Articles | Volume 14, issue 5
https://doi.org/10.5194/gmd-14-2525-2021
https://doi.org/10.5194/gmd-14-2525-2021
Development and technical paper
 | 
06 May 2021
Development and technical paper |  | 06 May 2021

The Environment and Climate Change Canada Carbon Assimilation System (EC-CAS v1.0): demonstration with simulated CO observations

Vikram Khade, Saroja M. Polavarapu, Michael Neish, Pieter L. Houtekamer, Dylan B. A. Jones, Seung-Jong Baek, Tai-Long He, and Sylvie Gravel

Related authors

Ensemble filter based estimation of spatially distributed parameters in a mesoscale dust model: experiments with simulated and real data
V. M. Khade, J. A. Hansen, J. S. Reid, and D. L. Westphal
Atmos. Chem. Phys., 13, 3481–3500, https://doi.org/10.5194/acp-13-3481-2013,https://doi.org/10.5194/acp-13-3481-2013, 2013

Related subject area

Atmospheric sciences
Modeling of polycyclic aromatic hydrocarbons (PAHs) from global to regional scales: model development (IAP-AACM_PAH v1.0) and investigation of health risks in 2013 and 2018 in China
Zichen Wu, Xueshun Chen, Zifa Wang, Huansheng Chen, Zhe Wang, Qing Mu, Lin Wu, Wending Wang, Xiao Tang, Jie Li, Ying Li, Qizhong Wu, Yang Wang, Zhiyin Zou, and Zijian Jiang
Geosci. Model Dev., 17, 8885–8907, https://doi.org/10.5194/gmd-17-8885-2024,https://doi.org/10.5194/gmd-17-8885-2024, 2024
Short summary
LIMA (v2.0): A full two-moment cloud microphysical scheme for the mesoscale non-hydrostatic model Meso-NH v5-6
Marie Taufour, Jean-Pierre Pinty, Christelle Barthe, Benoît Vié, and Chien Wang
Geosci. Model Dev., 17, 8773–8798, https://doi.org/10.5194/gmd-17-8773-2024,https://doi.org/10.5194/gmd-17-8773-2024, 2024
Short summary
SLUCM+BEM (v1.0): a simple parameterisation for dynamic anthropogenic heat and electricity consumption in WRF-Urban (v4.3.2)
Yuya Takane, Yukihiro Kikegawa, Ko Nakajima, and Hiroyuki Kusaka
Geosci. Model Dev., 17, 8639–8664, https://doi.org/10.5194/gmd-17-8639-2024,https://doi.org/10.5194/gmd-17-8639-2024, 2024
Short summary
NAQPMS-PDAF v2.0: a novel hybrid nonlinear data assimilation system for improved simulation of PM2.5 chemical components
Hongyi Li, Ting Yang, Lars Nerger, Dawei Zhang, Di Zhang, Guigang Tang, Haibo Wang, Yele Sun, Pingqing Fu, Hang Su, and Zifa Wang
Geosci. Model Dev., 17, 8495–8519, https://doi.org/10.5194/gmd-17-8495-2024,https://doi.org/10.5194/gmd-17-8495-2024, 2024
Short summary
Source-specific bias correction of US background and anthropogenic ozone modeled in CMAQ
T. Nash Skipper, Christian Hogrefe, Barron H. Henderson, Rohit Mathur, Kristen M. Foley, and Armistead G. Russell
Geosci. Model Dev., 17, 8373–8397, https://doi.org/10.5194/gmd-17-8373-2024,https://doi.org/10.5194/gmd-17-8373-2024, 2024
Short summary

Cited articles

Abatzoglou, J. T. and Williams, A. P.: Impact of anthropogenic climate change on wildfires across western US forests, P. Natl. Acad. Sci. USA, 113, 11770–11775, 2016. a
Anderson, J. L.: An ensemble adjustment Kalman filter for data assimilation, Mon. Weather Rev., 129, 2884–2903, 2001. a
Anselmo, D., Moran, M. D., Menard, S., Bouchet, V., Makar, P., Gong, W., Kallaur, A., Beaulieu, P.-A., Landry, H., Stroud, C., Huang, P., Gong, S., and Talbot, D.: A new Canadian air quality forecast model: GEM-MACH15, Proc. 12th AMS Conf. on Atmos. Chem., 17–21 January, Atlanta, GA, American Meteorological Society, Boston, MA, 6 pp., available at: http://ams.confex.com/ams/pdfpapers/165388.pdf (last access: 28 April 2021), 2010. a
Arellano, A. F. and Hess, P. G.: Sensitivity of top-down estimates of CO sources to GCTM transport, Geophys. Res. Lett., 33, L21807, https://doi.org/10.1029/2006GL027371, 2006. a
Bannister, R. N.: A review of forecast error covariance statistics in atmospheric variational data assimilation. I : characteristics and measurements of forecast error covariances, Q. J. Roy. Meteorol. Soc., 134, 1951–1970, 2008. a
Download
Short summary
A new modeling system has been developed at Environment and Climate Change Canada to ingest observations of carbon monoxide (CO) into a coupled weather and constituent transport model. We show that accounting for the uncertainty in surface flux leads to a better estimate of CO distributions. The benefit of assimilating observations from different simulated networks varies with region. This is the first step towards developing a state and flux estimation system for greenhouse gases.