Articles | Volume 14, issue 1
https://doi.org/10.5194/gmd-14-495-2021
https://doi.org/10.5194/gmd-14-495-2021
Model description paper
 | 
26 Jan 2021
Model description paper |  | 26 Jan 2021

A revised dry deposition scheme for land–atmosphere exchange of trace gases in ECHAM/MESSy v2.54

Tamara Emmerichs, Astrid Kerkweg, Huug Ouwersloot, Silvano Fares, Ivan Mammarella, and Domenico Taraborrelli

Related authors

Simulation of organics in the atmosphere: evaluation of EMACv2.54 with the Mainz Organic Mechanism (MOM) coupled to the ORACLE (v1.0) submodel
Andrea Pozzer, Simon F. Reifenberg, Vinod Kumar, Bruno Franco, Matthias Kohl, Domenico Taraborrelli, Sergey Gromov, Sebastian Ehrhart, Patrick Jöckel, Rolf Sander, Veronica Fall, Simon Rosanka, Vlassis Karydis, Dimitris Akritidis, Tamara Emmerichs, Monica Crippa, Diego Guizzardi, Johannes W. Kaiser, Lieven Clarisse, Astrid Kiendler-Scharr, Holger Tost, and Alexandra Tsimpidi
Geosci. Model Dev., 15, 2673–2710, https://doi.org/10.5194/gmd-15-2673-2022,https://doi.org/10.5194/gmd-15-2673-2022, 2022
Short summary
The influence of weather-driven processes on tropospheric ozone
Tamara Emmerichs, Bruno Franco, Catherine Wespes, Vinod Kumar, Andrea Pozzer, Simon Rosanka, and Domenico Taraborrelli
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-584,https://doi.org/10.5194/acp-2021-584, 2021
Revised manuscript not accepted
Short summary

Related subject area

Atmospheric sciences
Halogen chemistry in volcanic plumes: a 1D framework based on MOCAGE 1D (version R1.18.1) preparing 3D global chemistry modelling
Virginie Marécal, Ronan Voisin-Plessis, Tjarda Jane Roberts, Alessandro Aiuppa, Herizo Narivelo, Paul David Hamer, Béatrice Josse, Jonathan Guth, Luke Surl, and Lisa Grellier
Geosci. Model Dev., 16, 2873–2898, https://doi.org/10.5194/gmd-16-2873-2023,https://doi.org/10.5194/gmd-16-2873-2023, 2023
Short summary
PyFLEXTRKR: a flexible feature tracking Python software for convective cloud analysis
Zhe Feng, Joseph Hardin, Hannah C. Barnes, Jianfeng Li, L. Ruby Leung, Adam Varble, and Zhixiao Zhang
Geosci. Model Dev., 16, 2753–2776, https://doi.org/10.5194/gmd-16-2753-2023,https://doi.org/10.5194/gmd-16-2753-2023, 2023
Short summary
CLGAN: a generative adversarial network (GAN)-based video prediction model for precipitation nowcasting
Yan Ji, Bing Gong, Michael Langguth, Amirpasha Mozaffari, and Xiefei Zhi
Geosci. Model Dev., 16, 2737–2752, https://doi.org/10.5194/gmd-16-2737-2023,https://doi.org/10.5194/gmd-16-2737-2023, 2023
Short summary
Long-term evaluation of surface air pollution in CAMSRA and MERRA-2 global reanalyses over Europe (2003–2020)
Aleksander Lacima, Hervé Petetin, Albert Soret, Dene Bowdalo, Oriol Jorba, Zhaoyue Chen, Raúl F. Méndez Turrubiates, Hicham Achebak, Joan Ballester, and Carlos Pérez García-Pando
Geosci. Model Dev., 16, 2689–2718, https://doi.org/10.5194/gmd-16-2689-2023,https://doi.org/10.5194/gmd-16-2689-2023, 2023
Short summary
Emulating aerosol optics with randomly generated neural networks
Andrew Geiss, Po-Lun Ma, Balwinder Singh, and Joseph C. Hardin
Geosci. Model Dev., 16, 2355–2370, https://doi.org/10.5194/gmd-16-2355-2023,https://doi.org/10.5194/gmd-16-2355-2023, 2023
Short summary

Cited articles

Altimir, N., Kolari, P., Tuovinen, J.-P., Vesala, T., Bäck, J., Suni, T., Kulmala, M., and Hari, P.: Foliage surface ozone deposition: a role for surface moisture?, Biogeosciences, 3, 209–228, https://doi.org/10.5194/bg-3-209-2006, 2006. a, b, c
Andersson, C. and Engardt, M.: European ozone in a future climate: Importance of changes in dry deposition and isoprene emissions, J. Geophys. Res.-Atmos., 115, D02303, https://doi.org/10.1029/2008JD011690, 2010. a
Baldocchi, D. D., Hicks, B. B., and Camara, P.: A canopy stomatal resistance model for gaseous deposition to vegetated surfaces, Atmos. Environ., 21, 91–101, 1987. a
Ball, J. T., Woodrow, I. E., and Berry, J. A.: A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions, in: Progress in photosynthesis research, Springer, Dordrecht, 221–224, 1987. a
Bourtsoukidis, E., Behrendt, T., Yañez-Serrano, A. M., Hellén, H., Diamantopoulos, E., Catão, E., Ashworth, K., Pozzer, A., Quesada, C., Martins, D., Sá, M., Araujo, A., Brito, J., Artaxo, P., Kesselmeier, J., Lelieveld, J., and Williams, J.: Strong sesquiterpene emissions from Amazonian soils, Nat. Commun., 9, 1–11, https://doi.org/10.1038/s41467-018-04658-y, 2018. a
Download
Short summary
Dry deposition to vegetation is a major sink of ground-level ozone. Its parameterization in atmospheric chemistry models represents a significant source of uncertainty for global tropospheric ozone. We extended the current model parameterization with a relevant pathway and important meteorological adjustment factors. The comparison with measurements shows that this enables a more realistic model representation of ozone dry deposition velocity. Globally, annual dry deposition loss increases.