Articles | Volume 14, issue 8
Geosci. Model Dev., 14, 5001–5022, 2021
https://doi.org/10.5194/gmd-14-5001-2021
Geosci. Model Dev., 14, 5001–5022, 2021
https://doi.org/10.5194/gmd-14-5001-2021
Model description paper
12 Aug 2021
Model description paper | 12 Aug 2021

iNRACM: incorporating 15N into the Regional Atmospheric Chemistry Mechanism (RACM) for assessing the role photochemistry plays in controlling the isotopic composition of NOx, NOy, and atmospheric nitrate

Huan Fang et al.

Related authors

Assessing the roles emission sources and atmospheric processes play in simulating δ15N of atmospheric NOx and NO3 using CMAQ (version 5.2.1) and SMOKE (version 4.6)
Huan Fang and Greg Michalski
Geosci. Model Dev., 15, 4239–4258, https://doi.org/10.5194/gmd-15-4239-2022,https://doi.org/10.5194/gmd-15-4239-2022, 2022
Short summary
Incorporating 15N into the outputs of SMOKE version 4.6 as the emission input dataset for CMAQ version 5.2.1 for assessing the role emission sources plays in controlling the isotopic composition of NOx, NOy, and atmospheric nitrate
Huan Fang and Greg Michalski
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-322,https://doi.org/10.5194/gmd-2020-322, 2020
Publication in GMD not foreseen
Short summary

Related subject area

Atmospheric sciences
The Comprehensive Automobile Research System (CARS) – a Python-based automobile emissions inventory model
Bok H. Baek, Rizzieri Pedruzzi, Minwoo Park, Chi-Tsan Wang, Younha Kim, Chul-Han Song, and Jung-Hun Woo
Geosci. Model Dev., 15, 4757–4781, https://doi.org/10.5194/gmd-15-4757-2022,https://doi.org/10.5194/gmd-15-4757-2022, 2022
Short summary
Validation of turbulent heat transfer models against eddy covariance flux measurements over a seasonally ice-covered lake
Joonatan Ala-Könni, Kukka-Maaria Kohonen, Matti Leppäranta, and Ivan Mammarella
Geosci. Model Dev., 15, 4739–4755, https://doi.org/10.5194/gmd-15-4739-2022,https://doi.org/10.5194/gmd-15-4739-2022, 2022
Short summary
Regional evaluation of the performance of the global CAMS chemical modeling system over the United States (IFS cycle 47r1)
Jason E.​​​​​​​ Williams, Vincent Huijnen, Idir Bouarar, Mehdi Meziane, Timo Schreurs, Sophie Pelletier, Virginie Marécal, Beatrice Josse, and Johannes Flemming
Geosci. Model Dev., 15, 4657–4687, https://doi.org/10.5194/gmd-15-4657-2022,https://doi.org/10.5194/gmd-15-4657-2022, 2022
Short summary
Order of magnitude wall time improvement of variational methane inversions by physical parallelization: a demonstration using TM5-4DVAR
Sudhanshu Pandey, Sander Houweling, and Arjo Segers
Geosci. Model Dev., 15, 4555–4567, https://doi.org/10.5194/gmd-15-4555-2022,https://doi.org/10.5194/gmd-15-4555-2022, 2022
Short summary
Simulated microphysical properties of winter storms from bulk-type microphysics schemes and their evaluation in the Weather Research and Forecasting (v4.1.3) model during the ICE-POP 2018 field campaign
Jeong-Su Ko, Kyo-Sun Sunny Lim, Kwonil Kim, Gyuwon Lee, Gregory Thompson, and Alexis Berne
Geosci. Model Dev., 15, 4529–4553, https://doi.org/10.5194/gmd-15-4529-2022,https://doi.org/10.5194/gmd-15-4529-2022, 2022
Short summary

Cited articles

Aldener, M., Brown, S. S., Stark, H., Williams, E. J., Lerner, B. M., Kuster, W. C., Goldan, P. D., Quinn, P. K., Bates, T. S., Fehsenfeld, F. C., and Ravishankara, A. R.: Reactivity and loss mechanisms of NO3 and N2O5 in a polluted marine environment: Results from in situ measurements during New England Air Quality Study 2002, J. Geophys. Res., 111, D23S73, https://doi.org/10.1029/2006JD007252, 2006. 
Andreae, M. O. and Crutzen, P. J.: Atmospheric aerosols: biogeochemical sources and role in atmospheric chemistry, Science, 276, 1052–1058, 1997. 
Anttila, T., Kiendler-Scharr, A., Tillmann, R., and Mentel, T. F.: On the reactive uptake of gaseous compounds by organic-coated aqueous aerosols: Theoretical analysis and application to the heterogeneous hydrolysis of N2O5, J. Phys. Chem. A, 110, 10435–10443, 2006. 
Atkinson, R.: Gas-phase tropospheric chemistry of organic-compounds – a review, Atmos. Environ., 24, 1–41, https://doi.org/10.1016/0960-1686(90)90438-s, 1990. 
Atkinson, R.: Atmospheric chemistry of VOCs and NOx, Atmos. Environ., 34, 2063–2101, 2000. 
Download
Short summary
A new photochemical reaction scheme that incorporates nitrogen isotopes has been developed to simulate isotope tracers in air pollution. The model contains 16 N compounds, and 96 reactions involving N used in the Regional Atmospheric Chemistry Mechanism (RACM) were replicated using 15N in a new mechanism called iNRACM. The model is able to predict d15N variations in NOx, HONO, and HNO3 that are similar to those observed in aerosol and gases in the troposphere.