Articles | Volume 14, issue 7
Geosci. Model Dev., 14, 4429–4441, 2021
Geosci. Model Dev., 14, 4429–4441, 2021

Development and technical paper 19 Jul 2021

Development and technical paper | 19 Jul 2021

Climate-model-informed deep learning of global soil moisture distribution

Klaus Klingmüller and Jos Lelieveld

Related authors

Weaker cooling by aerosols due to dust–pollution interactions
Klaus Klingmüller, Vlassis A. Karydis, Sara Bacer, Georgiy L. Stenchikov, and Jos Lelieveld
Atmos. Chem. Phys., 20, 15285–15295,,, 2020
Short summary
Modeling the aerosol chemical composition of the tropopause over the Tibetan Plateau during the Asian summer monsoon
Jianzhong Ma, Christoph Brühl, Qianshan He, Benedikt Steil, Vlassis A. Karydis, Klaus Klingmüller, Holger Tost, Bin Chen, Yufang Jin, Ningwei Liu, Xiangde Xu, Peng Yan, Xiuji Zhou, Kamal Abdelrahman, Andrea Pozzer, and Jos Lelieveld
Atmos. Chem. Phys., 19, 11587–11612,,, 2019
Short summary
Direct radiative effect of dust–pollution interactions
Klaus Klingmüller, Jos Lelieveld, Vlassis A. Karydis, and Georgiy L. Stenchikov
Atmos. Chem. Phys., 19, 7397–7408,,, 2019
Short summary
Aerosol water parameterization: long-term evaluation and importance for climate studies
Swen Metzger, Mohamed Abdelkader, Benedikt Steil, and Klaus Klingmüller
Atmos. Chem. Phys., 18, 16747–16774,,, 2018
Short summary
Stratospheric aerosol radiative forcing simulated by the chemistry climate model EMAC using Aerosol CCI satellite data
Christoph Brühl, Jennifer Schallock, Klaus Klingmüller, Charles Robert, Christine Bingen, Lieven Clarisse, Andreas Heckel, Peter North, and Landon Rieger
Atmos. Chem. Phys., 18, 12845–12857,,, 2018
Short summary

Related subject area

Climate and Earth system modeling
NorCPM1 and its contribution to CMIP6 DCPP
Ingo Bethke, Yiguo Wang, François Counillon, Noel Keenlyside, Madlen Kimmritz, Filippa Fransner, Annette Samuelsen, Helene Langehaug, Lea Svendsen, Ping-Gin Chiu, Leilane Passos, Mats Bentsen, Chuncheng Guo, Alok Gupta, Jerry Tjiputra, Alf Kirkevåg, Dirk Olivié, Øyvind Seland, Julie Solsvik Vågane, Yuanchao Fan, and Tor Eldevik
Geosci. Model Dev., 14, 7073–7116,,, 2021
Short summary
ENSO-ASC 1.0.0: ENSO deep learning forecast model with a multivariate air–sea coupler
Bin Mu, Bo Qin, and Shijin Yuan
Geosci. Model Dev., 14, 6977–6999,,, 2021
Short summary
Topography-based local spherical Voronoi grid refinement on classical and moist shallow-water finite-volume models
Luan F. Santos and Pedro S. Peixoto
Geosci. Model Dev., 14, 6919–6944,,, 2021
Short summary
Decadal climate predictions with the Canadian Earth System Model version 5 (CanESM5)
Reinel Sospedra-Alfonso, William J. Merryfield, George J. Boer, Viatsheslav V. Kharin, Woo-Sung Lee, Christian Seiler, and James R. Christian
Geosci. Model Dev., 14, 6863–6891,,, 2021
Short summary
The Simplified Chemistry-Dynamical Model (SCDM V1.0)
Hao-Jhe Hong and Thomas Reichler
Geosci. Model Dev., 14, 6647–6660,,, 2021
Short summary

Cited articles

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems, available at: (last access: 14 July 2021), software available from, 2015. a, b
Alvanos, M. and Christoudias, T.: GPU-accelerated atmospheric chemical kinetics in the ECHAM/MESSy (EMAC) Earth system model (version 2.52), Geosci. Model Dev., 10, 3679–3693,, 2017. a
Astitha, M., Lelieveld, J., Abdel Kader, M., Pozzer, A., and de Meij, A.: Parameterization of dust emissions in the global atmospheric chemistry-climate model EMAC: impact of nudging and soil properties, Atmos. Chem. Phys., 12, 11057–11083,, 2012. a, b
Bojinski, S., Verstraete, M., Peterson, T. C., Richter, C., Simmons, A., and Zemp, M.: The Concept of Essential Climate Variables in Support of Climate Research, Applications, and Policy, B. Am. Meteorol. Soc., 95, 1431–1443,, 2014. a
Chandra, R., Cripps, S., Butterworth, N., and Muller, R. D.: Precipitation reconstruction from climate-sensitive lithologies using Bayesian machine learning, Environ. Modell. Softw., 139, 105002,, 2021. a
Short summary
Soil moisture is of great importance for weather and climate. We present a machine learning model that produces accurate predictions of satellite-observed surface soil moisture, based on meteorological data from a climate model. It can be used as soil moisture parametrisation in climate models and to produce comprehensive global soil moisture datasets. Moreover, it may motivate similar applications of machine learning in climate science.