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Abstract. Atmospheric chemistry transport models are im-
portant tools to investigate the local, regional and global
controls on atmospheric composition and air quality. To en-
sure that these models represent the atmosphere adequately,
it is important to compare their outputs with measurements.
However, ground based measurements of atmospheric com-
position are typically sparsely distributed and representative
of much smaller spatial scales than those resolved in mod-
els; thus, direct comparison incurs uncertainty. In this study,
we investigate the feasibility of using observations of one
or more atmospheric constituents to estimate parameters in
chemistry transport models and to explore how these esti-
mates and their uncertainties depend upon representation er-
rors and the level of spatial coverage of the measurements.
We apply Gaussian process emulation to explore the model
parameter space and use monthly averaged ground-level con-
centrations of ozone (O3) and carbon monoxide (CO) from
across Europe and the US. Using synthetic observations, we
find that the estimates of parameters with greatest influence
on O3 and CO are unbiased, and the associated parameter un-
certainties are low even at low spatial coverage or with high
representation error. Using reanalysis data, we find that es-
timates of the most influential parameter – corresponding to
the dry deposition process – are closer to its expected value
using both O3 and CO data than using O3 alone. This is re-
markable because it shows that while CO is largely unaf-
fected by dry deposition, the additional constraints it pro-
vides are valuable for achieving unbiased estimates of the dry
deposition parameter. In summary, these findings identify the
level of spatial representation error and coverage needed to
achieve good parameter estimates and highlight the benefits

of using multiple constraints to calibrate atmospheric chem-
istry transport models.

1 Introduction

Changes in atmospheric composition due to human activi-
ties make an important contribution to Earth’s changing cli-
mate (Stocker, 2013) and to outdoor air pollution, which is
currently responsible for about 4.2 million deaths worldwide
each year (Cohen et al., 2017), with 365 000 deaths due to
surface ozone (DeLang et al., 2021). Chemistry transport
models (CTMs) simulate the production, transport and re-
moval of key atmospheric constituents, and they are impor-
tant tools for understanding variations in atmospheric com-
position across space and time. They permit investigation
of future climate and emission scenarios that fully account
for the interactions and feedbacks that characterise physi-
cal, chemical and dynamical processes in the atmosphere.
For practical application, CTMs need to reproduce the mag-
nitude and variation in pollutant concentrations observed at
a wide range of measurement locations. Where biases oc-
cur, these can often be reduced by improving process repre-
sentation through adjusting model parameters, so the CTM
matches the measurements to a sufficient level of accuracy
(e.g. Menut et al., 2014). While estimation of model param-
eters is common in many fields of science and has success-
fully been applied to climate models (e.g. Chang and Guillas,
2019; Couvreux et al., 2021), it is rarely attempted with at-
mospheric chemistry models, because they are computation-
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ally expensive to run, and it is thus burdensome to perform
the large number of model runs required to explore model
parameter space. Instead, data assimilation has become a
standard method for ensuring that model states are consis-
tent with measurements, usually treating model parameters
as fixed (Khattatov et al., 2000; Bocquet et al., 2015; van
Loon et al., 2000; Emili et al., 2014).

In this study, we explore computationally efficient ways of
estimating parameters in chemistry transport models, focus-
ing on two important tropospheric constituents, ozone (O3)
and carbon monoxide (CO). Ozone is a major pollutant that is
produced in the troposphere by oxidation of precursors such
as CO and hydrocarbons, which are emitted during com-
bustion processes from vehicular, industrial and residential
sources. Ozone is harmful to human health and has been
shown to damage vegetation and reduce crop yields (Gold-
smith and Landaw, 1968; Kampa and Castanas, 2008; Van
Dingenen et al., 2009; van Zelm et al., 2008). A recent as-
sessment of surface O3 was carried out for the Tropospheric
Ozone Assessment Report (TOAR) based on measurements
from an extensive network of 10 000 sites around the world
(Schultz et al., 2017). A simple statistical model of changes
in surface O3 between 2000 and 2014 showed that significant
decreases of 28 % and 6 % have occurred in eastern North
America and Europe, respectively, but increases of 20 % and
45 % in Southeast Asia and East Asia (Chang et al., 2017).
In recent decades, a similar pattern of decreases in CO in Eu-
rope and North America and increases over parts of Asia has
also been observed (Granier et al., 2011). To fully explain
and attribute these changes, a thorough understanding of the
processes controlling these pollutants is needed.

To assess the performance of CTMs, it is essential to com-
pare simulations of tropospheric chemical composition with
measurements. A comprehensive evaluation of 15 global
models found that they broadly matched measured O3, but
modelled O3 was biased high in the Northern Hemisphere
and biased low in the Southern Hemisphere (Young et al.,
2018). The models were unable to capture the long-term
trends in tropospheric O3 observed at different altitudes.
Similar biases were found in an independent study of long-
term trends involving three chemistry climate models (Par-
rish et al., 2014). While identification of these model biases
is informative, correcting the deficiencies is challenging be-
cause it is often unclear why different models perform well
at certain times and for certain places but poorly elsewhere
(Young et al., 2018). A practical solution is to perform global
sensitivity analysis to identify the parameters or processes
that influence the model results most and then to calibrate the
model to estimate these parameters and their uncertainties by
comparing model predictions with measurements in a statis-
tically rigorous way. This provides insight into the physical
processes causing model biases that are typically unavailable
from simpler approaches.

The principal challenge with performing global sensitiv-
ity analysis and model calibration is that they may require

thousands of model runs, and this is infeasible for a typi-
cal global CTM that may require 12–24 h to simulate a year
in high-performance computing facilities. This can be over-
come by replacing the model with a surrogate function such
as a Gaussian process emulator that is computationally much
faster to run (Johnson et al., 2018; Ryan et al., 2018; Lee et
al., 2013). Sensitivity analysis and model calibration can then
be performed based on thousands of runs with the emulator
rather than the CTM. Since the first application of emula-
tion methods for model calibration (Kennedy and O’Hagan,
2001), these approaches have been extended to models with
highly multivariate output (Higdon et al., 2008). Examples
include an Earth system model (Wilkinson, 2010), an aerosol
model (Johnson et al., 2015), an ice sheet model (Chang et
al., 2016) and a climate model (Salter et al., 2018). In this
study, we apply these approaches to models of tropospheric
ozone for the first time to demonstrate the feasibility of pa-
rameter estimation.

We identify three issues that need to be addressed for suc-
cessful atmospheric model calibration. Firstly, global chem-
istry transport models typically have grid scales of the order
of 100 km, which is insufficient to resolve spatial variabil-
ity in many atmospheric constituents. Surface measurements
made at a single location may not be representative of the
spatial scales resolved in the model. These errors associated
with spatial representativeness may be important even for
satellite measurements which provide information at a 10 km
scale (Boersma et al., 2016; Schultz et al., 2017). This repre-
sentation error is distinct from instrument error, which is of-
ten relatively narrow and better understood. The effect of rep-
resentation errors was explored in a simple terrestrial carbon
model by Hill et al. (2012), who found that as these errors
decreased the accuracy of parameter estimates improved.

Secondly, the spatial coverage of atmospheric composition
measurements is typically relatively poor, and this limits our
ability to estimate parameters accurately. Thus, it is impor-
tant to explore how the spatial coverage of measurements
affects estimates of model parameters and their associated
uncertainties.

Thirdly, evaluation of atmospheric chemistry models is
typically performed for different variables independently
(e.g. Stevenson et al., 2006; Fiore et al., 2009). However, at-
mospheric constituents such as O3, CO, NOx and volatile or-
ganic compounds (VOCs) are often closely coupled through
interrelated chemical, physical and dynamical processes.
Evaluation of a model with measurements of a single species
neglects the additional process information available from
accounting for species relationships. Lee et al. (2016) high-
light the limitation of using a single observational constraint
on modelled aerosol concentrations, finding that this resulted
in reduced uncertainty in concentrations but not in the as-
sociated radiative forcing. The benefits of using multiple
constraints have been highlighted previously. For example,
Miyazaki et al. (2012) used the ensemble Kalman filter and
satellite measurements of NO2, O3, CO and HNO3 to con-
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strain a CTM, resulting in a significant reduction in model
bias in NO2 column, O3 and CO concentrations simultane-
ously. Nicely et al. (2016) used aircraft measurements of O3,
H2O and NO to constrain a photochemical box model and
found estimates of column OH that were 12 %–40 % higher
than those from unconstrained CTMs. They also found that
although the CTMs simulated O3 well, they underestimated
NOx by a factor of 2, explaining the discrepancy in column
OH.

To address these gaps in knowledge, we estimate the prob-
ability distributions of eight parameters from a CTM, given
surface O3 and CO concentrations from the USA and Eu-
rope. We focus on model calibration with a limited num-
ber of parameters as a proof of concept, but we show how
this could be expanded to a much wider range of parameters
in future. To overcome the excessive computational burden
of running the model a large number of times, we replace
the model with a fast surrogate using Gaussian process em-
ulation. After evaluation of the emulator to ensure that it is
an accurate representation of the input–output relationship of
the CTM, we investigate how well the model parameters can
be estimated from chemical measurement data. We quantify
the impacts of measurement representation error and spatial
coverage on the bias and uncertainty of the estimated model
parameters, and we highlight the extent to which parameter
estimates can be improved using measurements of different
variables simultaneously.

2 Materials and methods

2.1 Atmospheric chemistry transport model

Chemistry transport models simulate the changes in concen-
tration of a range of atmospheric constituents (e.g. O3, CO,
NOx , CH4) with time over a specified three-dimensional do-
main. They represent many of the physical and chemical
processes involved, usually in a simplified form, but a de-
tailed understanding is often incomplete. Key processes in-
clude the emission of trace gases into the atmosphere, pho-
tochemical reactions that result in chemical transformations,
transport by the winds, convection and turbulence, and re-
moval of trace gases from the atmosphere through depo-
sition processes. In this study, we apply the Frontier Re-
search System for Global Change version of the University
of California, Irvine, chemical transport model, abbreviated
as the FRSGC/UCI CTM (Wild and Prather, 2000; Wild et
al., 2004). We focus on eight important processes affecting
tropospheric oxidants that were chosen based on one-at-a-
time sensitivity studies with the model (Wild, 2007) and that
have been used in previous global sensitivity analyses of tro-
pospheric ozone burden and methane lifetime (Ryan et al.,
2018; Wild et al., 2020a). These processes include the sur-
face emissions of nitrogen oxides (NOx), lightning emis-
sions of NO, biogenic emissions of isoprene, wet and dry de-

position of atmospheric constituents, atmospheric humidity,
cloud optical depth, and the efficiency of turbulent mixing in
the boundary layer; see Table 1. These do not encompass all
sources of uncertainty in the model, but are broadly represen-
tative of major uncertainties across a range of different pro-
cesses. To provide a simple and easily interpretable approach
to calibration, we define a global scaling factor for each pro-
cess that spans the range of uncertainty in the process and
that is applied uniformly in space and time. These scaling
factors form the parameters that we aim to calibrate. The
choices of parameters and uncertainty ranges are described
in more detail in Wild et al. (2020a). For this study, we fo-
cus on monthly-mean surface O3 and CO distributions at the
model native grid resolution of 2.8◦×2.8◦ and compare them
with observations over North America and Europe for model
calibration (Fig. 1). The model uses meteorological driving
data for 2001, a relatively typical meteorological year with-
out strong climate phenomena such as El Niño (Fiore et al.,
2009).

2.2 Surface O3 and CO data

Ground-based observations of O3 are relatively abundant in
Europe and North America, where there are ∼ 1800 individ-
ual sites that have continuous long-term measurements of O3
(Chang et al., 2017; Schultz et al., 2017). Measurements of
CO are made at fewer locations, but reliable long-term data
are available from 57 sites that are part of the Global Atmo-
spheric Watch network (Schultz et al., 2015). To allow more
thorough testing of the effects of spatial coverage over these
regions, we use Copernicus Atmosphere Monitoring Service
(CAMS) interim reanalysis data of surface O3 and CO from
the European Centre for Medium-Range Weather Forecasts
(ECMWF) which has been tuned to match measurements us-
ing 4D-Var data assimilation (Flemming et al., 2017). This
reanalysis reproduces observed O3 and CO distributions rel-
atively well, and biases at surface measurement stations are
generally small (Huijnen et al., 2020). The dataset also has
the benefit of complete global coverage, allowing us to test
the importance of measurement coverage directly.

Reanalysis data for O3 and CO are available for 2003–
2015, and we average the data by month across this period
to provide a climatological comparison. The control run of
the FRSGC/UCI model matches CO from the reanalysis data
reasonably well (Fig. 2), but overestimates surface O3. Over-
estimation of O3 in continental regions has been noted in
previous studies and is partly a consequence of rapid pho-
tochemical formation from fresh emissions that are magni-
fied at coarse model resolution (Wild and Prather, 2006). For
this exploratory study, we bias-correct the modelled surface
O3 by reducing it by 25 %, following the approach taken by
Shindell et al. (2018), so that it matches the reanalysis data
(Fig. 2a). This adjustment accounts for the effect of chemical
processes and model resolution, which are not explored in
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Table 1. Model processes and associated scaling parameter ranges used in this study.

Number Model process Control run value Scaling parameter values

1 Global surface NOx emissions (Tg N yr−1) 40 0.75–1.25
2 Global lightning NO emissions (Tg N yr−1) 5 0.40–1.60
3 Global isoprene emissions (Tg C yr−1) 500 0.40–1.60
4 Dry deposition rates model value 0.40–1.60
5 Wet deposition rates model value 0.40–1.60
6 Humidity model value 0.80–1.20
7 Cloud optical depth model value 0.33–3.00
8 Boundary layer mixing model value 0.10–10.0

Figure 1. Annual mean surface ozone mixing ratio (in ppb) from the FRSGC/UCI CTM showing the regions considered here and the 272
grid cells used for model calibration.

this study, and provides a firmer foundation for investigating
the effects of other processes.

2.3 Representation error

The “representation error” describes how well measurements
made at a single location represent a wider region at the spa-
tial scale of the model (2.8◦× 2.8◦ for this study). The error
may be reduced by averaging measurements made at differ-
ent stations within a model grid box, although atmospheric
measurements may be too sparse to permit this (Lyapina et
al., 2016). The representation error is sometimes taken as
the mean of the spatial standard deviation of different mea-
surements within a grid box (Sofen et al., 2016). However,
this measure quantifies the spatial variability of measured O3
within a grid box and may not match the representation error.

To test the effect of varying this representation error on pa-
rameter estimates, we use synthetic data from the control run
of the model using parameters set to their nominal default
values. Synthetic O3 and CO data were generated by adding
different levels of representation error for each level of spa-

tial coverage. In mathematical terms, we write the following:

datai =mi (xcontrol)+ εi, εi ∼N(0,σ 2
i ), (1)

where, for the ith point in space or time, datai refers to the
synthetic data for O3 or CO, mi (xcontrol) is the O3 or CO
from the model control run, and εi is generated from a Nor-
mal distribution with mean of zero and standard deviation σi
that is directly proportional to the magnitude of mi (xcontrol).
In this case, σi = p×mi (xcontrol), where p is a scaling fac-
tor that provides a measure of the representation error. We
used the reanalysis data to estimate p alongside the model
parameters, and we found posterior values of p that were in
the range 0.16–0.19. We therefore selected four values of p
(0.01, 0.1, 0.2 and 0.3) to explore the importance of repre-
sentation error when using the synthetic data.

2.4 Global sensitivity analysis

Sensitivity analysis was carried out to determine the sensi-
tivity of the simulated surface O3 and CO to changes in each
of the eight parameters. This allows us to identify which of
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Figure 2. Monthly-mean surface O3 (a) and surface CO (b) over Europe and North America simulated with the FRSGC/UCI CTM compared
with ECMWF reanalysis data.

the parameters are most important in governing surface O3
and CO. We use global sensitivity analysis (GSA), varying
each input while averaging over the other inputs. This pro-
vides a more integrated assessment of uncertainty than the
traditional one-at-a-time approach varying each input in turn
while fixing the other inputs at nominal values. We use the
extended FAST method (Saltelli et al., 1999), a common and
robust approach to GSA in which the sensitivity indices are
quantified by partitioning the total variance in the model out-
put (i.e. modelled surface O3 or CO) into different sources of
contribution from each input. Like most sensitivity analysis
methods, this approach requires several thousand executions
of the model, which would be computationally expensive for
the CTM used here. This is overcome by replacing the CTM
with a Gaussian process (GP) emulator. Further details of the
implementation of GSA are described in Ryan et al. (2018).

2.5 Gaussian process emulation – theory

We replace the CTM with a surrogate model that maps the
inputs of the CTM (the eight parameters listed in Table 1)
with its outputs (surface O3 and CO). We employ a surrogate
model based on Gaussian process (GP) emulation for three
reasons. Firstly, due to the attractive mathematical proper-
ties of a GP, the emulator needs very few runs of the com-
putationally expensive model to train it, typically less than
100. This is in contrast to methods based on neural networks,
which often have a large number of parameters that necessi-
tate thousands of training runs. Secondly, a GP emulator is
an interpolator and so predicts the output of the model with
no uncertainty at the input points it is trained at. Thirdly, it
gives a complete probability distribution, as a measure of un-
certainty, for estimates of the model output at points it is not
trained at.

A GP is an extension of the multivariate Gaussian distri-
bution, where instead of a mean vector µ and covariance ma-
trix 6, mean and covariance functions given by E(f (x))
and cov

(
f (x),f (x′)

)
are used (Rasmussen, 2006). Here,

f (·) : χ ∈ Rq→ Rq ′ represents the computationally expen-
sive model, and χ denotes the input space given by x =

(
x1, . . .,xq

)
∈ χ1×. . .×χq = χ ⊂ Rq , and q is the number of

input variables. GP emulators within a Bayesian framework
were first developed in the 1990s and early 2000s (O’Hagan,
2006; Oakley and O’Hagan, 2004; Kennedy and O’Hagan,
2000; Currin et al., 1991). The simplest and most common
GP emulator is one where the outputs to be emulated are
scalar. Thus, if the computationally expensive model is given
by f (·), then the one-dimensional output y is calculated
by y = f (x). This means that if the model output is multi-
dimensional – e.g. a global map or a time series – then we
need to build a separate emulator for each point in the output
space. Building the emulator requires training runs from the
expensive model. In general, we choose n training inputs, de-
noted by x1,x2, . . .,xn, based on a space-filling design such
as a maximin Latin hypercube design (Morris and Mitchell,
1995). The number of training points is based on the rule of
thumb n= 10× q (Loeppky et al., 2012).

Denoting the scalar outputs by y1 = f (x1), y2 = f (x2),
. . . , yn = f (xn), we then build an emulator f̂ (·) given by
ŷ = f̂ (x), where ŷ is the estimated output from the emula-
tor. If x represents one of the training inputs (i.e. x = xi,1≤
i ≤ n), then ŷ is equal to the output from f (·) with no un-
certainty (i.e. ŷ = y). If x represents an input the emulator
is not trained at, then ŷ has a probability distribution repre-
sented by a mean function m(x) and a covariance function
V (x,x′), where x′ is a different input. The mean function is
given by the following:

m(x)= h(x)Tβ̂ + t (x)TA−1
(
y−Hβ̂

)
, (2)

where h(x)T is a 1× (q + 1) vector given by(
1,xT); β̂ is a vector of coefficients deter-

mined by β̂ =
(
HTA−1H

)−1HTA−1y; t(x)T =

(C (x,x1;ψ) , . . .,C (x,xn;ψ)); and A is a matrix
whose elements are determined by Ai,j = C

(
xi,xj ;ψ

)
,

y =
[
f (x1) , . . .,f (xn)

]T, and H= [h(x1) . . .,h(xn)]T.
Here, C

(
x,x′;ψ

)
is a correlation function that represents

our prior belief about how the inputs x and x′ are correlated.
A common choice is a Gaussian correlation function which
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takes the form: C
(
x,x′;ψ

)
= exp

(
−
(
x− x′

)TB
(
x− x′

))
,

where B is a p×p matrix with zeros in the off-diagonals
and diagonal elements given by the roughness parameters
ψ = (ψ1, . . .,ψq). The roughness parameters give an in-
dication of whether the input–output relationship for each
input variable, given the training data, should be linear. Low
values reflect a linear (or smooth) relationship, whereas high
values (e.g. > 20) suggest a non-linear (or non-smooth)
response surface. For implementation purposes, we express
the correlation function as the following:

C
(
x,x′;ψ

)
=

q+1∑
j=1

exp
(
−ψj

(
xj − x

′

j

)2
)
,

where x = (x1, . . .,xq) and x′ = (x′1, . . .,x
′
q). The formula

for the covariance function V
(
x,x′

)
is given in Appendix A.

A final issue to resolve is how to estimate the roughness
parameter since the posterior distribution of f (·) is condi-
tional on these emulator parameters. A Bayesian approach
would be to integrate out these emulator parameters in the
formulation of the GP emulator. This would require highly
informative priors, but in most cases such informative priors
do not exist. Kennedy and O’Hagan (2001) propose using
maximum likelihood to provide a point estimate of the emu-
lator parameters and to use these in the formulae for the mean
and covariance functions of the GP emulator. We adopt this
approach in this study.

2.6 Gaussian process emulation – implementation

Using the Loeppky rule, we choose n= 80 different training
inputs for our eight-parameter calibration study. In total, we
emulate two variables (surface O3 and CO) over 12 months
at 272 spatial locations, and so we require 6528 different GP
emulators. To estimate the model parameters, we evaluate
each of the GP emulators tens of thousands of times. Al-
though emulation is computationally fast, this presents a sub-
stantial computational burden, even for more computation-
ally efficient versions of the emulator (Marrel et al., 2011;
Roustant et al., 2012). We overcome this by computing parts
of Eq. (2) prior to these evaluations. Specifically, we com-
pute the vectors β̂, mLP and ψ for all points in the output
space, where mLP denotes A−1

(
y−Hβ̂

)
, the last part of

m(x) from Eq. (2). We store these three objects as three ma-
trices β̂ALL, mLP.ALL and ψALL. Evaluated at a new input
xnew, the mean function of the emulator (Eq. 1) can now be
expressed as the following:

mi (xnew)=h(xnew)
Tβ̂ALL [i, :]+ ti(xnew)

TmLP.ALL [i, :] ;

ti(xnew)
T
=
(
C
(
xnew,x1;ψALL[i, :]

)
, . . .,

C
(
xnew,xn;ψALL[i, :]

))
; (3)

where i (1≤ i ≤ 6528) denotes the ith point in the output
space, and [i, :] refers to the ith row of each matrix. The
equivalent formula for V

(
x,x′

)
is given in Appendix A.

To test the accuracy of GP emulation, we ran each of
the 6528 emulators at 20 sets of parameters which were
not used for training the emulators. The estimated O3 and
CO values from the emulators for all spatial locations and
months closely match the simulated O3 and CO output from
the FRSGC/UCI model for these validation runs, with R2 >

0.995 for each variable; see Fig. 3.
Finally, we recognise that principal component analysis

(PCA) could be used to reduce the dimensionality of the
output space and hence the number of emulators required
(Higdon et al., 2008). In a previous study we found that
a PCA–emulator hybrid approach resulted in similar per-
formance compared to using separate emulators for each
point in the output space, and this reduced the number of
emulators required from 2000 to 40 or fewer (Ryan et al.,
2018). However, for this study, we choose an emulator-
only approach, because it is much simpler to demonstrate.
Nonetheless, future emulation–calibration studies could ben-
efit from the computational savings of applying a PCA–
emulator hybrid approach. Other approaches for dealing with
high-dimensional output are also available, such as low rank
approximations (Bayerri et al., 2007).

2.7 Parameter estimation

We estimate the eight model parameters using Bayesian
statistics via the software package Just Another Gibbs Sam-
pler (Plummer, 2003). This uses Gibbs sampling, which is an
approach based on Markov Chain Monte Carlo (MCMC) that
we use to determine the multi-dimensional posterior proba-
bility distribution of the model parameters (Gelman et al.,
2013). Gibbs sampling is an extension of the more traditional
Metropolis–Hastings variant of MCMC, and uses conditional
probability to sample from the marginal distribution when
moving around the multi-dimensional parameter space.

To find the posterior distribution, the MCMC algorithm
searches the parameter space using multiple sets of indepen-
dent chains. Here, a chain refers to a sequence of steps in the
parameter space that the algorithm takes. A new proposed
parameter set in this search is accepted on two conditions:
(1) the set is consistent with the prior probability distribution,
which for our study was a set of uniform distributions with
the lower and upper bounds given by the defined ranges in
Table 1; and (2) the resulting modelled values using the pro-
posed set of parameters are consistent with measurements,
which is assessed using the following Gaussian likelihood
function:

L(θ)=

N∏
i=1

1
√

2πσi
exp

(
fi (θ)−mi

σ 2
i

)2

, (4)

where N is the number of measurements used, fi(θ) is the
ith model output (1≤ i ≤N ) using the proposed parameter
set θ , mi is the measurement corresponding to the ith model
output and σi is the representation error for measurementmi .
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Figure 3. Simulated surface O3 (a) and surface CO (b) from the FRSGC/UCI CTM versus those predicted from the Gaussian process
emulators. The simulated and emulated concentrations were generated using 20 sets of model parameters that were not used for training the
emulators.

We note that although separate emulators are used for each of
the spatial and temporal locations in the model output, there
is still only a single likelihood function. Hence, evaluating
all of the emulators for a specific set of values of the scaling
parameters is equivalent to evaluating the CTM once at those
values of the parameters.

We ran three parallel chains for 10 000 iterations each. Af-
ter discarding the first half of these iterations as “burn in”, we
thinned the chains by a factor of 5 to reduce within-chain au-
tocorrelation. Convergence was assessed using the Brooks–
Gelman–Rubin diagnostic tool (Gelman et al., 2013). This
produced 3000 independent samples from the posterior dis-
tribution for each parameter, which we summarise using their
posterior means and 95 % credible intervals (CIs) defined
by the 2.5th and 97.5th percentiles (Gelman et al., 2013).
We used the R language to code up our configuration of the
MCMC algorithm.

2.8 Model discrepancy

It has been suggested that a model discrepancy term should
be included when carrying out model calibration involving
Gaussian process emulators (e.g. Kennedy and O’Hagan,
2001; Brynjarsdóttir and O’Hagan, 2014). The discrepancy
term represents the processes missing in the model. How-
ever, in this demonstration study we have chosen not to in-
clude a discrepancy term for two reasons. Firstly, for sce-
narios where we use synthetic data, no discrepancy term is
required, because the synthetic data are generated by adding
noise and spatial gaps to the emulator output for the control
run. Secondly, for scenarios involving reanalysis data, there
is no simple and defensible method to estimate the term.
When performing model calibration by applying MCMC di-
rectly, a discrepancy term would not be included. Since the
purpose of the emulator here is to estimate the output of the
model for a given set of parameter values, we argue that it
is not necessary to include a discrepancy term into the cali-
bration formulation. However, we agree that including such

a term may be helpful in situations where there is good prior
information.

To investigate the importance of a discrepancy term, we re-
peat the experiment to estimate the eight scaling parameters
using surface ozone reanalysis data and assuming a discrep-
ancy term that is 10 % of the magnitude of the observation.
We find that there is almost no difference in the marginal
posterior distribution when we include the discrepancy term
compared with when we omit it (see Fig. S16 in the Supple-
ment). We therefore choose to omit the term for our study.

2.9 Experimental approach

We first perform a global sensitivity analysis to identify the
parameters which have the greatest influence on the two vari-
ables we consider. We then perform parameter estimation
using surface concentration data over the regions of North
America and Europe shown in Fig. 1 and focus our analysis
on the parameters which have the greatest influence. To pro-
vide a demonstration of the approach, we first use “synthetic”
measurement data drawn from the control run of the CTM
which were not used to train the emulators, adding increas-
ing levels of noise to represent measurement representation
errors of 1 %, 10 %, 20 % and 30 % (p = 0.01, 0.1, 0.2 and
0.3), and varying the spatial coverage of these measurements
over the regions considered over a wide range: 2.5 %, 5 %,
10 %, 20 %, 40 % and 100 %. We focus on surface O3 only,
surface CO only and then both variables together. We then
use the reanalysis data to represent the measurements, fo-
cussing on the effects of spatial coverage alone and estimat-
ing the representation error p from this independent dataset.
The 90 different scenarios we consider are summarised in
Table 2. We discuss the implication of these results and the
limitations of considering a simple eight-parameter system
rather than all sources of model uncertainty in Sect. 4.
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Table 2. Summary of the 90 different MCMC scenarios carried out for this study. The scenarios involved varying (i) the type of data (synthetic
or reanalysis); (ii) the representation error used for the synthetic data (p), where mi (xcontrol) is the control run output of the CTM, and σi
is the amount of statistical noise added; (iii) the percentage coverage of grid squares in the USA and Europe. For the synthetic data, the 24
scenarios correspond to a full factorial combination of four levels of representation error and six levels of spatial coverage, while for the
reanalysis data the six scenarios correspond to the six levels of spatial coverage.

Scenarios Dataset Representation error, p(σi = p×mi (xcontrol)) Spatial coverage

1–24 Synthetic O3 0.01, 0.1, 0.2, 0.3 2.5 %, 5 %, 10 %, 20 %, 40 %, 100 %
25–48 Synthetic CO 0.01, 0.1, 0.2, 0.3 2.5 %, 5 %, 10 %, 20 %, 40 %, 100 %
49–72 Synthetic O3 and CO 0.01, 0.1, 0.2, 0.3 2.5 %, 5 %, 10 %, 20 %, 40 %, 100 %
73–78 Reanalysis data (O3) Parameter to be estimated 2.5 %, 5 %, 10 %, 20 %, 40 %, 100 %
79–84 Reanalysis data (CO) Parameter to be estimated 2.5 %, 5 %, 10 %, 20 %, 40 %, 100 %
85–90 Reanalysis data (O3 and CO) Parameter to be estimated 2.5 %, 5 %, 10 %, 20 %, 40 %, 100 %

Figure 4. Sensitivity indices representing the percentage of the variance in surface O3 and CO over the USA and Europe in the FRSGC/UCI
model output due to changes in the scaling parameter associated with each of the eight model processes (Table 1).

3 Results

3.1 Global sensitivity analysis

Results from global sensitivity analysis reveal that over the
continental regions of Europe and North America considered
here the simulated monthly-mean concentrations of surface
O3 are most sensitive to dry deposition and, to a lesser extent,
to isoprene emissions (Fig. 4). This is not unexpected, given
the importance of direct deposition of ozone to the Earth’s
surface, and the role of isoprene as a natural source of ozone
in continental regions. The simulated surface CO is most sen-
sitive to isoprene emissions, which represent a source of CO,
and to boundary layer mixing, which influences the transport
of CO from polluted emission regions. We thus identify the
scaling parameters corresponding to dry deposition, isoprene
emissions and boundary layer mixing as the most important
of the eight considered here to estimate accurately to reduce
the bias in modelled surface O3 and CO. For completeness,

we show the geographical distribution of sensitivity indices
in Figs. 5 and 6, which reveal the importance of humidity in
governing O3 over oceanic regions and highlight the very dif-
ferent responses of surface O3 and CO to the major driving
processes.

3.2 Estimation of scaling parameters using synthetic
data

We next use synthetic observation data to calibrate the model
and estimate scaling parameters. For synthetic data, we use
the model control run with a specified level of representation
error (Table 2), and the default model parameters define the
true scaling that we aim to retrieve. Prescribing surface O3
with very little error (p = 0.01) gives an estimate of the dry
deposition scaling parameter, which has the largest influence
on modelled surface O3, close to its true value and the uncer-
tainty is small even when the spatial coverage of measure-
ments is only 2.5 % (Fig. 7, column 1). As the representa-
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Figure 5. Sensitivity indices representing the percentage of the variance in surface O3 in the FRSGC/UCI model output due to changes in
each input parameter. The four parameters displayed here have the highest sensitivity indices and the largest effect on simulated surface O3.
Maps of sensitivity indices corresponding to the other four parameters are shown in Fig. S2 of the Supplement.

Figure 6. Sensitivity indices representing the percentage of the variance in surface CO in the FRSGC/UCI model output due to changes in
each input parameter. Maps of sensitivity indices for the other four parameters are shown in Fig. S3 of the Supplement.

tion error is increased to p = 0.1, the parameter uncertainty
is larger at low spatial coverage, but the mean estimate re-
mains unbiased (Fig. 7, column 2). The uncertainty at all lev-
els of spatial coverage becomes larger as p increases to 0.2
and 0.3, but the means remain very close to the true values
(Fig. 7, columns 3 and 4). Surface CO is largely unaffected
by dry deposition and thus provides very little constraint on
the scaling parameter. The effect of prescribing surface CO
and O3 together is very similar to that of using surface O3
alone.

Using surface CO alone with very little representation er-
ror (p = 0.01), the mean estimate of the isoprene emission
scaling parameter is equal to the true value with very lit-

tle uncertainty, regardless of the spatial coverage (Fig. 8,
column 1). When the representation error is increased to
p = 0.1, the estimate remains very close to the true value, but
the uncertainty is substantially higher at low spatial coverage
(2.5 % and 5 %) than at higher coverage (40 % and 100 %)
(Fig. 8, column 2). The estimates deviate further from the
truth at higher levels of representation error (p = 0.2 and 0.3)
and the uncertainty is greater (Fig. 8, columns 3 and 4). Esti-
mates of the isoprene scaling parameter are less accurate than
those of the dry deposition scaling parameter, as the posterior
means are further from the true value of the parameter, and
the uncertainty intervals are wider (Fig. 8 vs. Fig. 7). As with
our findings for dry deposition, the posterior means and the
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Figure 7. Means and 95 % credible intervals of 3000 samples of the dry deposition scaling parameter from posterior distributions using the
MCMC algorithm based on synthetic datasets from scenarios 1–72 (Table 1). Control refers to the FRSGC/UCI model control run surface
concentration for each output point.

Figure 8. Means and 95 % credible intervals of 3000 samples of the isoprene emission scaling parameter from posterior distributions using
the MCMC algorithm based on synthetic datasets from scenarios 1–72 (Table 1). Control refers to the FRSGC/UCI model control run surface
concentration for each output point.

lengths of the uncertainty intervals for the isoprene scaling
parameter remain relatively unchanged when surface O3 data
are prescribed at the same time.

Our findings for the boundary layer mixing scaling pa-
rameter follow a similar pattern to the other two parameters
(Fig. 9). In all combinations of representation error and spa-
tial coverage, we find that the mean estimates are unbiased.

Furthermore, we find that the parameter uncertainty is signif-
icantly smaller when the spatial coverage is 10 % or higher
when p = 0.1, 20 % or higher when p = 0.2, and 40 % or
higher when p = 0.3 (Fig. 9, Table 2). It is clear from these
results that the scalings for these three model parameters can
be successfully estimated from synthetic data with low un-
certainty when the representation error is low and that the es-
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Figure 9. Means and 95 % credible intervals of 3000 samples of the Boundary layer mixing scaling parameter from posterior distributions
using the MCMC algorithm based on synthetic datasets from scenarios 1–72 (Table 1). Control refers to the FRSGC/UCI model control run
surface concentration at each output point. The scaling parameter values are given here on a log10 scale.

timates remain good, albeit with higher uncertainty, at higher
representation error if the spatial coverage is relatively good.

3.3 Estimation of scaling parameters using reanalysis
data

We consider next the CAMS interim reanalysis data for sur-
face O3 and CO, which are based on assimilated concentra-
tions from the ECMWF model and are thus independent of
the FRSGC/UCI model. The reanalysis is representative of
similar spatial scales to the FRSGC/UCI model; thus, we
ignore the representation error and vary the spatial cover-
age only. However, we are able to estimate the represen-
tation error factor p by treating it as a parameter to esti-
mate. With 100 % spatial coverage, this error term is esti-
mated with the MCMC algorithm to be p = 0.168± 0.004
and p = 0.191± 0.005 for surface O3 and CO, respectively.
Although we do not know the true values of the parameters
in this case, the good agreement between the control run of
the FRSGC/UCI model and the reanalysis data suggests that
they lie close to their true values.

Using the reanalysis data for surface O3 alone, we find
that the posterior means and uncertainty for the dry depo-
sition parameter are in the upper half of the range defined,
indicating that the real dry deposition flux is greater than that
calculated with the FRSGC/UCI model. This is largely as ex-
pected, as the FRSGC/UCI model overestimates surface O3
at these continental sites and greater deposition would bring
the model into better agreement with the reanalysis. As the
spatial coverage is increased, the estimate of the scaling fac-
tor increases to around 1.4, and the uncertainty is reduced

(Fig. 10a). In contrast, using surface O3 and CO together re-
sults in an estimate closer to 1 and an additional reduction
in uncertainty (Fig. 10g). Inclusion of surface CO measure-
ments, as an additional constraint to surface O3, results in an
estimate of the dry deposition parameter closer to that mod-
elled.

Using surface CO alone, estimates of the isoprene scaling
parameter lie in the central part of the defined range, whilst
estimates of the boundary layer mixing scaling parameter lie
in the upper half of the defined range (Fig. 10e, f). For both
parameters, increasing the spatial coverage leads to a reduc-
tion in uncertainty. Unlike for dry deposition, inclusion of
surface O3 when estimating either of these parameters results
in very little difference in the magnitude of the estimate or in
the associated uncertainty (Fig. 10e vs. 10h; Fig. 10f vs. 10i).

3.4 Evaluation of surface O3 following calibration

We demonstrate the benefit of the calibration by evaluating
the emulators using the values of the scaling parameters sam-
pled from the prior and posterior distributions. As an exam-
ple, we show surface O3 before and after calibration using
the calibration runs involving synthetic data at 20 % spatial
coverage and a representation error of p = 0.2 (Fig. 11). De-
spite the calibration involving only 20 % spatial coverage, we
apply the resulting parameter values to all grid squares. We
can clearly see that the prior surface O3 concentrations are
unbiased but have large uncertainty, especially at high val-
ues. In contrast the calibrated O3 concentrations have a small
uncertainty, demonstrating that even with 20 % spatial cov-
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Figure 10. Means and 95 % credible intervals of 3000 samples of the dry deposition, isoprene and boundary layer mixing scaling parameters
from posterior distributions using the MCMC algorithm based on reanalysis datasets from scenarios 73–90 (Table 1). The first and second
rows show these parameters estimated using one stream of data (O3 for the first row and CO for the second row), while the third row shows
estimates using two data streams (O3 and CO).

Figure 11. Emulator predictions of surface O3, evaluated at values of the scaling parameters sampled from the prior distribution (a) and
posterior distribution (b), showing the effects of calibration. In panel (b), the outputs correspond to the scenario where the calibration
involved synthetic O3 data, a representation error of p = 0.2and a spatial coverage of 20 % (Table 2). The predictions shown here are carried
out for all model grid boxes, i.e. 100 % spatial coverage.

erage in the calibration data we are able to achieve improved
predictions for all model grid boxes.

4 Discussion

4.1 Representation error

Our results show the impact of the size of the representa-
tion error on the accuracy of estimated model parameters.
The parametric uncertainty (i.e. the size of the credible inter-
vals in Figs. 7–9) increases at an approximately linear rate as

the representation error increases from p = 0.01 to p = 0.3.
This is consistent with Hill et al. (2012), who estimated the
parameters and uncertainties of a simple terrestrial carbon
model under varying levels of measurement error.

For the reanalysis data, we treat the representation error
as a parameter for the MCMC algorithm to estimate along
with the eight model parameters. This is possible because
we assume that the measured value of O3 is proportional to
the simulated value from a forward run of the FRSGC/UCI
model, although such an assumption may not be possible in
other situations. An alternative approach to estimate the rep-

Geosci. Model Dev., 14, 5373–5391, 2021 https://doi.org/10.5194/gmd-14-5373-2021



E. Ryan and O. Wild: Calibrating a global atmospheric chemistry transport model 5385

resentation error would be to carry out an intensive measure-
ment campaign to determine whether the average O3 from
different measuring stations within a grid square is repre-
sentative of the true average. Satellite products of the ter-
restrial biosphere are checked for accuracy using this type of
approach (De Kauwe et al., 2011). Although measurement
campaigns at these large spatial and temporal scales would
be challenging and costly, they may not need to continue for
long periods of time since we might expect representation er-
ror to decrease as the temporal scale increases (Schutgens et
al., 2016).

4.2 Spatial coverage

We find that as the volume of measurements increase, the es-
timates of the model parameters are closer to the truth, and
the width of the credible intervals decrease. This is particu-
larly clear for the dry deposition and isoprene emission scal-
ing parameters when using both O3 and CO concentrations
(Figs. 8 and 9). While this highlights the value of good spa-
tial coverage, we note that the benefits are greatly reduced if
the representation error is relatively high. For the boundary
layer mixing parameter, we find little decrease in the credible
intervals using synthetic CO data with the highest represen-
tation error (p = 0.3), where the spatial coverage is less than
20 % (Fig. 9, row 2). In contrast, at the p = 0.1 level, a large
decrease in uncertainty is seen between the 2.5 % and 20 %
coverage. Similar effects are seen, to a lesser extent, for the
dry deposition and isoprene scaling parameters as the spatial
coverage increases.

Our results using synthetic data show that while the size
of the uncertainty intervals varies substantially depending
on the spatial coverage or representation error, the posterior
means are for the most part very close to the true values. De-
viation from these typically occurs when the measurements
contain less information either due to low spatial coverage or
high representation error. However, the uncertainty intervals
include the true values of the parameters for all the experi-
mental scenarios considered here, unlike in Hill et al. (2012).
This gives strong confidence in the reliability of the MCMC
method used to estimate the parameters.

4.3 Applying multiple constraints

The importance of multiple constraints was most apparent
for scenarios involving the reanalysis data. For the dry depo-
sition scaling parameter, which explains much of the variance
in surface O3 (Fig. 4), we found that using O3 data alone re-
sults in mean estimates that are in the upper half of the range
of possible values (Fig. 10a). However, including CO data
brought the mean estimates into the central part of the range
where we would expect the true value to lie (Fig. 10g). This
is remarkable given that dry deposition is not an important
process for controlling CO, and highlights the coupling be-
tween processes that permits constraints on one process from

one variable to influence those on another. However, it is con-
sistent with previous studies exploring the uncertainty in es-
timates of key parameters in an aerosol–chemistry–climate
model (Johnson et al., 2018). For the isoprene emission and
boundary layer mixing scaling parameters, there was little
difference in the mean estimates or the size of the uncertainty
intervals when using O3 and CO together rather than a single
constraint. This reveals that the importance of using multiple
constraints is dependent on the process and on the variable
constrained. A judicious choice of these could allow a par-
ticular process to be targeted.

Overall, our estimates of the dry deposition and isoprene
emission scaling parameters are close to a priori values from
the FRSGC/UCI CTM, with respect to the independent re-
analysis data. In contrast, our estimates of the boundary layer
mixing scaling parameter are substantially larger than those
from the model, suggesting that this process is not repre-
sented well in the model or that other processes not consid-
ered here may be influencing the result.

4.4 Towards constraint with real surface
measurements

Our results have demonstrated the feasibility of using mea-
surement data to constrain model parameters under the right
conditions. We have chosen to use synthetic data as they have
allowed us to vary the spatial coverage and to investigate the
effects of representation error which is poorly characterised
when using real measurements data. Quantifying this type
of error for real measurements is difficult because measure-
ment sites are relatively sparse and are often representative
of a limited area rather than the larger area typical of a model
grid square. However, this study has allowed us to estimate
the representation error associated with the reanalysis data,
and in the absence of more information, these values could
be used as a guide when applying surface measurements as a
constraint.

The reanalysis data provide a more critical test, as they are
independent of the FRSGC/UCI CTM used here. Although
we do not know the true values of the scaling parameters,
we expect them to lie close to those used in the control run
given the relatively good agreement for O3 and CO concen-
trations. For the dry deposition parameter, we expect scal-
ing values to be close to 1, but using surface O3 reanalysis
data alone, we found posterior mean scaling parameters ap-
proaching 1.4, with credible intervals that did not include 1
(Fig. 10a). This likely reflects overestimation of surface O3 in
continental regions in the CTM and may reflect uncertainties
and biases in other processes not considered here, most no-
tably in the chemical formation and destruction of O3 and in
model transport processes. In the absence of consideration of
the uncertainty in these processes in this feasibility study, the
dry deposition parameter is used as a proxy process to reduce
O3 concentrations. This is an example of equifinality, where
different sets of parameters can result in model predictions
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that give equally good agreement with observations (Beven
et al., 2001). Applying simultaneous constraints to CO goes
some way to addressing this but does not remove the prob-
lem. Before applying real surface measurements to constrain
the CTM, we propose a more comprehensive assessment of
model uncertainties with a wider range of parameters, so the
constraints can more directly inform process understanding
and model development.

5 Conclusion

We have demonstrated the use of surface O3 and CO concen-
trations to constrain a global atmospheric chemical transport
model and generate accurate and robust estimates of model
parameters. This would normally be prohibitive for such a
model given that thousands of model runs are required. Our
approach is to replace the CTM with a surrogate model using
Gaussian process emulation and then estimate the parameters
using the emulator in place of the CTM. In this feasibility
study we have shown that surface O3 has a large sensitiv-
ity to dry deposition and that surface CO is most sensitive
to isoprene emissions and boundary layer mixing processes,
as expected. We find that estimates of the scaling parame-
ters for these processes are dependent on the spatial cover-
age and representation error of the surface O3 and CO data.
Our parameter estimates become less uncertain as coverage
increases and as the representation error decreases, whilst re-
maining unbiased. Furthermore, we show that using two sep-
arate data constraints, in this case surface O3 and CO, instead
of a single one can result in mean parameter estimates that
are much closer to their likely true values. However, this is
dependent on the processes considered and constraints ap-
plied, and while it is effective for dry deposition here, we
find relatively little improvement in the estimates or uncer-
tainties for isoprene emission or boundary layer mixing pro-
cesses that are also considered here.

The approach we adopt here provides a means of con-
straining atmospheric models with observations and identi-
fying sources of model error at a process level. Our results
based on the independent reanalysis data suggest that dry
deposition and isoprene emissions are represented relatively
well in the FRSGC/UCI CTM but that boundary layer mix-
ing processes may be somewhat underestimated. However,
we have explored the effect of only eight parameters in this
study, and consideration of a more complete set of processes,
including those governing photochemistry and dynamics, is
needed to generate more realistic constraints for key pol-
lutants such as O3. We aim to expand this study to inves-
tigate a more extensive range of parameters and processes
and to constrain with a wider range of observation data. The
emulator-based approach for estimating parameters that we
have successfully demonstrated here can be applied to any
model where evaluating the model the required number of
times is too computationally demanding.
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Appendix A

The formula for the covariance function V
(
x,x′

)
from

Sect. 2.2 is given by:

V
(
x,x′

)
=σ 2

[
C
(
x,x′;ψ

)
− t (x)TA−1t (x)

+

(
h(x)T+ t (x)TA−1H

)(
HTA−1H

)−1

(
h(x′)T+ t (x′)TA−1H

)T
]
,

where

σ 2
=

yT
(

A−1
−A−1H

(
HTA−1H

)−1HTA−1
)
y

n− q − 1
.

To compute the variance or uncertainty of a prediction x, we
use the formula for V (x,x′) with x′ = x, which results in
C(x,x;ψ)= 1. Since we need to evaluate a large number of
emulators for each MCMC iteration step (because we have a
separate emulator for every dimension of the model output),
it is more computationally efficient to compute the parts of
the above formula prior to using the emulator. Hence, the
above formula can be replaced with

Vi (xnew,xnew)=σ
2
ALL[i,1]

[(
1− ti(xnew)

TVi,1ti (xnew)

+
(
h(xnew)

T
+ t(xnew)

TVi,2
)

Vi,3(
h(xnew)

T
+ t(xnew)

TVi,2
)T]

,

where

– i (1≤ i ≤ r) denoted the ith point in the r-dimensional
simulator output.

– σ 2
ALL is a r×1 vector that stores the values of σ 2 for all
r outputs.

– Vi,1 is the n× n matrix A−1 corresponding to the ith
point in the simulator’s output. It is stored as the ith
block of the nr × n matrix V1 defined by

V1 =


V1,1
V2,1
...

Vr,1

 .

– Vi,2 is the n× q matrix A−1H corresponding to the ith
point in the simulator’s output. It is stored as the ith
block of the nr × q matrix V2 defined by

V2 =


V1,2
V2,2
...

Vr,2

 .

– Vi,3 is the q × q matrix
(
HTA−1H

)−1 corresponding to
the ith point in the simulator’s output. It is stored as the
ith block of the qr × q matrix V3 defined by

V3 =


V1,3
V2,3
...

Vr,3

 .
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