Articles | Volume 14, issue 7
https://doi.org/10.5194/gmd-14-4159-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-14-4159-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The ENEA-REG system (v1.0), a multi-component regional Earth system model: sensitivity to different atmospheric components over the Med-CORDEX (Coordinated Regional Climate Downscaling Experiment) region
Italian National Agency for New Technologies, Energy and the
Environment (ENEA), Rome, Italy
Adriana Carillo
Italian National Agency for New Technologies, Energy and the
Environment (ENEA), Rome, Italy
Massimiliano Palma
Italian National Agency for New Technologies, Energy and the
Environment (ENEA), Rome, Italy
Maria Vittoria Struglia
Italian National Agency for New Technologies, Energy and the
Environment (ENEA), Rome, Italy
Ufuk Utku Turuncoglu
National Center for Atmospheric Research, Boulder, CO, USA
Gianmaria Sannino
Italian National Agency for New Technologies, Energy and the
Environment (ENEA), Rome, Italy
Related authors
Mohamed Hamitouche, Giorgia Fosser, Arezoo RafieeiNasab, and Alessandro Anav
EGUsphere, https://doi.org/10.5194/egusphere-2025-2752, https://doi.org/10.5194/egusphere-2025-2752, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Predicting how much water flows from rivers into the Mediterranean is challenging due to climate change and human impacts. We compared two computer models—CaMa-Flood and WRF-Hydro—to see which performs better. We found that WRF-Hydro, especially after calibration, more accurately simulates river discharge and seasonal flow changes. These results can help improve future water forecasts and support planning for floods and droughts in the region.
Marco Chericoni, Giorgia Fosser, Emmanouil Flaounas, Gianmaria Sannino, and Alessandro Anav
Weather Clim. Dynam., 6, 627–643, https://doi.org/10.5194/wcd-6-627-2025, https://doi.org/10.5194/wcd-6-627-2025, 2025
Short summary
Short summary
This study explores how sea surface energy influences both the atmosphere and ocean at various vertical levels during extreme Mediterranean cyclones. It focuses on cyclones' precipitation and wind speed response, as well as on ocean temperature variation. The findings highlight the regional coupled model's ability to coherently represent the thermodynamic and dynamic processes of the cyclones across both the atmosphere and the ocean.
Mohamed Hamitouche, Giorgia Fosser, Alessandro Anav, Cenlin He, and Tzu-Shun Lin
Hydrol. Earth Syst. Sci., 29, 1221–1240, https://doi.org/10.5194/hess-29-1221-2025, https://doi.org/10.5194/hess-29-1221-2025, 2025
Short summary
Short summary
This study evaluates how different methods of simulating runoff impact river flow predictions globally. By comparing seven approaches within the Noah-Multi-parameterisation (Noah-MP) land surface model, we found significant differences in accuracy, with some methods underestimating or overestimating runoff. The results are crucial for improving water resource management and flood prediction. Our work highlights the need for precise modelling to better prepare for climate-related challenges.
Maria Vittoria Struglia, Alessandro Anav, Marta Antonelli, Sandro Calmanti, Franco Catalano, Alessandro Dell'Aquila, Emanuela Pichelli, and Giovanna Pisacane
EGUsphere, https://doi.org/10.5194/egusphere-2025-387, https://doi.org/10.5194/egusphere-2025-387, 2025
Short summary
Short summary
We present the results of downscaling global climate projections for the Mediterranean and Italian regions aiming to produce high-resolution climate information for the assessment of climate change signals, focusing on extreme events. A general warming is foreseen by the end of century with a mean precipitation reduction accompanied, over Italian Peninsula, by a strong increase in the intensity of extreme precipitation events, particularly relevant for the high emissions scenario during autumn
Andrea Storto, Yassmin Hesham Essa, Vincenzo de Toma, Alessandro Anav, Gianmaria Sannino, Rosalia Santoleri, and Chunxue Yang
Geosci. Model Dev., 16, 4811–4833, https://doi.org/10.5194/gmd-16-4811-2023, https://doi.org/10.5194/gmd-16-4811-2023, 2023
Short summary
Short summary
Regional climate models are a fundamental tool for a very large number of applications and are being increasingly used within climate services, together with other complementary approaches. Here, we introduce a new regional coupled model, intended to be later extended to a full Earth system model, for climate investigations within the Mediterranean region, coupled data assimilation experiments, and several downscaling exercises (reanalyses and long-range predictions).
Jasdeep Singh Anand, Alessandro Anav, Marcello Vitale, Daniele Peano, Nadine Unger, Xu Yue, Robert J. Parker, and Hartmut Boesch
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-125, https://doi.org/10.5194/bg-2021-125, 2021
Publication in BG not foreseen
Short summary
Short summary
Ozone damages plants, which prevents them from absorbing CO2 from the atmosphere. This poses a potential threat to preventing dangerous climate change. In this work, satellite observations of forest cover, ozone, climate, and growing season are combined with an empirical model to estimate the carbon lost due to ozone exposure over Europe. The estimated carbon losses agree well with prior modelled estimates, showing for the first time that satellites can be used to better understand this effect.
Mohamed Hamitouche, Giorgia Fosser, Arezoo RafieeiNasab, and Alessandro Anav
EGUsphere, https://doi.org/10.5194/egusphere-2025-2752, https://doi.org/10.5194/egusphere-2025-2752, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Predicting how much water flows from rivers into the Mediterranean is challenging due to climate change and human impacts. We compared two computer models—CaMa-Flood and WRF-Hydro—to see which performs better. We found that WRF-Hydro, especially after calibration, more accurately simulates river discharge and seasonal flow changes. These results can help improve future water forecasts and support planning for floods and droughts in the region.
Marco Chericoni, Giorgia Fosser, Emmanouil Flaounas, Gianmaria Sannino, and Alessandro Anav
Weather Clim. Dynam., 6, 627–643, https://doi.org/10.5194/wcd-6-627-2025, https://doi.org/10.5194/wcd-6-627-2025, 2025
Short summary
Short summary
This study explores how sea surface energy influences both the atmosphere and ocean at various vertical levels during extreme Mediterranean cyclones. It focuses on cyclones' precipitation and wind speed response, as well as on ocean temperature variation. The findings highlight the regional coupled model's ability to coherently represent the thermodynamic and dynamic processes of the cyclones across both the atmosphere and the ocean.
Mohamed Hamitouche, Giorgia Fosser, Alessandro Anav, Cenlin He, and Tzu-Shun Lin
Hydrol. Earth Syst. Sci., 29, 1221–1240, https://doi.org/10.5194/hess-29-1221-2025, https://doi.org/10.5194/hess-29-1221-2025, 2025
Short summary
Short summary
This study evaluates how different methods of simulating runoff impact river flow predictions globally. By comparing seven approaches within the Noah-Multi-parameterisation (Noah-MP) land surface model, we found significant differences in accuracy, with some methods underestimating or overestimating runoff. The results are crucial for improving water resource management and flood prediction. Our work highlights the need for precise modelling to better prepare for climate-related challenges.
Maria Vittoria Struglia, Alessandro Anav, Marta Antonelli, Sandro Calmanti, Franco Catalano, Alessandro Dell'Aquila, Emanuela Pichelli, and Giovanna Pisacane
EGUsphere, https://doi.org/10.5194/egusphere-2025-387, https://doi.org/10.5194/egusphere-2025-387, 2025
Short summary
Short summary
We present the results of downscaling global climate projections for the Mediterranean and Italian regions aiming to produce high-resolution climate information for the assessment of climate change signals, focusing on extreme events. A general warming is foreseen by the end of century with a mean precipitation reduction accompanied, over Italian Peninsula, by a strong increase in the intensity of extreme precipitation events, particularly relevant for the high emissions scenario during autumn
Andrea Storto, Yassmin Hesham Essa, Vincenzo de Toma, Alessandro Anav, Gianmaria Sannino, Rosalia Santoleri, and Chunxue Yang
Geosci. Model Dev., 16, 4811–4833, https://doi.org/10.5194/gmd-16-4811-2023, https://doi.org/10.5194/gmd-16-4811-2023, 2023
Short summary
Short summary
Regional climate models are a fundamental tool for a very large number of applications and are being increasingly used within climate services, together with other complementary approaches. Here, we introduce a new regional coupled model, intended to be later extended to a full Earth system model, for climate investigations within the Mediterranean region, coupled data assimilation experiments, and several downscaling exercises (reanalyses and long-range predictions).
Davide Zanchettin, Sara Bruni, Fabio Raicich, Piero Lionello, Fanny Adloff, Alexey Androsov, Fabrizio Antonioli, Vincenzo Artale, Eugenio Carminati, Christian Ferrarin, Vera Fofonova, Robert J. Nicholls, Sara Rubinetti, Angelo Rubino, Gianmaria Sannino, Giorgio Spada, Rémi Thiéblemont, Michael Tsimplis, Georg Umgiesser, Stefano Vignudelli, Guy Wöppelmann, and Susanna Zerbini
Nat. Hazards Earth Syst. Sci., 21, 2643–2678, https://doi.org/10.5194/nhess-21-2643-2021, https://doi.org/10.5194/nhess-21-2643-2021, 2021
Short summary
Short summary
Relative sea level in Venice rose by about 2.5 mm/year in the past 150 years due to the combined effect of subsidence and mean sea-level rise. We estimate the likely range of mean sea-level rise in Venice by 2100 due to climate changes to be between about 10 and 110 cm, with an improbable yet possible high-end scenario of about 170 cm. Projections of subsidence are not available, but historical evidence demonstrates that they can increase the hazard posed by climatically induced sea-level rise.
Jasdeep Singh Anand, Alessandro Anav, Marcello Vitale, Daniele Peano, Nadine Unger, Xu Yue, Robert J. Parker, and Hartmut Boesch
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-125, https://doi.org/10.5194/bg-2021-125, 2021
Publication in BG not foreseen
Short summary
Short summary
Ozone damages plants, which prevents them from absorbing CO2 from the atmosphere. This poses a potential threat to preventing dangerous climate change. In this work, satellite observations of forest cover, ozone, climate, and growing season are combined with an empirical model to estimate the carbon lost due to ozone exposure over Europe. The estimated carbon losses agree well with prior modelled estimates, showing for the first time that satellites can be used to better understand this effect.
Cited articles
Adcroft, A. and Campin, J.-M.: Rescaled height coordinates for accurate
representation of free-surface flows in ocean circulation models, Ocean
Model., 7, 269–284, 2004.
Adcroft, A., Hill, C., and Marshall, J.: Representation of topography by
shaved cells in a height coordinate ocean model, Mon. Weather Rev.,
125, 2293–2315, 1997.
Artale, V., Calmanti, S., Carillo, A., Dell'Aquila, A., Herrmann, M.,
Pisacane, G., Ruti, P. M., Sannino, G., Struglia, M. V., and Giorgi, F.: An
atmosphere–ocean regional climate model for the Mediterranean area:
assessment of a present climate simulation, Clim. Dynam., 35, 721–740,
2010.
Belmonte Rivas, M. and Stoffelen, A.: Characterizing ERA-Interim and ERA5 surface wind biases using ASCAT, Ocean Sci., 15, 831–852, https://doi.org/10.5194/os-15-831-2019, 2019.
Béranger, K., Mortier, L., and Crépon, M.: Seasonal variability of
water transport through the Straits of Gibraltar, Sicily and Corsica,
derived from a high-resolution model of the Mediterranean circulation,
Prog. Oceanogr., 66, 341–364, 2005.
Bethoux, J.: Budgets of the Mediterranean Sea. Their depenqance on the local
climate and on the characteristics of the Atlantic waters, Oceanol. Acta, 2,
157–163, 1979.
Beuvier, J., Sevault, F., Herrmann, M., Kontoyiannis, H., Ludwig, W., Rixen,
M., Stanev, E., Béranger, K., and Somot, S.: Modeling the Mediterranean
Sea interannual variability during 1961–2000: focus on the Eastern
Mediterranean Transient, J. Geophys. Res.-Oceans, 115, C08017, https://doi.org/10.1029/2009JC005950, 2010.
Breitkreuz, C., Paul, A., Kurahashi-Nakamura, T., Losch, M., and Schulz, M.:
A dynamical reconstruction of the global monthly mean oxygen isotopic
composition of seawater, J. Geophys. Res.-Oceans, 123,
7206–7219, 2018.
Brune, S. and Baehr, J.: Preserving the coupled atmosphere–ocean feedback
in initializations of decadal climate predictions, WIRES Clim. Change, 11, e637, https://doi.org/10.1002/wcc.637, 2020.
Bryden, H. L., Candela, J., and Kinder, T. H.: Exchange through the Strait
of Gibraltar, Prog. Oceanogr., 33, 201–248, 1994.
Criado-Aldeanueva, F., Soto-Navarro, F. J., and García-Lafuente, J.:
Seasonal and interannual variability of surface heat and freshwater fluxes
in the Mediterranean Sea: budgets and exchange through the Strait of
Gibraltar, Int. J. Climatol., 32, 286–302, 2012.
Darmaraki, S., Somot, S., Sevault, F., Nabat, P., Narvaez, W. D. C.,
Cavicchia, L., Djurdjevic, V., Li, L., Sannino, G., and Sein, D. V.: Future
evolution of marine heatwaves in the Mediterranean Sea, Clim. Dynam.,
53, 1371–1392, 2019.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Holm, E. V., Isaksen, L., Kallberg, P., Kohler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J. J., Park, B. K., Peubey, C., de Rosnay, P., Tavolato, C., Thepaut, J. N., and Vitart, F.: The
ERA-Interim reanalysis: Configuration and performance of the data
assimilation system, Q. J. Roy. Meteor. Soc.,
137, 553–597, https://doi.org/10.1002/qj.828, 2011.
Dickinson, R. E., Henderson-Sellers, A., and Kennedy, P. J.:
Biosphere-atmosphere transfer scheme (BATS) version 1e as coupled to the NCAR Community Climate Model,
NCAR Technical Note NCAR/TN-387+STR, p. 72
https://doi.org/10.5065/D67W6959, 1993.
Drobinski, P., Anav, A., Brossier, C. L., Samson, G., Stéfanon, M.,
Bastin, S., Baklouti, M., Béranger, K., Beuvier, J., and
Bourdallé-Badie, R.: Model of the Regional Coupled Earth system (MORCE):
Application to process and climate studies in vulnerable regions,
Environ. Modell. Softw., 35, 1–18, 2012.
Dubois, C., Somot, S., Calmanti, S., Carillo, A., Déqué, M., Dell'Aquilla, A., Elizalde, A., Gualdi, S., Jacob, D., L'Hévéder, B., Li, L., Oddo, P., Sannino, G., Scoccimarro, E., and Sevault, F.: Future projections of the surface heat and water
budgets of the Mediterranean Sea in an ensemble of coupled atmosphere – ocean
regional climate models, Clim. Dynam., 39, 1859–1884, 2012.
European Reanalysis ERA-Interim: ERA Interim, Daily, available at: https://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=pl/, last access: 22 June, 2021.
Forget, G., Campin, J.-M., Heimbach, P., Hill, C. N., Ponte, R. M., and Wunsch, C.: ECCO version 4: an integrated framework for non-linear inverse modeling and global ocean state estimation, Geosci. Model Dev., 8, 3071–3104, https://doi.org/10.5194/gmd-8-3071-2015, 2015.
Forget, G. and Ferreira, D.: Global ocean heat transport dominated by heat
export from the tropical Pacific, Nat. Geosci., 12, 351–354, 2019.
Furue, R., Jia, Y., McCreary, J. P., Schneider, N., Richards, K. J.,
Müller, P., Cornuelle, B. D., Avellaneda, N. M., Stammer, D., and Liu,
C.: Impacts of regional mixing on the temperature structure of the
equatorial Pacific Ocean. Part 1: Vertically uniform vertical diffusion,
Ocean Model., 91, 91–111, 2015.
García-Díez, M., Fernández, J., and Vautard, R.: An RCM Multi-Physics Ensemble over Europe: Multi-Variable Evaluation to Avoid Error Compensation, Clim. Dynam., 45, 3141–3156, https://doi.org/10.1007/s00382-015-2529-x, 2015.
Giorgi, F.: Simulation of regional climate using a limited area model nested
in a general circulation model, J. Climate, 3, 941–963, 1990.
Giorgi, F.: Climate change hot-spots, Geophys. Res. Lett., 33, L08707, https://doi.org/10.1029/2006GL025734,
2006.
Giorgi, F.: Thirty years of regional climate modeling: where are we and
where are we going next?, J. Geophys. Res.-Atmos., 124,
5696–5723, 2019.
Giorgi, F. and Gutowski Jr, W. J.: Regional dynamical downscaling and the
CORDEX initiative, Annu. Rev. Env. Resour., 40, 467–490,
2015.
Giorgi, F. and Gutowski, W. J.: Coordinated experiments for projections of
regional climate change, Current Climate Change Reports, 2, 202–210, 2016.
Giorgi, F., Marinucci, M. R., and Bates, G. T.: Development of a
second-generation regional climate model (RegCM2). Part I: Boundary-layer
and radiative transfer processes, Mon. Weather Rev., 121, 2794–2813,
1993a.
Giorgi, F., Marinucci, M. R., Bates, G. T., and De Canio, G.: Development of a Second-Generation Regional Climate Model (RegCM2). Part II: Convective Processes and Assimilation of Lateral Boundary Conditions, Mon. Weather Rev., 121, 2814–2832, 1993b.
Giorgi, F., Coppola, E., Solmon, F., Mariotti, L., Sylla, M., Bi, X.,
Elguindi, N., Diro, G., Nair, V., and Giuliani, G.: RegCM4: model
description and preliminary tests over multiple CORDEX domains, Clim.
Res., 52, 7–29, 2012.
Giorgi, F., Solmon, F., Xunjang, B., Coppola E., Graziano, G., Turunçoğlu, U., Güttler, I., Mariotti, L., Nogherotto, R., O'Brien, T. A., Tawfik, A., Elguindi, N., Piani, S., Pal, J., Gulilat, T. D., Shalaby, A.: ictp-esp/RegCM: Paper Release (Version 4.7.1), Zenodo [data set], https://doi.org/10.5281/zenodo.4603556, 2021.
Grell, G. A.: Prognostic evaluation of assumptions used by cumulus
parameterizations, Mon. Weather Rev., 121, 764–787, 1993.
Grell, G. A., Dudhia, J., and Stauffer, D.: A description of the fifth-generation Penn State/NCAR Mesoscale Model (MM5), NCAR Tech. Note NCAR/TN-3981STR, 122 pp., 1994.
Hagemann, S.: The HD Model, available at: https://wiki.coast.hzg.de/display/HYD/The+HD+Model, last access: 24 December 2020.
Hagemann, S. and Dümenil, L.: A parametrization of the lateral
waterflow for the global scale, Clim. Dynam., 14, 17–31, 1997.
Hagemann, S. and Gates, L. D.: Validation of the hydrological cycle of
ECMWF and NCEP reanalyses using the MPI hydrological discharge model,
J. Geophys. Res.-Atmos., 106, 1503–1510, 2001.
Heikkilä, U., Sandvik, A., and Sorteberg, A.: Dynamical downscaling of
ERA-40 in complex terrain using the WRF regional climate model, Clim.
Dynam., 37, 1551–1564, 2011.
Holte, J., Talley, L. D., Gilson, J., and Roemmich, D.: An Argo mixed layer
climatology and database, Geophys. Res. Lett., 44, 5618–5626, 2017.
Hong, S.-Y., Dudhia, J., and Chen, S.-H.: A revised approach to ice
microphysical processes for the bulk parameterization of clouds and
precipitation, Mon. Weather Rev., 132, 103–120, 2004.
Hong, S.-Y., Noh, Y., and Dudhia, J.: A new vertical diffusion package with
an explicit treatment of entrainment processes, Mon. Weather Rev., 134,
2318–2341, 2006.
Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S.
A., and Collins, W. D.: Radiative forcing by long lived greenhouse gases:
Calculations with the AER radiative transfer models, J. Geophys.
Res.-Atmos., 113, D13103, https://doi.org/10.1029/2008JD009944, 2008.
IRI/LDEO Climate Data Library: LEVITUS94 MONTHLY, available at: https://iridl.ldeo.columbia.edu/SOURCES/.LEVITUS94/.MONTHLY/ (last access:
24 December 2020), 2015.
Jordà, G., Von Schuckmann, K., Josey, S. A., Caniaux, G.,
García-Lafuente, J., Sammartino, S., Özsoy, E., Polcher, J.,
Notarstefano, G., Poulain, P.-M., Adloff, F., Salat, J., Naranjo, C.,
Schroeder, K., Chiggiato, J., Sannino, G., and Macías, D.: The
Mediterranean Sea heat and mass budgets: estimates, uncertainties and
perspectives, Prog. Oceanogr., 156, 174–208, 2017.
Kain, J. S.: The Kain–Fritsch convective parameterization: an update,
J. Appl. Meteorol., 43, 170–181, 2004.
Katragkou, E., García-Díez, M., Vautard, R., Sobolowski, S., Zanis, P., Alexandri, G., Cardoso, R. M., Colette, A., Fernandez, J., Gobiet, A., Goergen, K., Karacostas, T., Knist, S., Mayer, S., Soares, P. M. M., Pytharoulis, I., Tegoulias, I., Tsikerdekis, A., and Jacob, D.: Regional climate hindcast simulations within EURO-CORDEX: evaluation of a WRF multi-physics ensemble, Geosci. Model Dev., 8, 603–618, https://doi.org/10.5194/gmd-8-603-2015, 2015.
Kiehl, J., Hack, J., Bonan, G., Boville, B., and Briegleb, B.: Description
of the NCAR community climate model (CCM3). Technical Note, National Center
for Atmospheric Research, Boulder, CO (United States), 1996.
Kotlarski, S., Keuler, K., Christensen, O. B., Colette, A., Déqué, M., Gobiet, A., Goergen, K., Jacob, D., Lüthi, D., van Meijgaard, E., Nikulin, G., Schär, C., Teichmann, C., Vautard, R., Warrach-Sagi, K., and Wulfmeyer, V.: Regional climate modeling on European scales: a joint standard evaluation of the EURO-CORDEX RCM ensemble, Geosci. Model Dev., 7, 1297–1333, https://doi.org/10.5194/gmd-7-1297-2014, 2014.
Lascaratos, A., Williams, R. G., and Tragou, E.: A mixed-layer study of the
formation of Levantine Intermediate Water, J. Geophys. Res.-Oceans, 98, 14739–14749, 1993.
Lascaratos, A., Roether, W., Nittis, K., and Klein, B.: Recent changes in
deep water formation and spreading in the eastern Mediterranean Sea: a
review, Prog. Oceanogr., 44, 5–36, 1999.
Lebeaupin-Brossier, C., Bastin, S., Béranger, K., and Drobinski, P.:
Regional mesoscale air–sea coupling impacts and extreme meteorological
events role on the Mediterranean Sea water budget, Clim. Dynam., 44,
1029–1051, 2015.
Lermusiaux, P. and Robinson, A.: Features of dominant mesoscale
variability, circulation patterns and dynamics in the Strait of Sicily, Deep
Sea Research Part I: Oceanographic Research Papers, 48, 1953–1997, 2001.
Liu, P., Tsimpidi, A. P., Hu, Y., Stone, B., Russell, A. G., and Nenes, A.: Differences between downscaling with spectral and grid nudging using WRF, Atmos. Chem. Phys., 12, 3601–3610, https://doi.org/10.5194/acp-12-3601-2012, 2012.
Llasses, J., Jordà, G., Gomis, D., Adloff, F., Macías, D.,
Harzallah, A., Arsouze, T., Akthar, N., Li, L., and Elizalde, A.: Heat and
salt redistribution within the Mediterranean Sea in the Med-CORDEX model
ensemble, Clim. Dynam., 51, 1119–1143, 2018.
Malanotte-Rizzoli, P., Manca, B. B., d'Alcala, M. R., Theocharis, A.,
Brenner, S., Budillon, G., and Ozsoy, E.: The Eastern Mediterranean in the
80s and in the 90s: the big transition in the intermediate and deep
circulations, Dynam. Atmos. Oceans, 29, 365–395, 1999.
Mariotti, A., Struglia, M. V., Zeng, N., and Lau, K.: The hydrological cycle
in the Mediterranean region and implications for the water budget of the
Mediterranean Sea, J. Climate, 15, 1674–1690, 2002.
Marshall, J., Adcroft, A., Hill, C., Perelman, L., and Heisey, C.: A
finite-volume, incompressible Navier Stokes model for studies of the ocean
on parallel computers, J. Geophys. Res.-Oceans, 102,
5753–5766, 1997.
McKiver, W. J., Sannino, G., Braga, F., and Bellafiore, D.: Investigation of model capability in capturing vertical hydrodynamic coastal processes: a case study in the north Adriatic Sea, Ocean Sci., 12, 51–69, https://doi.org/10.5194/os-12-51-2016, 2016.
Mediterranean Data Archaeology and Rescue: Medar/medatlas II Web site, available at: http://www.ifremer.fr/medar/, last access: 22 June 2021.
Mertens, C. and Schott, F.: Interannual variability of deep-water formation
in the Northwestern Mediterranean, J. Phys. Oceanogr., 28,
1410–1424, 1998.
Millot C. and Taupier-Letage I.: Circulation in the Mediterranean Sea, in: The Mediterranean Sea. Handbook of Environmental Chemistry, edited by: Saliot, A., vol. 5K, Springer, Berlin, Heidelberg, https://doi.org/10.1007/b107143, 2005.
Mooney, P., Mulligan, F., and Fealy, R.: Evaluation of the sensitivity of
the weather research and forecasting model to parameterization schemes for
regional climates of Europe over the period 1990–95, J. Climate,
26, 1002–1017, 2013.
Niu, G. Y., Yang, Z. L., Mitchell, K. E., Chen, F., Ek, M. B., Barlage, M.,
Kumar, A., Manning, K., Niyogi, D., and Rosero, E.: The community Noah land
surface model with multiparameterization options (Noah-MP): 1. Model
description and evaluation with local-scale measurements, J.
Geophys. Res.-Atmos., 116, D12109, https://doi.org/10.1029/2010JD015139, 2011.
Omrani, H., Drobinski, P., and Dubos, T.: Using nudging to improve
global-regional dynamic consistency in limited-area climate modeling: What
should we nudge?, Clim. Dynam., 44, 1627–1644, 2015.
Onken, R., Robinson, A. R., Lermusiaux, P. F., Haley, P. J., and Anderson,
L. A.: Data-driven simulations of synoptic circulation and transports in the
Tunisia-Sardinia-Sicily region, J. Geophys. Res.-Oceans,
108, 8123, https://doi.org/10.1029/2002JC001348, 2003.
Pal, J. S., Small, E. E., and Eltahir, E. A.: Simulation of regional-scale
water and energy budgets: Representation of subgrid cloud and precipitation
processes within RegCM, J. Geophys. Res.-Atmos., 105,
29579–29594, 2000.
Parras-Berrocal, I. M., Vazquez, R., Cabos, W., Sein, D., Mañanes, R., Perez-Sanz, J., and Izquierdo, A.: The climate change signal in the Mediterranean Sea in a regionally coupled atmosphere–ocean model, Ocean Sci., 16, 743–765, https://doi.org/10.5194/os-16-743-2020, 2020.
Peng, Q., Xie, S.-P., Wang, D., Zheng, X.-T., and Zhang, H.: Coupled
ocean-atmosphere dynamics of the 2017 extreme coastal El Niño, Nat.
Commun. 10, 298, https://doi.org/10.1038/s41467-018-08258-8 , 2019.
Pettenuzzo, D., Large, W., and Pinardi, N.: On the corrections of ERA-40
surface flux products consistent with the Mediterranean heat and water
budgets and the connection between basin surface total heat flux and NAO,
J. Geophys. Res.-Oceans, 115, C06022, https://doi.org/10.1029/2009JC005631, 2010.
Pinardi, N., Arneri, E., Crise, A., Ravaioli, M., and Zavatarelli, M.: The
physical, sedimentary and ecological structure and variability of shelf
areas in the Mediterranean sea, The Sea, 14, 1243–1330, 2006.
Pinardi, N., Zavatarelli, M., Adani, M., Coppini, G., Fratianni, C., Oddo,
P., Simoncelli, S., Tonani, M., Lyubartsev, V., and Dobricic, S.:
Mediterranean Sea large-scale low-frequency ocean variability and water mass
formation rates from 1987 to 2007: A retrospective analysis, Prog.
Oceanogr., 132, 318–332, https://doi.org/10.1016/j.pocean.2013.11.003, 2015.
Polkova, I., Köhl, A., and Stammer, D.: Impact of initialization
procedures on the predictive skill of a coupled ocean–atmosphere model,
Clim. Dynam., 42, 3151–3169, 2014.
Reale, M., Giorgi, F., Solidoro, C., Di Biagio, V., Di Sante, F., Mariotti, L., Farneti, R., and Sannino, G.: The Regional Earth System Model RegCM-ES: Evaluation of the Mediterranean climate and marine biogeochemistry, J. Adv. Model. Earth Sy., 12, e2019MS001812. https://doi.org/10.1029/2019MS001812, 2020.
Reynolds, R. W., Rayner, N. A., Smith, T. M., Stokes, D. C., and Wang, W.:
An improved in situ and satellite SST analysis for climate, J.
Climate, 15, 1609–1625, 2002.
Reynolds, R. W., Smith, T. M., Liu, C., Chelton, D. B., Casey, K. S., and
Schlax, M. G.: Daily high-resolution-blended analyses for sea surface
temperature, J. Climate, 20, 5473–5496, 2007.
Robinson, A., Sellschopp, J., Warn-Varnas, A., Leslie, W., Lozano, C., Haley
Jr, P., Anderson, L., and Lermusiaux, P.: The Atlantic ionian stream,
J. Marine Syst., 20, 129–156, 1999.
Roether, W., Klein, B., Manca, B. B., Theocharis, A., and Kioroglou, S.:
Transient Eastern Mediterranean deep waters in response to the massive
dense-water output of the Aegean Sea in the 1990s, Prog. Oceanogr.,
74, 540–571, 2007.
Romanou, A., Tselioudis, G., Zerefos, C., Clayson, C., Curry, J., and
Andersson, A.: Evaporation–precipitation variability over the Mediterranean
and the Black Seas from satellite and reanalysis estimates, J.
Climate, 23, 5268–5287, 2010.
Rosso, I., Hogg, A. M., Kiss, A. E., and Gayen, B.: Topographic influence on
submesoscale dynamics in the Southern Ocean, Geophys. Res. Lett.,
42, 1139–1147, 2015.
Ruti, P. M., Somot, S., Giorgi, F., Dubois, C., Flaounas, E., Obermann, A.,
Dell'Aquila, A., Pisacane, G., Harzallah, A., and Lombardi, E.: MED-CORDEX
initiative for Mediterranean climate studies, B. Am.
Meteorol. Soc., 97, 1187–1208, 2016.
Sanchez-Gomez, E., Somot, S., Josey, S., Dubois, C., Elguindi, N., and
Déqué, M.: Evaluation of Mediterranean Sea water and heat budgets
simulated by an ensemble of high resolution regional climate models, Clim.
Dynam., 37, 2067–2086, 2011.
Sannino, G., Herrmann, M., Carillo, A., Rupolo, V., Ruggiero, V., Artale,
V., and Heimbach, P.: An eddy-permitting model of the Mediterranean Sea with
a two-way grid refinement at the Strait of Gibraltar, Ocean Model., 30,
56–72, 2009.
Sannino, G., Carillo, A., Pisacane, G., and Naranjo, C.: On the relevance of
tidal forcing in modelling the Mediterranean thermohaline circulation,
Prog. Oceanogr., 134, 304–329, 2015.
Sannino, G., Sözer, A., and Özsoy, E.: A high-resolution modelling
study of the Turkish Straits System, Ocean Dynam., 67, 397–432,
https://doi.org/10.1007/s10236-017-1039-2, 2017.
Schroeder, K., Ribotti, A., Borghini, M., Sorgente, R., Perilli, A., and
Gasparini, G.: An extensive western Mediterranean deep water renewal between
2004 and 2006, Geophys. Res. Lett., 35, L18605, https://doi.org/10.1029/2008GL035146, 2008.
Sevault, F., Somot, S., Alias, A., Dubois, C., Lebeaupin-Brossier, C.,
Nabat, P., Adloff, F., Déqué, M., and Decharme, B.: A fully coupled
Mediterranean regional climate system model: design and evaluation of the
ocean component for the 1980–2012 period, Tellus A, 66, 23967, https://doi.org/10.3402/tellusa.v66.23967, 2014.
Sitz, L., Di Sante, F., Farneti, R., Fuentes-Franco, R., Coppola, E.,
Mariotti, L., Reale, M., Sannino, G., Barreiro, M., and Nogherotto, R.:
Description and evaluation of the E arth System Regional Climate Model
(RegCM-ES), J. Adv. in Model. Earth Sy., 9, 1863–1886,
2017.
Skamarock, W. C. and Klemp, J. B.: A time-split nonhydrostatic atmospheric
model for weather research and forecasting applications, J.
Comput. Phys., 227, 3465–3485, 2008.
Somot, S., Sevault, F., Déqué, M., and Crépon, M.: 21st century
climate change scenario for the Mediterranean using a coupled
atmosphere–ocean regional climate model, Global Planet. Change, 63,
112–126, 2008.
Somot, S., Houpert, L., Sevault, F., Testor, P., Bosse, A., Taupier-Letage,
I., Bouin, M.-N., Waldman, R., Cassou, C., and Sanchez-Gomez, E.:
Characterizing, modelling and understanding the climate variability of the
deep water formation in the North-Western Mediterranean Sea, Clim.
Dynam., 51, 1179–1210, 2018a.
Somot, S., Ruti, P., Ahrens, B., Coppola, E., Jordà, G., Sannino, G., and
Solmon, F.: Editorial for the Med-CORDEX special issue, Clim.
Dynam., 51, 771–777, 2018b.
Stammer, D., Wunsch, C., Giering, R., Eckert, C., Heimbach, P., Marotzke,
J., Adcroft, A., Hill, C., and Marshall, J.: Volume, heat, and freshwater
transports of the global ocean circulation 1993–2000, estimated from a
general circulation model constrained by World Ocean Circulation Experiment
(WOCE) data, J. Geophys. Res.-Oceans, 108, 3007, https://doi.org/10.1029/2001JC001115, 2003.
Stanev, E. V., Le Traon, P.-Y., and Peneva, E. L.: Sea level variations and their
dependency on meteorological and hydrological forcing: analysis of altimeter
and surface data for the Black Sea, J. Geophys. Res., 76. 5877–5892, 2000.
Sun, R., Subramanian, A. C., Miller, A. J., Mazloff, M. R., Hoteit, I., and Cornuelle, B. D.: SKRIPS v1.0: a regional coupled ocean–atmosphere modeling framework (MITgcm–WRF) using ESMF/NUOPC, description and preliminary results for the Red Sea, Geosci. Model Dev., 12, 4221–4244, https://doi.org/10.5194/gmd-12-4221-2019, 2019.
Theocharis, A., Nittis, K., Kontoyiannis, H., Papageorgiou, E., and
Balopoulos, E.: Climatic changes in the Aegean Sea influence the Eastern
Mediterranean thermohaline circulation (1986–1997), Geophys. Res.
Lett., 26, 1617–1620, 1999.
Theocharis, A., Klein, B., Nittis, K., and Roether, W.: Evolution and status
of the Eastern Mediterranean Transient (1997–1999), J. Marine
Syst., 33, 91–116, 2002.
Tuel, A. and Eltahir, E.: Why Is the Mediterranean a Climate Change Hot
Spot?, J. Climate, 33, 5829–5843, 2020.
Turuncoglu, U. U.: Toward modular in situ visualization in Earth system models: the regional modeling system RegESM 1.1, Geosci. Model Dev., 12, 233–259, https://doi.org/10.5194/gmd-12-233-2019, 2019.
Turunçoğlu, U., Giuliani, G., and Sannino, G.: uturuncoglu/RegESM: Customized version of 1.2 for ENEA (Version 1.2.0_enea), Zenodo, https://doi.org/10.5281/zenodo.4386712, 2020a.
Turunçoğlu, U.: uturuncoglu/MITgcm: RegESM modeling system compatible MITgcm model (Version 1.0.0_cpl), Zenodo, https://doi.org/10.5281/zenodo.4392260, 2020b.
Turunçoğlu, U.: uturuncoglu/HD: New version of coupling capable HD model (Version 1.1.0), Zenodo, https://doi.org/10.5281/zenodo.4390527, 2020c.
Turuncoglu, U.: uturuncoglu/WRF: RegESM compatible version of WRF (Version 3.8.1_cpl), Zenodo, https://doi.org/10.5281/zenodo.4392230, 2020d.
Turuncoglu, U. U. and Sannino, G.: Validation of newly designed regional
earth system model (RegESM) for Mediterranean Basin, Clim. Dynam., 48,
2919–2947, 2017.
Vervatis, V. D., Sofianos, S. S., Skliris, N., Somot, S., Lascaratos, A.,
and Rixen, M.: Mechanisms controlling the thermohaline circulation pattern
variability in the Aegean–Levantine region. A hindcast simulation
(1960–2000) with an eddy resolving model, Deep Sea Research Part I:
Oceanographic Research Papers, 74, 82–97, 2013.
Vorosmarty, C. J., Fekete, B. M., and Tucker, B. A.: Global River Discharge, 1807–1991, V[ersion]. 1.1 (RivDIS), ORNL DAAC, Oak Ridge, Tennessee, USA, https://doi.org/10.3334/ORNLDAAC/199, 1998.
Waldron, K. M., Paegle, J., and Horel, J. D.: Sensitivity of a spectrally
filtered and nudged limited-area model to outer model options, Mon.
Weather Rev., 124, 529–547, 1996.
Wu, P., Haines, K., and Pinardi, N.: Toward an understanding of deep-water
renewal in the eastern Mediterranean, J. Phys. Oceanogr., 30,
443–458, 2000.
Short summary
The Mediterranean Basin is a complex region, characterized by the presence of pronounced topography and a complex land–sea distribution including a considerable number of islands and straits; these features generate strong local atmosphere–sea interactions.
Regional Earth system models have been developed and used to study both present and future Mediterranean climate systems. The main aims of this paper are to present and evaluate the newly developed regional Earth system model ENEA-REG.
The Mediterranean Basin is a complex region, characterized by the presence of pronounced...