Articles | Volume 14, issue 5
https://doi.org/10.5194/gmd-14-2691-2021
https://doi.org/10.5194/gmd-14-2691-2021
Model evaluation paper
 | 
18 May 2021
Model evaluation paper |  | 18 May 2021

Sensitivity of precipitation and temperature over the Mount Kenya area to physics parameterization options in a high-resolution model simulation performed with WRFV3.8.1

Martina Messmer, Santos J. González-Rojí, Christoph C. Raible, and Thomas F. Stocker

Related authors

Characterization of the mean and extreme Mediterranean cyclones and their variability during the period 1500 BCE to 1850 CE
Onno Doensen, Martina Messmer, Woon Mi Kim, and Christoph C. Raible
Clim. Past, 21, 1305–1322, https://doi.org/10.5194/cp-21-1305-2025,https://doi.org/10.5194/cp-21-1305-2025, 2025
Short summary
The role of ice-sheet topography in the Alpine hydro-climate at glacial times
Patricio Velasquez, Martina Messmer, and Christoph C. Raible
Clim. Past, 18, 1579–1600, https://doi.org/10.5194/cp-18-1579-2022,https://doi.org/10.5194/cp-18-1579-2022, 2022
Short summary
Sensitivity of precipitation in the highlands and lowlands of Peru to physics parameterization options in WRFV3.8.1
Santos J. González-Rojí, Martina Messmer, Christoph C. Raible, and Thomas F. Stocker
Geosci. Model Dev., 15, 2859–2879, https://doi.org/10.5194/gmd-15-2859-2022,https://doi.org/10.5194/gmd-15-2859-2022, 2022
Short summary
Statistical characteristics of extreme daily precipitation during 1501 BCE–1849 CE in the Community Earth System Model
Woon Mi Kim, Richard Blender, Michael Sigl, Martina Messmer, and Christoph C. Raible
Clim. Past, 17, 2031–2053, https://doi.org/10.5194/cp-17-2031-2021,https://doi.org/10.5194/cp-17-2031-2021, 2021
Short summary
The role of land cover in the climate of glacial Europe
Patricio Velasquez, Jed O. Kaplan, Martina Messmer, Patrick Ludwig, and Christoph C. Raible
Clim. Past, 17, 1161–1180, https://doi.org/10.5194/cp-17-1161-2021,https://doi.org/10.5194/cp-17-1161-2021, 2021
Short summary

Related subject area

Climate and Earth system modeling
Enhancing winter climate simulations of the Great Lakes: insights from a new coupled lake–ice–atmosphere (CLIAv1) system on the importance of integrating 3D hydrodynamics with a regional climate model
Pengfei Xue, Chenfu Huang, Yafang Zhong, Michael Notaro, Miraj B. Kayastha, Xing Zhou, Chuyan Zhao, Christa Peters-Lidard, Carlos Cruz, and Eric Kemp
Geosci. Model Dev., 18, 4293–4316, https://doi.org/10.5194/gmd-18-4293-2025,https://doi.org/10.5194/gmd-18-4293-2025, 2025
Short summary
Modelling emission and transport of key components of primary marine organic aerosol using the global aerosol–climate model ECHAM6.3–HAM2.3
Anisbel Leon-Marcos, Moritz Zeising, Manuela van Pinxteren, Sebastian Zeppenfeld, Astrid Bracher, Elena Barbaro, Anja Engel, Matteo Feltracco, Ina Tegen, and Bernd Heinold
Geosci. Model Dev., 18, 4183–4213, https://doi.org/10.5194/gmd-18-4183-2025,https://doi.org/10.5194/gmd-18-4183-2025, 2025
Short summary
Assessing the climate impact of an improved volcanic sulfate aerosol representation in E3SM
Ziming Ke, Qi Tang, Jean-Christophe Golaz, Xiaohong Liu, and Hailong Wang
Geosci. Model Dev., 18, 4137–4153, https://doi.org/10.5194/gmd-18-4137-2025,https://doi.org/10.5194/gmd-18-4137-2025, 2025
Short summary
Advanced climate model evaluation with ESMValTool v2.11.0 using parallel, out-of-core, and distributed computing
Manuel Schlund, Bouwe Andela, Jörg Benke, Ruth Comer, Birgit Hassler, Emma Hogan, Peter Kalverla, Axel Lauer, Bill Little, Saskia Loosveldt Tomas, Francesco Nattino, Patrick Peglar, Valeriu Predoi, Stef Smeets, Stephen Worsley, Martin Yeo, and Klaus Zimmermann
Geosci. Model Dev., 18, 4009–4021, https://doi.org/10.5194/gmd-18-4009-2025,https://doi.org/10.5194/gmd-18-4009-2025, 2025
Short summary
ICON-HAM-lite 1.0: simulating the Earth system with interactive aerosols at kilometer scales
Philipp Weiss, Ross Herbert, and Philip Stier
Geosci. Model Dev., 18, 3877–3894, https://doi.org/10.5194/gmd-18-3877-2025,https://doi.org/10.5194/gmd-18-3877-2025, 2025
Short summary

Cited articles

Angevine, W. M., Bazile, E., Legain, D., and Pino, D.: Land surface spinup for episodic modeling, Atmos. Chem. Phys., 14, 8165–8172, https://doi.org/10.5194/acp-14-8165-2014, 2014. a
Ayugi, B. O., Wen, W., and Chepkemoi, D.: Analysis of Spatial and Temporal Patterns of Rainfall Variations over Kenya, J. Environ. Earth Sci., 6, 69–83–83, 2016. a
Ban, N., Schmidli, J., and Schär, C.: Evaluation of the convection-resolving regional climate modeling approach in decade-long simulations, J. Geophys. Res.-Atmos., 119, 7889–7907, https://doi.org/10.1002/2014JD021478, 2014. a
Barry, R. G.: Mountain Weather and Climate, Cambridge University Press, Cambridge, 3rd edn., https://doi.org/10.1017/CBO9780511754753, 2008. a
Behera, S. K., Luo, J. J., Masson, S., Rao, S. A., Sakuma, H., and Yamagata, T.: A CGCM Study on the Interaction between IOD and ENSO, J. Climate, 19, 1688–1705, https://doi.org/10.1175/JCLI3797.1, 2006. a
Download
Short summary
Sensitivity experiments with the WRF model are run to find an optimal parameterization setup for precipitation around Mount Kenya at a scale that resolves convection (1 km). Precipitation is compared against many weather stations and gridded observational data sets. Both the temporal correlation of precipitation sums and pattern correlations show that fewer nests lead to a more constrained simulation with higher correlation. The Grell–Freitas cumulus scheme obtains the most accurate results.
Share