Articles | Volume 14, issue 5
https://doi.org/10.5194/gmd-14-2525-2021
https://doi.org/10.5194/gmd-14-2525-2021
Development and technical paper
 | 
06 May 2021
Development and technical paper |  | 06 May 2021

The Environment and Climate Change Canada Carbon Assimilation System (EC-CAS v1.0): demonstration with simulated CO observations

Vikram Khade, Saroja M. Polavarapu, Michael Neish, Pieter L. Houtekamer, Dylan B. A. Jones, Seung-Jong Baek, Tai-Long He, and Sylvie Gravel

Related authors

Global CO emissions and drivers of atmospheric CO trends constrained by MOPITT satellite observations
Zhaojun Tang, Panpan Yang, Kazuyuki Miyazaki, John Worden, Helen Worden, Daven K. Henze, Dylan B. A. Jones, and Zhe Jiang
EGUsphere, https://doi.org/10.5194/egusphere-2025-5432,https://doi.org/10.5194/egusphere-2025-5432, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Quantifying CO emissions from boreal wildfires by assimilating TROPOMI and TCCON observations
Sina Voshtani, Dylan B. A. Jones, Debra Wunch, Drew C. Pendergrass, Paul O. Wennberg, David F. Pollard, Isamu Morino, Hirofumi Ohyama, Nicholas M. Deutscher, Frank Hase, Ralf Sussmann, Damien Weidmann, Rigel Kivi, Omaira García, Yao Té, Jack Chen, Kerry Anderson, Robin Stevens, Shobha Kondragunta, Aihua Zhu, Douglas Worthy, Senen Racki, Kathryn McKain, Maria V. Makarova, Nicholas Jones, Emmanuel Mahieu, Andrea Cadena-Caicedo, Paolo Cristofanelli, Casper Labuschagne, Elena Kozlova, Thomas Seitz, Martin Steinbacher, Reza Mahdi, and Isao Murata
Atmos. Chem. Phys., 25, 15527–15565, https://doi.org/10.5194/acp-25-15527-2025,https://doi.org/10.5194/acp-25-15527-2025, 2025
Short summary
High-resolution greenhouse gas flux inversions using a machine learning surrogate model for atmospheric transport
Nikhil Dadheech, Tai-Long He, and Alexander J. Turner
Atmos. Chem. Phys., 25, 5159–5174, https://doi.org/10.5194/acp-25-5159-2025,https://doi.org/10.5194/acp-25-5159-2025, 2025
Short summary
FootNet v1.0: development of a machine learning emulator of atmospheric transport
Tai-Long He, Nikhil Dadheech, Tammy M. Thompson, and Alexander J. Turner
Geosci. Model Dev., 18, 1661–1671, https://doi.org/10.5194/gmd-18-1661-2025,https://doi.org/10.5194/gmd-18-1661-2025, 2025
Short summary
Assessment of regional and interannual variations in tropospheric ozone in chemical reanalyses
Dylan Jones, Lucas Prates, Zhen Qu, William Cheng, Kazuyuki Miyazaki, Takashi Sekiya, Antje Inness, Rajesh Kumar, Xiao Tang, Helen Worden, Gerbrand Koren, and Vincent Huijen
EGUsphere, https://doi.org/10.5194/egusphere-2024-3759,https://doi.org/10.5194/egusphere-2024-3759, 2025
Short summary

Cited articles

Abatzoglou, J. T. and Williams, A. P.: Impact of anthropogenic climate change on wildfires across western US forests, P. Natl. Acad. Sci. USA, 113, 11770–11775, 2016. a
Anderson, J. L.: An ensemble adjustment Kalman filter for data assimilation, Mon. Weather Rev., 129, 2884–2903, 2001. a
Anselmo, D., Moran, M. D., Menard, S., Bouchet, V., Makar, P., Gong, W., Kallaur, A., Beaulieu, P.-A., Landry, H., Stroud, C., Huang, P., Gong, S., and Talbot, D.: A new Canadian air quality forecast model: GEM-MACH15, Proc. 12th AMS Conf. on Atmos. Chem., 17–21 January, Atlanta, GA, American Meteorological Society, Boston, MA, 6 pp., available at: http://ams.confex.com/ams/pdfpapers/165388.pdf (last access: 28 April 2021), 2010. a
Arellano, A. F. and Hess, P. G.: Sensitivity of top-down estimates of CO sources to GCTM transport, Geophys. Res. Lett., 33, L21807, https://doi.org/10.1029/2006GL027371, 2006. a
Bannister, R. N.: A review of forecast error covariance statistics in atmospheric variational data assimilation. I : characteristics and measurements of forecast error covariances, Q. J. Roy. Meteorol. Soc., 134, 1951–1970, 2008. a
Download
Short summary
A new modeling system has been developed at Environment and Climate Change Canada to ingest observations of carbon monoxide (CO) into a coupled weather and constituent transport model. We show that accounting for the uncertainty in surface flux leads to a better estimate of CO distributions. The benefit of assimilating observations from different simulated networks varies with region. This is the first step towards developing a state and flux estimation system for greenhouse gases.
Share