Lee, W. G., Majaess, F., Saenko, O. A., Seiler, C., Seinen, C., Shao, A., Sigmond, M., Solheim, L., von Salzen, K., Yang, D., and Winter, B.: The Canadian Earth System Model version 5 (CanESM5.0.3), Geosci. Model Dev., 12, 4823–4873, https://doi.org/10.5194/gmd-12-4823-2019, 2019.
Tedesco, L., Vichi, M., and Scoccimarro, E.: Sea-ice algal phenology
in a warmer Arctic, Sci. Adv., 5, eaav4830, https://doi.org/10.1126/sciadv.aav4830, 2019.
Tsujino, H., Urakawa, S., Nakano, H., Small, R. J., Kim, W. M., Yeager, S. G.,
Danabasoglu, G., Suzuki, T., Bamber, J. L., Bentsen, M., Böning, C. W., Bozec, A., Chassignet, E. P., Curchitser, E., Dias, F. B., Durack, P. J., Griffies, S. M., Harada, Y., Ilicak, M., Josey, S. A., Kobayashi C., Kobayashi, S., Komuro, Y., Large, W. G., Le Sommer, J., Marsland, S. J., Masina, S., Scheinert, M., Tomita, H., Valdivieso, M., and Yamazaki, D.:
JRA-55 based surface dataset for driving ocean–sea-ice models (JRA55-do),
Ocean Model, 130, 79–139, 2018.
Tsujino, H., Urakawa, L. S., Griffies, S. M., Danabasoglu, G., Adcroft, A. J., Amaral, A. E., Arsouze, T., Bentsen, M., Bernardello, R., Böning, C. W., Bozec, A., Chassignet, E. P., Danilov, S., Dussin, R., Exarchou, E., Fogli, P. G., Fox-Kemper, B., Guo, C., Ilicak, M., Iovino, D., Kim, W. M., Koldunov, N., Lapin, V., Li, Y., Lin, P., Lindsay, K., Liu, H., Long, M. C., Komuro, Y., Marsland, S. J., Masina, S., Nummelin, A., Rieck, J. K., Ruprich-Robert, Y., Scheinert, M., Sicardi, V., Sidorenko, D., Suzuki, T., Tatebe, H., Wang, Q., Yeager, S. G., and Yu, Z.: Evaluation of global ocean–sea-ice model simulations based on the experimental protocols of the Ocean Model Intercomparison Project phase 2 (OMIP-2), Geosci. Model Dev., 13, 3643–3708, https://doi.org/10.5194/gmd-13-3643-2020, 2020.
Vancoppenolle, M. and Tedesco, L.: Numerical models of sea ice biogeochemistry, in: Sea Ice, third edn., edited by: Thomas, D. N., John Wiley & Sons, Chichester, UK, https://doi.org/10.1002/9781118778371.ch20, 2017.
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T.,
Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, İ., Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa, F., van Mulbregt, P., and SciPy 1.0 Contributors: fundamental algorithms for scientific computing in
Python, Nat. Methods, 17, 261–272, 2020.
Watanabe, E., Onodera, J., Harada, N., Aita, M. N., Ishida, A., and Kishi, M. J.: Wind-driven interannual variability of sea ice algal production in the west
ern Arctic Chukchi Borderland, Biogeosciences, 12, 6147–6168, https://doi.org/10.5194/bg-12-6147-2015, 2015.
Watanabe, E., Jin, M., Hayashida, H., Zhang, J., and Steiner, N.:
Multi-Model Intercomparison of the Pan-Arctic Ice-Algal Productivity on
Seasonal, Interannual, and Decadal Timescales, J. Geophys. Res.-Oceans,
124, 9053–9084, 2019.
Welch, P.: The use of fast Fourier transform for the estimation of
power spectra: A method based on time averaging over short, modified
periodograms, IEEE Trans. Audio Electroacoustics, 15, 70–73, 1967.
Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton, G., Axton, M.,
Baak, A., Blomberg, N., Boiten, J.-W., da Silva Santos, L. B., Bourne, P. E.,
Bouwman, J., Brookes, A. J., Clark, T. Crosas, M., Dillo, I., Dumon, O., Edmunds, S., Evelo, C. T., Finkers, R., Gonzalez-Beltran, A., Gray, A. J. G., Groth, P., Goble, C., Grethe, J. S., Heringa, J., Hoen, P. A. C., Hooft, R., Kuhn, T., Kok, R., Kok, J., Lusher, S. J., Martone, M. E., Mons, A., Packer, A. L., Persson, B., Rocca-Serra, P., Roos, M., van Schaik, R., Sansone, S.-A., Schultes, E., Sengstag, T., Slater, T., Strawn, G., Swertz, M. A., Thompson, M., van der Lei, J., van Mulligen, E., Velterop, J., Waagmeester, A., Wittenburg, P., Wolstencroft, K., Zhao, J., and Mons, B.: The FAIR Guiding Principles for scientific data management
and stewardship, Sci. Data, 3, 1–9, 2016.
Woodgate, R. A., Aagaard, K., and Weingartner, T. J.: Monthly
temperature, salinity, and transport variability of the Bering Strait
through flow, Geophys. Res. Lett., 32, L04601,
https://doi.org/10.1029/2004GL021880, 2005.
Zeebe, R. E., Eicken, H., Robinson, D. H., Wolf-Gladrow, D., and Dieckmann,
G. S.: Modeling the heating and melting of sea ice through light
absorption by microalgae, J. Geophys. Res.-Oceans, 101, 1163–1181, 1996.
Zhang, X., Church, J. A., Monselesan, D., and McInnes, K. L.: Sea level
projections for the Australian region in the 21st century, Geophys. Res.
Lett., 44, 8481–8491, 2017.
Ziehn, T., Chamberlain, M. A., Law, R. M., Lenton, A., Bodman, R. W., Dix, M.,
Stevens, L., Wang, Y.-P., and Srbinovsky, J.: The Australian Earth
System Model: ACCESS-ESM1.5, J. South. Hemisphere, Earth Syst. Sci., 70, 193–214, https://doi.org/10.1071/ES19035, 2020.
Zweng, M. M., Reagan, J. R., Antonov, J. I., Locarnini, R. A., Mishonov, A. V.,
Boyer, T. P., Garcia, H. E., Baranova, O. K., Johnson, D. R., and Seidov, D.:
World ocean atlas 2013, Volume 2, Salinity, edited by: Levitus, S., and Mishonov, A., Technical Ed., NOAA Atlas NESDIS; 74, https://doi.org/10.7289/V5251G4D, 2013.
Short summary
Ice algae are tiny plants like phytoplankton but they grow within sea ice. In polar regions, both phytoplankton and ice algae are the foundation of marine ecosystems and play an important role in taking up carbon dioxide in the atmosphere. However, state-of-the-art climate models typically do not include ice algae, and therefore their role in the climate system remains unclear. This project aims to address this knowledge gap by coordinating a set of experiments using sea-ice–ocean models.
Ice algae are tiny plants like phytoplankton but they grow within sea ice. In polar regions,...