Articles | Volume 14, issue 7
https://doi.org/10.5194/gmd-14-4731-2021
https://doi.org/10.5194/gmd-14-4731-2021
Model experiment description paper
 | 
29 Jul 2021
Model experiment description paper |  | 29 Jul 2021

Comparison of source apportionment approaches and analysis of non-linearity in a real case model application

Claudio A. Belis, Guido Pirovano, Maria Gabriella Villani, Giuseppe Calori, Nicola Pepe, and Jean Philippe Putaud

Related authors

Air quality and related health impact in the UNECE region: source attribution and scenario analysis
Claudio A. Belis and Rita Van Dingenen
Atmos. Chem. Phys., 23, 8225–8240, https://doi.org/10.5194/acp-23-8225-2023,https://doi.org/10.5194/acp-23-8225-2023, 2023
Short summary
Source apportionment and sensitivity analysis: two methodologies with two different purposes
Alain Clappier, Claudio A. Belis, Denise Pernigotti, and Philippe Thunis
Geosci. Model Dev., 10, 4245–4256, https://doi.org/10.5194/gmd-10-4245-2017,https://doi.org/10.5194/gmd-10-4245-2017, 2017
Short summary
Variations in the chemical composition of the submicron aerosol and in the sources of the organic fraction at a regional background site of the Po Valley (Italy)
Michael Bressi, Fabrizia Cavalli, Claudio A. Belis, Jean-Philippe Putaud, Roman Fröhlich, Sebastiao Martins dos Santos, Ettore Petralia, André S. H. Prévôt, Massimo Berico, Antonella Malaguti, and Francesco Canonaco
Atmos. Chem. Phys., 16, 12875–12896, https://doi.org/10.5194/acp-16-12875-2016,https://doi.org/10.5194/acp-16-12875-2016, 2016
Short summary
ACTRIS ACSM intercomparison – Part 1: Reproducibility of concentration and fragment results from 13 individual Quadrupole Aerosol Chemical Speciation Monitors (Q-ACSM) and consistency with co-located instruments
V. Crenn, J. Sciare, P. L. Croteau, S. Verlhac, R. Fröhlich, C. A. Belis, W. Aas, M. Äijälä, A. Alastuey, B. Artiñano, D. Baisnée, N. Bonnaire, M. Bressi, M. Canagaratna, F. Canonaco, C. Carbone, F. Cavalli, E. Coz, M. J. Cubison, J. K. Esser-Gietl, D. C. Green, V. Gros, L. Heikkinen, H. Herrmann, C. Lunder, M. C. Minguillón, G. Močnik, C. D. O'Dowd, J. Ovadnevaite, J.-E. Petit, E. Petralia, L. Poulain, M. Priestman, V. Riffault, A. Ripoll, R. Sarda-Estève, J. G. Slowik, A. Setyan, A. Wiedensohler, U. Baltensperger, A. S. H. Prévôt, J. T. Jayne, and O. Favez
Atmos. Meas. Tech., 8, 5063–5087, https://doi.org/10.5194/amt-8-5063-2015,https://doi.org/10.5194/amt-8-5063-2015, 2015
Short summary
ACTRIS ACSM intercomparison – Part 2: Intercomparison of ME-2 organic source apportionment results from 15 individual, co-located aerosol mass spectrometers
R. Fröhlich, V. Crenn, A. Setyan, C. A. Belis, F. Canonaco, O. Favez, V. Riffault, J. G. Slowik, W. Aas, M. Aijälä, A. Alastuey, B. Artiñano, N. Bonnaire, C. Bozzetti, M. Bressi, C. Carbone, E. Coz, P. L. Croteau, M. J. Cubison, J. K. Esser-Gietl, D. C. Green, V. Gros, L. Heikkinen, H. Herrmann, J. T. Jayne, C. R. Lunder, M. C. Minguillón, G. Močnik, C. D. O'Dowd, J. Ovadnevaite, E. Petralia, L. Poulain, M. Priestman, A. Ripoll, R. Sarda-Estève, A. Wiedensohler, U. Baltensperger, J. Sciare, and A. S. H. Prévôt
Atmos. Meas. Tech., 8, 2555–2576, https://doi.org/10.5194/amt-8-2555-2015,https://doi.org/10.5194/amt-8-2555-2015, 2015
Short summary

Related subject area

Atmospheric sciences
An updated parameterization of the unstable atmospheric surface layer in the Weather Research and Forecasting (WRF) modeling system
Prabhakar Namdev, Maithili Sharan, Piyush Srivastava, and Saroj Kanta Mishra
Geosci. Model Dev., 17, 8093–8114, https://doi.org/10.5194/gmd-17-8093-2024,https://doi.org/10.5194/gmd-17-8093-2024, 2024
Short summary
The impact of cloud microphysics and ice nucleation on Southern Ocean clouds assessed with single-column modeling and instrument simulators
Andrew Gettelman, Richard Forbes, Roger Marchand, Chih-Chieh Chen, and Mark Fielding
Geosci. Model Dev., 17, 8069–8092, https://doi.org/10.5194/gmd-17-8069-2024,https://doi.org/10.5194/gmd-17-8069-2024, 2024
Short summary
An updated aerosol simulation in the Community Earth System Model (v2.1.3): dust and marine aerosol emissions and secondary organic aerosol formation
Yujuan Wang, Peng Zhang, Jie Li, Yaman Liu, Yanxu Zhang, Jiawei Li, and Zhiwei Han
Geosci. Model Dev., 17, 7995–8021, https://doi.org/10.5194/gmd-17-7995-2024,https://doi.org/10.5194/gmd-17-7995-2024, 2024
Short summary
Exploring ship track spreading rates with a physics-informed Langevin particle parameterization
Lucas A. McMichael, Michael J. Schmidt, Robert Wood, Peter N. Blossey, and Lekha Patel
Geosci. Model Dev., 17, 7867–7888, https://doi.org/10.5194/gmd-17-7867-2024,https://doi.org/10.5194/gmd-17-7867-2024, 2024
Short summary
Do data-driven models beat numerical models in forecasting weather extremes? A comparison of IFS HRES, Pangu-Weather, and GraphCast
Leonardo Olivetti and Gabriele Messori
Geosci. Model Dev., 17, 7915–7962, https://doi.org/10.5194/gmd-17-7915-2024,https://doi.org/10.5194/gmd-17-7915-2024, 2024
Short summary

Cited articles

Ansari, A. S. and Pandis, S. N.: Response of Inorganic PM to Precursor Concentrations, Environ. Sci. Technol., 32, 2706–2714, 1998. 
ARIA Technologies and ARIANET: Emission Manager – Processing system for model-ready emission input – User's guide, ARIA/ARIANET R2013.19, Milano, Italy, 2013. 
ARIANET: FARM (Flexible Air quality Regional Model) – Model formulation and user manual – Version 4.13, ARIANET R2018.22, Milano, Italy, 2019. 
Belis, C. A., Cancelinha, J., Duane, M., Forcina, V., Pedroni, V., Passarella, R., Tanet, G., Douglas, K., Piazzalunga, A., Bolzacchini, E., Sangiorgi, G., Perrone, M. G., Ferrero, L., Fermo, P., and Larsen, B. R.: Sources for PM air pollution in the Po Plain, Italy: I. Critical comparison of methods for estimating biomass burning contributions to benzo(a)pyrene, Atmos. Environ., 45, 7266–7275, 2011. 
Download
Short summary
The study presents an in-depth analysis of the implications that using different CTM source apportionment approaches (tagged species and brute force) have for the source allocation of secondary inorganic aerosol, an important component of PM10 and PM2.5. A set of runs combining different emission levels and models was carried out, aiming to describe the situations in which strong non-linearity may lead the two approaches to deliver different results and when they are expected to be comparable.