Articles | Volume 14, issue 1
Geosci. Model Dev., 14, 473–493, 2021
https://doi.org/10.5194/gmd-14-473-2021
Geosci. Model Dev., 14, 473–493, 2021
https://doi.org/10.5194/gmd-14-473-2021

Development and technical paper 25 Jan 2021

Development and technical paper | 25 Jan 2021

Improving dust simulations in WRF-Chem v4.1.3 coupled with the GOCART aerosol module

Alexander Ukhov et al.

Related authors

Assessment of natural and anthropogenic aerosol air pollution in the Middle East using MERRA-2, CAMS data assimilation products, and high-resolution WRF-Chem model simulations
Alexander Ukhov, Suleiman Mostamandi, Arlindo da Silva, Johannes Flemming, Yasser Alshehri, Illia Shevchenko, and Georgiy Stenchikov
Atmos. Chem. Phys., 20, 9281–9310, https://doi.org/10.5194/acp-20-9281-2020,https://doi.org/10.5194/acp-20-9281-2020, 2020
Short summary

Related subject area

Atmospheric sciences
Novel estimation of aerosol processes with particle size distribution measurements: a case study with the TOMAS algorithm v1.0.0
Dana L. McGuffin, Yuanlong Huang, Richard C. Flagan, Tuukka Petäjä, B. Erik Ydstie, and Peter J. Adams
Geosci. Model Dev., 14, 1821–1839, https://doi.org/10.5194/gmd-14-1821-2021,https://doi.org/10.5194/gmd-14-1821-2021, 2021
Short summary
Evaluation of ECMWF IFS-AER (CAMS) operational forecasts during cycle 41r1–46r1 with calibrated ceilometer profiles over Germany
Harald Flentje, Ina Mattis, Zak Kipling, Samuel Rémy, and Werner Thomas
Geosci. Model Dev., 14, 1721–1751, https://doi.org/10.5194/gmd-14-1721-2021,https://doi.org/10.5194/gmd-14-1721-2021, 2021
Short summary
Influence of biomass burning vapor wall loss correction on modeling organic aerosols in Europe by CAMx v6.50
Jianhui Jiang, Imad El Haddad, Sebnem Aksoyoglu, Giulia Stefenelli, Amelie Bertrand, Nicolas Marchand, Francesco Canonaco, Jean-Eudes Petit, Olivier Favez, Stefania Gilardoni, Urs Baltensperger, and André S. H. Prévôt
Geosci. Model Dev., 14, 1681–1697, https://doi.org/10.5194/gmd-14-1681-2021,https://doi.org/10.5194/gmd-14-1681-2021, 2021
Short summary
Seasonal and diurnal performance of daily forecasts with WRF V3.8.1 over the United Arab Emirates
Oliver Branch, Thomas Schwitalla, Marouane Temimi, Ricardo Fonseca, Narendra Nelli, Michael Weston, Josipa Milovac, and Volker Wulfmeyer
Geosci. Model Dev., 14, 1615–1637, https://doi.org/10.5194/gmd-14-1615-2021,https://doi.org/10.5194/gmd-14-1615-2021, 2021
Short summary
MLAir (v1.0) – a tool to enable fast and flexible machine learning on air data time series
Lukas Hubert Leufen, Felix Kleinert, and Martin G. Schultz
Geosci. Model Dev., 14, 1553–1574, https://doi.org/10.5194/gmd-14-1553-2021,https://doi.org/10.5194/gmd-14-1553-2021, 2021
Short summary

Cited articles

Alghamdi, M. A., Almazroui, M., Shamy, M., Redal, M. A., Alkhalaf, A. K., Hussein, M. A., and Khoder, M. I.: Characterization and elemental composition of atmospheric aerosol loads during springtime dust storm in western Saudi Arabia, Aerosol Air Qual. Res., 15, 440–453, 2015. a
Anisimov, A., Tao, W., Stenchikov, G., Kalenderski, S., Prakash, P. J., Yang, Z.-L., and Shi, M.: Quantifying local-scale dust emission from the Arabian Red Sea coastal plain, Atmos. Chem. Phys., 17, 993–1015, https://doi.org/10.5194/acp-17-993-2017, 2017. a, b
Bagnold, R.: The physics of blown sand and desert dunes, William Morrow & Company N.D., New York, USA, 1941. a
Bangalath, H. K. and Stenchikov, G.: Role of dust direct radiative effect on the tropical rain belt over Middle East and North Africa: A high-resolution AGCM study, J. Geophys. Res.-Atmos., 120, 4564–4584, https://doi.org/10.1002/2015JD023122, 2015. a
Banks, J. R., Brindley, H. E., Stenchikov, G., and Schepanski, K.: Satellite retrievals of dust aerosol over the Red Sea and the Persian Gulf (2005–2015), Atmos. Chem. Phys., 17, 3987–4003, https://doi.org/10.5194/acp-17-3987-2017, 2017. a
Download
Short summary
We discuss and evaluate the effects of inconsistencies found in the WRF-Chem code when using the GOCART module. First, PM surface concentrations were miscalculated. Second, dust optical depth was underestimated by 25 %–30 %. Third, an inconsistency in the process of gravitational settling led to the overestimation of dust column loadings by 4 %–6 %, PM10 by 2 %–4 %, and the rate of gravitational dust settling by 5 %–10 %. We also presented diagnostics that can be used to estimate these effects.