Articles | Volume 14, issue 9
https://doi.org/10.5194/gmd-14-5373-2021
https://doi.org/10.5194/gmd-14-5373-2021
Model experiment description paper
 | 
01 Sep 2021
Model experiment description paper |  | 01 Sep 2021

Calibrating a global atmospheric chemistry transport model using Gaussian process emulation and ground-level concentrations of ozone and carbon monoxide

Edmund Ryan and Oliver Wild

Related authors

Temporally resolved sectoral and regional contributions to air pollution in Beijing: informing short-term emission controls
Tabish Umar Ansari, Oliver Wild, Edmund Ryan, Ying Chen, Jie Li, and Zifa Wang
Atmos. Chem. Phys., 21, 4471–4485, https://doi.org/10.5194/acp-21-4471-2021,https://doi.org/10.5194/acp-21-4471-2021, 2021
Short summary
Global sensitivity analysis of chemistry–climate model budgets of tropospheric ozone and OH: exploring model diversity
Oliver Wild, Apostolos Voulgarakis, Fiona O'Connor, Jean-François Lamarque, Edmund M. Ryan, and Lindsay Lee
Atmos. Chem. Phys., 20, 4047–4058, https://doi.org/10.5194/acp-20-4047-2020,https://doi.org/10.5194/acp-20-4047-2020, 2020
Short summary
Mitigation of PM2.5 and ozone pollution in Delhi: a sensitivity study during the pre-monsoon period
Ying Chen, Oliver Wild, Edmund Ryan, Saroj Kumar Sahu, Douglas Lowe, Scott Archer-Nicholls, Yu Wang, Gordon McFiggans, Tabish Ansari, Vikas Singh, Ranjeet S. Sokhi, Alex Archibald, and Gufran Beig
Atmos. Chem. Phys., 20, 499–514, https://doi.org/10.5194/acp-20-499-2020,https://doi.org/10.5194/acp-20-499-2020, 2020
Short summary

Related subject area

Atmospheric sciences
FLEXPART version 11: improved accuracy, efficiency, and flexibility
Lucie Bakels, Daria Tatsii, Anne Tipka, Rona Thompson, Marina Dütsch, Michael Blaschek, Petra Seibert, Katharina Baier, Silvia Bucci, Massimo Cassiani, Sabine Eckhardt, Christine Groot Zwaaftink, Stephan Henne, Pirmin Kaufmann, Vincent Lechner, Christian Maurer, Marie D. Mulder, Ignacio Pisso, Andreas Plach, Rakesh Subramanian, Martin Vojta, and Andreas Stohl
Geosci. Model Dev., 17, 7595–7627, https://doi.org/10.5194/gmd-17-7595-2024,https://doi.org/10.5194/gmd-17-7595-2024, 2024
Short summary
Challenges of high-fidelity air quality modeling in urban environments – PALM sensitivity study during stable conditions
Jaroslav Resler, Petra Bauerová, Michal Belda, Martin Bureš, Kryštof Eben, Vladimír Fuka, Jan Geletič, Radek Jareš, Jan Karel, Josef Keder, Pavel Krč, William Patiño, Jelena Radović, Hynek Řezníček, Matthias Sühring, Adriana Šindelářová, and Ondřej Vlček
Geosci. Model Dev., 17, 7513–7537, https://doi.org/10.5194/gmd-17-7513-2024,https://doi.org/10.5194/gmd-17-7513-2024, 2024
Short summary
Air quality modeling intercomparison and multiscale ensemble chain for Latin America
Jorge E. Pachón, Mariel A. Opazo, Pablo Lichtig, Nicolas Huneeus, Idir Bouarar, Guy Brasseur, Cathy W. Y. Li, Johannes Flemming, Laurent Menut, Camilo Menares, Laura Gallardo, Michael Gauss, Mikhail Sofiev, Rostislav Kouznetsov, Julia Palamarchuk, Andreas Uppstu, Laura Dawidowski, Nestor Y. Rojas, María de Fátima Andrade, Mario E. Gavidia-Calderón, Alejandro H. Delgado Peralta, and Daniel Schuch
Geosci. Model Dev., 17, 7467–7512, https://doi.org/10.5194/gmd-17-7467-2024,https://doi.org/10.5194/gmd-17-7467-2024, 2024
Short summary
Recommended coupling to global meteorological fields for long-term tracer simulations with WRF-GHG
David Ho, Michał Gałkowski, Friedemann Reum, Santiago Botía, Julia Marshall, Kai Uwe Totsche, and Christoph Gerbig
Geosci. Model Dev., 17, 7401–7422, https://doi.org/10.5194/gmd-17-7401-2024,https://doi.org/10.5194/gmd-17-7401-2024, 2024
Short summary
Selecting CMIP6 global climate models (GCMs) for Coordinated Regional Climate Downscaling Experiment (CORDEX) dynamical downscaling over Southeast Asia using a standardised benchmarking framework
Phuong Loan Nguyen, Lisa V. Alexander, Marcus J. Thatcher, Son C. H. Truong, Rachael N. Isphording, and John L. McGregor
Geosci. Model Dev., 17, 7285–7315, https://doi.org/10.5194/gmd-17-7285-2024,https://doi.org/10.5194/gmd-17-7285-2024, 2024
Short summary

Cited articles

Baret, F., Weiss, M., Allard, D., Garrigue, S., Leroy, M., Jeanjean, H., Fernandes, R., Myneni, R., Privette, J., Morisette, J., and Bohbot, H.: VALERI: a network of sites and a methodology for the validation of medium spatial resolution land satellite products, Remote Sens. Environ., 76, 36–39, https://hal.inrae.fr/hal-03221068, last access: 16 August 2021. 
Bayarri, M. J., Walsh, D., Berger, J. O., Cafeo, J., Garcia-Donato, G., Liu, F., Palomo, J., Parthasarathy, R. J., Paulo, R., and Sacks, J.: Computer model validation with functional output, Ann. Statist., 35, 1874–1906, https://doi.org/10.1214/009053607000000163, 2007. 
Berg, B. A.: Introduction to Markov chain Monte Carlo simulations and their statistical analysis, in: Markov Chain Monte Carlo, edited by: Kendall, W. S., Liang, F., and Wang, J.-S., Lecture Notes Series, Institute for Mathematical Sciences, National University of Singapore, 7, 1–52, https://doi.org/10.1142/9789812700919_0001, 2005. 
Beven, K., and Freer, J.: Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology, J. Hydrol., 249, 11–29, https://doi.org/10.1016/S0022-1694(01)00421-8, 2001. 
Bocquet, M., Elbern, H., Eskes, H., Hirtl, M., Žabkar, R., Carmichael, G. R., Flemming, J., Inness, A., Pagowski, M., Pérez Camaño, J. L., Saide, P. E., San Jose, R., Sofiev, M., Vira, J., Baklanov, A., Carnevale, C., Grell, G., and Seigneur, C.: Data assimilation in atmospheric chemistry models: current status and future prospects for coupled chemistry meteorology models, Atmos. Chem. Phys., 15, 5325–5358, https://doi.org/10.5194/acp-15-5325-2015, 2015. 
Download
Short summary
Atmospheric chemistry transport models are important tools to investigate the local, regional and global controls on atmospheric composition and air quality. In this study, we estimate some of the model parameters using machine learning and statistics. Our findings identify the level of error and spatial coverage in the O2 and CO data that are needed to achieve good parameter estimates. We also highlight the benefits of using multiple constraints to calibrate atmospheric chemistry models.