Articles | Volume 14, issue 9
https://doi.org/10.5194/gmd-14-5373-2021
https://doi.org/10.5194/gmd-14-5373-2021
Model experiment description paper
 | 
01 Sep 2021
Model experiment description paper |  | 01 Sep 2021

Calibrating a global atmospheric chemistry transport model using Gaussian process emulation and ground-level concentrations of ozone and carbon monoxide

Edmund Ryan and Oliver Wild

Related authors

Temporally resolved sectoral and regional contributions to air pollution in Beijing: informing short-term emission controls
Tabish Umar Ansari, Oliver Wild, Edmund Ryan, Ying Chen, Jie Li, and Zifa Wang
Atmos. Chem. Phys., 21, 4471–4485, https://doi.org/10.5194/acp-21-4471-2021,https://doi.org/10.5194/acp-21-4471-2021, 2021
Short summary
Global sensitivity analysis of chemistry–climate model budgets of tropospheric ozone and OH: exploring model diversity
Oliver Wild, Apostolos Voulgarakis, Fiona O'Connor, Jean-François Lamarque, Edmund M. Ryan, and Lindsay Lee
Atmos. Chem. Phys., 20, 4047–4058, https://doi.org/10.5194/acp-20-4047-2020,https://doi.org/10.5194/acp-20-4047-2020, 2020
Short summary
Mitigation of PM2.5 and ozone pollution in Delhi: a sensitivity study during the pre-monsoon period
Ying Chen, Oliver Wild, Edmund Ryan, Saroj Kumar Sahu, Douglas Lowe, Scott Archer-Nicholls, Yu Wang, Gordon McFiggans, Tabish Ansari, Vikas Singh, Ranjeet S. Sokhi, Alex Archibald, and Gufran Beig
Atmos. Chem. Phys., 20, 499–514, https://doi.org/10.5194/acp-20-499-2020,https://doi.org/10.5194/acp-20-499-2020, 2020
Short summary

Related subject area

Atmospheric sciences
Comprehensive evaluation of typical planetary boundary layer (PBL) parameterization schemes in China – Part 2: Influence of uncertainty factors
Wenxing Jia, Xiaoye Zhang, Hong Wang, Yaqiang Wang, Deying Wang, Junting Zhong, Wenjie Zhang, Lei Zhang, Lifeng Guo, Yadong Lei, Jizhi Wang, Yuanqin Yang, and Yi Lin
Geosci. Model Dev., 16, 6833–6856, https://doi.org/10.5194/gmd-16-6833-2023,https://doi.org/10.5194/gmd-16-6833-2023, 2023
Short summary
A mountain-induced moist baroclinic wave test case for the dynamical cores of atmospheric general circulation models
Owen K. Hughes and Christiane Jablonowski
Geosci. Model Dev., 16, 6805–6831, https://doi.org/10.5194/gmd-16-6805-2023,https://doi.org/10.5194/gmd-16-6805-2023, 2023
Short summary
The effect of emission source chemical profiles on simulated PM2.5 components: sensitivity analysis with the Community Multiscale Air Quality (CMAQ) modeling system version 5.0.2
Zhongwei Luo, Yan Han, Kun Hua, Yufen Zhang, Jianhui Wu, Xiaohui Bi, Qili Dai, Baoshuang Liu, Yang Chen, Xin Long, and Yinchang Feng
Geosci. Model Dev., 16, 6757–6771, https://doi.org/10.5194/gmd-16-6757-2023,https://doi.org/10.5194/gmd-16-6757-2023, 2023
Short summary
Comprehensive evaluation of typical planetary boundary layer (PBL) parameterization schemes in China – Part 1: Understanding expressiveness of schemes for different regions from the mechanism perspective
Wenxing Jia, Xiaoye Zhang, Hong Wang, Yaqiang Wang, Deying Wang, Junting Zhong, Wenjie Zhang, Lei Zhang, Lifeng Guo, Yadong Lei, Jizhi Wang, Yuanqin Yang, and Yi Lin
Geosci. Model Dev., 16, 6635–6670, https://doi.org/10.5194/gmd-16-6635-2023,https://doi.org/10.5194/gmd-16-6635-2023, 2023
Short summary
Evaluating 3 decades of precipitation in the Upper Colorado River basin from a high-resolution regional climate model
William Rudisill, Alejandro Flores, and Rosemary Carroll
Geosci. Model Dev., 16, 6531–6552, https://doi.org/10.5194/gmd-16-6531-2023,https://doi.org/10.5194/gmd-16-6531-2023, 2023
Short summary

Cited articles

Baret, F., Weiss, M., Allard, D., Garrigue, S., Leroy, M., Jeanjean, H., Fernandes, R., Myneni, R., Privette, J., Morisette, J., and Bohbot, H.: VALERI: a network of sites and a methodology for the validation of medium spatial resolution land satellite products, Remote Sens. Environ., 76, 36–39, https://hal.inrae.fr/hal-03221068, last access: 16 August 2021. 
Bayarri, M. J., Walsh, D., Berger, J. O., Cafeo, J., Garcia-Donato, G., Liu, F., Palomo, J., Parthasarathy, R. J., Paulo, R., and Sacks, J.: Computer model validation with functional output, Ann. Statist., 35, 1874–1906, https://doi.org/10.1214/009053607000000163, 2007. 
Berg, B. A.: Introduction to Markov chain Monte Carlo simulations and their statistical analysis, in: Markov Chain Monte Carlo, edited by: Kendall, W. S., Liang, F., and Wang, J.-S., Lecture Notes Series, Institute for Mathematical Sciences, National University of Singapore, 7, 1–52, https://doi.org/10.1142/9789812700919_0001, 2005. 
Beven, K., and Freer, J.: Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology, J. Hydrol., 249, 11–29, https://doi.org/10.1016/S0022-1694(01)00421-8, 2001. 
Bocquet, M., Elbern, H., Eskes, H., Hirtl, M., Žabkar, R., Carmichael, G. R., Flemming, J., Inness, A., Pagowski, M., Pérez Camaño, J. L., Saide, P. E., San Jose, R., Sofiev, M., Vira, J., Baklanov, A., Carnevale, C., Grell, G., and Seigneur, C.: Data assimilation in atmospheric chemistry models: current status and future prospects for coupled chemistry meteorology models, Atmos. Chem. Phys., 15, 5325–5358, https://doi.org/10.5194/acp-15-5325-2015, 2015. 
Download
Short summary
Atmospheric chemistry transport models are important tools to investigate the local, regional and global controls on atmospheric composition and air quality. In this study, we estimate some of the model parameters using machine learning and statistics. Our findings identify the level of error and spatial coverage in the O2 and CO data that are needed to achieve good parameter estimates. We also highlight the benefits of using multiple constraints to calibrate atmospheric chemistry models.