Articles | Volume 14, issue 8
https://doi.org/10.5194/gmd-14-5001-2021
https://doi.org/10.5194/gmd-14-5001-2021
Model description paper
 | 
12 Aug 2021
Model description paper |  | 12 Aug 2021

iNRACM: incorporating 15N into the Regional Atmospheric Chemistry Mechanism (RACM) for assessing the role photochemistry plays in controlling the isotopic composition of NOx, NOy, and atmospheric nitrate

Huan Fang, Wendell W. Walters, David Mase, and Greg Michalski

Related authors

Assessing the roles emission sources and atmospheric processes play in simulating δ15N of atmospheric NOx and NO3 using CMAQ (version 5.2.1) and SMOKE (version 4.6)
Huan Fang and Greg Michalski
Geosci. Model Dev., 15, 4239–4258, https://doi.org/10.5194/gmd-15-4239-2022,https://doi.org/10.5194/gmd-15-4239-2022, 2022
Short summary
Incorporating 15N into the outputs of SMOKE version 4.6 as the emission input dataset for CMAQ version 5.2.1 for assessing the role emission sources plays in controlling the isotopic composition of NOx, NOy, and atmospheric nitrate
Huan Fang and Greg Michalski
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-322,https://doi.org/10.5194/gmd-2020-322, 2020
Publication in GMD not foreseen
Short summary

Related subject area

Atmospheric sciences
Simulation performance of planetary boundary layer schemes in WRF v4.3.1 for near-surface wind over the western Sichuan Basin: a single-site assessment
Qin Wang, Bo Zeng, Gong Chen, and Yaoting Li
Geosci. Model Dev., 18, 1769–1784, https://doi.org/10.5194/gmd-18-1769-2025,https://doi.org/10.5194/gmd-18-1769-2025, 2025
Short summary
FootNet v1.0: development of a machine learning emulator of atmospheric transport
Tai-Long He, Nikhil Dadheech, Tammy M. Thompson, and Alexander J. Turner
Geosci. Model Dev., 18, 1661–1671, https://doi.org/10.5194/gmd-18-1661-2025,https://doi.org/10.5194/gmd-18-1661-2025, 2025
Short summary
Updates and evaluation of NOAA's online-coupled air quality model version 7 (AQMv7) within the Unified Forecast System
Wei Li, Beiming Tang, Patrick C. Campbell, Youhua Tang, Barry Baker, Zachary Moon, Daniel Tong, Jianping Huang, Kai Wang, Ivanka Stajner, and Raffaele Montuoro
Geosci. Model Dev., 18, 1635–1660, https://doi.org/10.5194/gmd-18-1635-2025,https://doi.org/10.5194/gmd-18-1635-2025, 2025
Short summary
Quantifying the analysis uncertainty for nowcasting application
Yanwei Zhu, Aitor Atencia, Markus Dabernig, and Yong Wang
Geosci. Model Dev., 18, 1545–1559, https://doi.org/10.5194/gmd-18-1545-2025,https://doi.org/10.5194/gmd-18-1545-2025, 2025
Short summary
Improving the ensemble square root filter (EnSRF) in the Community Inversion Framework: a case study with ICON-ART 2024.01
Joël Thanwerdas, Antoine Berchet, Lionel Constantin, Aki Tsuruta, Michael Steiner, Friedemann Reum, Stephan Henne, and Dominik Brunner
Geosci. Model Dev., 18, 1505–1544, https://doi.org/10.5194/gmd-18-1505-2025,https://doi.org/10.5194/gmd-18-1505-2025, 2025
Short summary

Cited articles

Aldener, M., Brown, S. S., Stark, H., Williams, E. J., Lerner, B. M., Kuster, W. C., Goldan, P. D., Quinn, P. K., Bates, T. S., Fehsenfeld, F. C., and Ravishankara, A. R.: Reactivity and loss mechanisms of NO3 and N2O5 in a polluted marine environment: Results from in situ measurements during New England Air Quality Study 2002, J. Geophys. Res., 111, D23S73, https://doi.org/10.1029/2006JD007252, 2006. 
Andreae, M. O. and Crutzen, P. J.: Atmospheric aerosols: biogeochemical sources and role in atmospheric chemistry, Science, 276, 1052–1058, 1997. 
Anttila, T., Kiendler-Scharr, A., Tillmann, R., and Mentel, T. F.: On the reactive uptake of gaseous compounds by organic-coated aqueous aerosols: Theoretical analysis and application to the heterogeneous hydrolysis of N2O5, J. Phys. Chem. A, 110, 10435–10443, 2006. 
Atkinson, R.: Gas-phase tropospheric chemistry of organic-compounds – a review, Atmos. Environ., 24, 1–41, https://doi.org/10.1016/0960-1686(90)90438-s, 1990. 
Atkinson, R.: Atmospheric chemistry of VOCs and NOx, Atmos. Environ., 34, 2063–2101, 2000. 
Download
Short summary
A new photochemical reaction scheme that incorporates nitrogen isotopes has been developed to simulate isotope tracers in air pollution. The model contains 16 N compounds, and 96 reactions involving N used in the Regional Atmospheric Chemistry Mechanism (RACM) were replicated using 15N in a new mechanism called iNRACM. The model is able to predict d15N variations in NOx, HONO, and HNO3 that are similar to those observed in aerosol and gases in the troposphere.
Share