Articles | Volume 14, issue 10
Geosci. Model Dev., 14, 6071–6112, 2021
https://doi.org/10.5194/gmd-14-6071-2021
Geosci. Model Dev., 14, 6071–6112, 2021
https://doi.org/10.5194/gmd-14-6071-2021
Development and technical paper
12 Oct 2021
Development and technical paper | 12 Oct 2021

Accounting for forest management in the estimation of forest carbon balance using the dynamic vegetation model LPJ-GUESS (v4.0, r9710): implementation and evaluation of simulations for Europe

Mats Lindeskog et al.

Related authors

Climate and parameter sensitivity and induced uncertainties in carbon stock projections for European forests (using LPJ-GUESS 4.0)
Johannes Oberpriller, Christine Herschlein, Peter Anthoni, Almut Arneth, Andreas Krause, Anja Rammig, Mats Lindeskog, Stefan Olin, and Florian Hartig
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-287,https://doi.org/10.5194/gmd-2021-287, 2021
Revised manuscript accepted for GMD
Short summary
Impacts of climate mitigation strategies in the energy sector on global land use and carbon balance
Kerstin Engström, Mats Lindeskog, Stefan Olin, John Hassler, and Benjamin Smith
Earth Syst. Dynam., 8, 773–799, https://doi.org/10.5194/esd-8-773-2017,https://doi.org/10.5194/esd-8-773-2017, 2017
Short summary
Uncertainties in the land-use flux resulting from land-use change reconstructions and gross land transitions
Anita D. Bayer, Mats Lindeskog, Thomas A. M. Pugh, Peter M. Anthoni, Richard Fuchs, and Almut Arneth
Earth Syst. Dynam., 8, 91–111, https://doi.org/10.5194/esd-8-91-2017,https://doi.org/10.5194/esd-8-91-2017, 2017
Short summary
Impacts of land-use history on the recovery of ecosystems after agricultural abandonment
Andreas Krause, Thomas A. M. Pugh, Anita D. Bayer, Mats Lindeskog, and Almut Arneth
Earth Syst. Dynam., 7, 745–766, https://doi.org/10.5194/esd-7-745-2016,https://doi.org/10.5194/esd-7-745-2016, 2016
Short summary
Soil carbon management in large-scale Earth system modelling: implications for crop yields and nitrogen leaching
S. Olin, M. Lindeskog, T. A. M. Pugh, G. Schurgers, D. Wårlind, M. Mishurov, S. Zaehle, B. D. Stocker, B. Smith, and A. Arneth
Earth Syst. Dynam., 6, 745–768, https://doi.org/10.5194/esd-6-745-2015,https://doi.org/10.5194/esd-6-745-2015, 2015
Short summary

Related subject area

Biogeosciences
ECOSMO II(CHL): a marine biogeochemical model for the North Atlantic and the Arctic
Veli Çağlar Yumruktepe, Annette Samuelsen, and Ute Daewel
Geosci. Model Dev., 15, 3901–3921, https://doi.org/10.5194/gmd-15-3901-2022,https://doi.org/10.5194/gmd-15-3901-2022, 2022
Short summary
Water Ecosystems Tool (WET) 1.0 – a new generation of flexible aquatic ecosystem model
Nicolas Azaña Schnedler-Meyer, Tobias Kuhlmann Andersen, Fenjuan Rose Schmidt Hu, Karsten Bolding, Anders Nielsen, and Dennis Trolle
Geosci. Model Dev., 15, 3861–3878, https://doi.org/10.5194/gmd-15-3861-2022,https://doi.org/10.5194/gmd-15-3861-2022, 2022
Short summary
Development of an open-source regional data assimilation system in PEcAn v. 1.7.2: application to carbon cycle reanalysis across the contiguous US using SIPNET
Hamze Dokoohaki, Bailey D. Morrison, Ann Raiho, Shawn P. Serbin, Katie Zarada, Luke Dramko, and Michael Dietze
Geosci. Model Dev., 15, 3233–3252, https://doi.org/10.5194/gmd-15-3233-2022,https://doi.org/10.5194/gmd-15-3233-2022, 2022
Short summary
Predicting global terrestrial biomes with the LeNet convolutional neural network
Hisashi Sato and Takeshi Ise
Geosci. Model Dev., 15, 3121–3132, https://doi.org/10.5194/gmd-15-3121-2022,https://doi.org/10.5194/gmd-15-3121-2022, 2022
Short summary
KGML-ag: a modeling framework of knowledge-guided machine learning to simulate agroecosystems: a case study of estimating N2O emission using data from mesocosm experiments
Licheng Liu, Shaoming Xu, Jinyun Tang, Kaiyu Guan, Timothy J. Griffis, Matthew D. Erickson, Alexander L. Frie, Xiaowei Jia, Taegon Kim, Lee T. Miller, Bin Peng, Shaowei Wu, Yufeng Yang, Wang Zhou, Vipin Kumar, and Zhenong Jin
Geosci. Model Dev., 15, 2839–2858, https://doi.org/10.5194/gmd-15-2839-2022,https://doi.org/10.5194/gmd-15-2839-2022, 2022
Short summary

Cited articles

Ahlström, A., Schurgers, G., Arneth, A., and Smith, B.: Robustness and uncertainty in terrestrial ecosystem carbon response to CMIP5 climate change projections, Environ. Res. Lett., 7, 044008, https://doi.org/10.1088/1748-9326/7/4/044008, 2012. 
Anderegg, W. R. L., Kane, J. M., and Anderegg, L. D. L.: Consequences of widespread tree mortality triggered by drought and temperature stress, Nat. Clim. Change, 3, 30–36, https://doi.org/10.1038/nclimate1635, 2013. 
Bellassen, V., Le Maire, G., Dhôte, J. F., and Viovy, N.: Modelling forest management within a global vegetation model – Part 1: Model Structure and general behaviour, Ecol. Model., 221, 2458–2474, https://doi.org/10.1016/j.ecolmodel.2010.07.008, 2010. 
Bergh, J., McMurtrie, R. E., and Linder, S.: Climatic factors controlling the productivity of Norway spruce: A model-based analysis, Forest Ecol. Manag., 110, 127–139, https://doi.org/10.1016/S0378-1127(98)00280-1, 1998. 
Download
Short summary
Forests play an important role in the global carbon cycle and for carbon storage. In Europe, forests are intensively managed. To understand how management influences carbon storage in European forests, we implement detailed forest management into the dynamic vegetation model LPJ-GUESS. We test the model by comparing model output to typical forestry measures, such as growing stock and harvest data, for different countries in Europe.