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Abstract. In this study, we present the development of a new
coupled weather and carbon monoxide (CO) data assimila-
tion system based on the Environment and Climate Change
Canada (ECCC) operational ensemble Kalman filter (EnKF).
The estimated meteorological state is augmented to include
CO. Variable localization is used to prevent the direct up-
date of meteorology by the observations of the constituents
and vice versa. Physical localization is used to damp spuri-
ous analysis increments far from a given observation. Per-
turbed surface flux fields are used to account for the uncer-
tainty in CO due to errors in the surface fluxes. The system
is demonstrated for the estimation of three-dimensional CO
states using simulated observations from a variety of net-
works. First, a hypothetically dense, uniformly distributed
observation network is used to demonstrate that the system is
working. More realistic observation networks, based on sur-
face hourly observations, and space-based observations pro-
vide a demonstration of the complementarity of the different
networks and further confirm the reasonable behavior of the
coupled assimilation system. Having demonstrated the abil-
ity to estimate CO distributions, this system will be extended
to estimate surface fluxes in the future.

Copyright statement. The works published in this journal are
distributed under the Creative Commons Attribution 4.0 License.
This license does not affect the Crown copyright work, which
is re-usable under the Open Government Licence (OGL). The

Creative Commons Attribution 4.0 License and the OGL are
interoperable and do not conflict with, reduce or limit each other.

© Crown copyright 2021

1 Introduction

Environment and Climate Change Canada (ECCC) oper-
ates a greenhouse gas (GHG) measurement network that
has seen rapid expansion during the past decade. ECCC
also possesses a GHG inventory reporting division. As re-
quired by United Nations Framework Convention on Cli-
mate Change (UNFCCC) commitments, Canadian emis-
sions are quantified and reported using bottom-up meth-
ods (NIR, 2019, http://www.publications.gc.ca/site/eng/9.
506002/publication.html, last access: 28 April 2021). In or-
der to assess the national impact of mitigation efforts, knowl-
edge of the natural sources and sinks is also needed. The
challenge is that there are huge uncertainties in the natural
carbon budget for Canada. For example, Crowell et al. (2019)
found a range of uncertainty estimates of boreal North Amer-
ican (which is primarily Canada and Alaska) surface fluxes
from 480 to 700 TgC yr−1 for an ensemble of inversion re-
sults for 2015 and 2016. This uncertainty in the biospheric
uptake is comparable to the estimate of anthropogenic emis-
sions (568 and 559 TgC yr−1 for 2015 and 2016, respec-
tively) for Canada (NIR, 2019). In addition, much is un-
known about the fate of carbon stored in the permafrost under
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a warming climate (Voigt et al., 2019), and this will have im-
plications for the global as well as the Canadian carbon bud-
get. Thus, ECCC has a need to better understand and quan-
tify GHG sources and sinks on the national scale. The ECCC
Carbon Assimilation System (EC-CAS) was proposed to ad-
dress this requirement using the available tools, namely oper-
ational atmospheric modeling and assimilation systems. The
eventual goal of EC-CAS is to characterize carbon diox-
ide (CO2), CO and methane (CH4) distributions and surface
fluxes both globally and over Canada with a focus on the
natural carbon cycle. An important aspect of the impact of
climate change on boreal forests is the influence of wildfires
on the carbon balance in these regions. Over the past several
decades there has been an increase in the frequency of wild-
fires, and this trend is expected to continue (Abatzoglou and
Williams, 2016; Flannigan et al., 2009), which will have a
significant impact on the Canadian carbon budget and on the
Canadian economy. In addition, as a combustion tracer, ob-
servations of CO can provide constraints on CO2 emissions
from fires and help discriminate between combustion-related
CO2 fluxes and fluxes from terrestrial biosphere (Palmer et
al., 2003; Wang et al., 2009; van der Laan-Luijkx et al.,
2015). It is for this reason that EC-CAS also includes CO
alongside the greenhouse gases CO2 and CH4. EC-CAS will
be a significant undertaking, and only the very first step to-
ward this system is described here, namely the estimation of
three-dimensional CO distributions. Of the three species of
interest, we chose to start with CO because of its shorter life-
time of about 2 months. Thus, the computational cost to test
the new system could be minimized.

Carbon monoxide (CO) plays a role in both tropospheric
chemistry and in climate. In terms of air quality, CO is an
important precursor of tropospheric ozone, but it is also a
by-product of incomplete combustion and, thus, correlates
well with anthropogenic sources of greenhouse gases from
fossil fuel and biofuel burning and from forest fires. CO
has a lifetime of 1–2 months which is between the air qual-
ity and climate timescales; thus, data assimilation systems
(DAS) that assimilate CO can focus on either the air quality
or the climate problem. Tropospheric atmospheric compo-
sition prediction concerns short timescales (forecasts up to
5 d), whereas climate problems concern the estimation of sur-
face fluxes over months to years. Data assimilation systems,
whose primary objective is to better understand and predict
tropospheric pollution, typically use a coupled weather and
chemistry model with short assimilation windows (e.g., 12 h)
to initiate short forecasts. The CO observations are used to
estimate CO initial states for the forecasts with either an en-
semble Kalman filter (EnKF) (Barré et al., 2015; Miyazaki
et al., 2012) or a 4-D variational (4D-Var) approach (In-
ness et al., 2019, 2015). The chemistry model typically in-
cludes the numerous gas phase and aerosol reactions rele-
vant for air quality. On the other hand, systems focused on
the influence of CO on climate are typically “inversion sys-
tems” wherein observations of CO concentrations are used

to estimate CO surface fluxes. Here, again, both ensemble
(Miyazaki et al., 2015, 2012) and variational (Jiang et al.,
2017, 2015a, b, 2013, 2011; Fortems-Cheiney et al., 2011)
approaches have been used. Typically a chemistry transport
model (CTM) driven by offline meteorological analyses is
used. Simplified chemistry models with monthly hydroxide
(OH) fields (Yin et al., 2015; Fortems-Cheiney et al., 2011;
Jiang et al., 2017, 2015a, b, 2013, 2011) or full tropospheric
chemistry models (Miyazaki et al., 2015, 2012) may be used.

EC-CAS v1.0 adapts the operational ensemble Kalman fil-
ter (EnKF) (Houtekamer et al., 2014) to perform a coupled
meteorology and CO state estimation as in Barré et al. (2015)
and Gaubert et al. (2016). With this choice, EC-CAS v1.0 can
directly simulate and account for all components of trans-
port error (i.e., errors arising from model formulation, me-
teorological state and constituent initial conditions) as well
as observation and surface flux errors; see Polavarapu et al.
(2016) for a detailed discussion of transport errors. EC-CAS
will also be able to handle the vast quantities of observations
that are anticipated, as, currently, roughly 106 observations
are already assimilated every day for weather forecasts.

In the present paper, we introduce the first version of EC-
CAS to demonstrate the extension of the ensemble Kalman
filter (Houtekamer et al., 2014) to estimate CO atmospheric
distributions. To demonstrate that the system is working,
three-dimensional CO fields are estimated by assimilating
observations from four different networks. The outline of the
paper is as follows: Sect. 2 describes the various components
of EC-CAS system; Sect. 3 presents the experimental design;
Sect. 4 describes the data assimilation (DA) experiments and
their results; and Sect. 5 presents the conclusions of this work
and delineates planned future developments of EC-CAS.

2 System description and development

2.1 EC-CAS

The EC-CAS system consists of a coupled weather and con-
stituent transport model as the forecast model and an ensem-
ble Kalman filter (EnKF) as the data assimilation technique.
Figure 1 shows a schematic overview of EC-CAS. A num-
ber (N = 64) of 6 h model forecasts are simultaneously inte-
grated from N meteorological and CO initial conditions with
forcing from N perturbed CO surface fluxes. The spread of
6 h ensemble forecasts about their mean is used at each data
assimilation (DA) cycle to define the forecast error covari-
ance. The EnKF is used to optimally combine the forecast
fields with the observations using both the forecast and ob-
servation error covariance matrices to produce the analysis
ensemble at each DA cycle. Here, the optimality refers to the
fact that the solution minimizes the analysis error variance if
the uncertainty estimates of the observations (including rep-
resentation errors) and the ensemble mean forecast as repre-
sented by their corresponding error covariance matrices are
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correctly specified and if errors are Gaussian. Thus, a key
component in the analysis step is the forecast error uncer-
tainty estimate which is estimated by the N ensemble fore-
casts in this algorithm. This permits a temporally evolving
and flow dependent specification of forecast errors.

2.2 The forecast model

The forecast model used in EC-CAS is called GEM-MACH-
GHG (Polavarapu et al., 2016; Neish et al., 2019). This
model is a variant of GEM (Global Environmental Multi-
scale), the ECCC operational weather forecast model (Côté
et al., 1998a, b; Girard et al., 2014) that was developed for
the simulation of greenhouse gases. A detailed description
of the GEM-MACH-GHG model is found in Polavarapu et
al. (2016), so only a few salient points are mentioned here
along with recent model updates. Compared with the oper-
ational global weather forecast model, GEM-MACH-GHG
uses a lower resolution with 0.9◦ grid spacing in both lati-
tude and longitude but the same 80 vertical levels from the
surface to 0.1 hPa. The vertical coordinate is a type of hy-
brid terrain-following coordinate (Girard et al., 2014). The
advection scheme uses a semi-Lagrangian approach for both
meteorology and tracers. Modifications were implemented
to conserve tracer mass on the global scale (see Polavarapu
et al., 2016). This included defining tracer variables as dry
mole fractions. In addition, tracers are transported through
the Kain–Fritsch deep convection scheme (Kain and Fritsch,
1990; Kain, 2004) but not through a shallow convection
scheme. The boundary layer scheme uses a prognostic tur-
bulent kinetic energy (TKE) equation to specify the thermal
eddy diffusivity (see McTaggart-Cowan and Zadra, 2015). In
Polavarapu et al. (2016, 2018), it was necessary to impose
a minimum diffusivity of 10m2 s−1 in the boundary layer.
However, recent model improvements enabled the minimum
diffusivity to be lowered to 1 m2 s−1, as in Kim et al. (2020).

An operational air quality forecast model based on GEM is
used to produce 48 h forecasts of the air quality health index
on a limited area domain covering most of North America.
This model is called GEM-MACH (Anselmo et al., 2010;
Gong et al., 2015; Pavlovic et al., 2016), and it employs
moderately detailed parameterizations of tropospheric chem-
istry using 42 gas-phase species, 20 aqueous-phase species
and nine aerosol chemical components. In contrast, GEM-
MACH-GHG uses simple parameterized chemistry for CH4
and CO, while CO2 is treated as a passive tracer. Thus, GEM-
MACH-GHG could be used for multiyear simulations and
surface flux estimations of long-lived constituents with an
EnKF. The computational expense of complete chemistry
would be prohibitive and difficult to justify for a system
focused on carbon fluxes. However, other model processes
from GEM-MACH are used in GEM-MACH-GHG, namely
the vertical diffusion and emissions injection. In GEM-
MACH-GHG, the methane (CH4) parameterization involves
a single loss rate with a monthly [OH] climatology. The rate

constant is specified following the JPL (2011) formulation
for the bimolecular reaction for methane (see their pages 1–
12). The parameterized chemistry model used for CO is iden-
tical to that used in GEOS-Chem (http://geos-chem.org, last
access: 28 April 2021) in that CO destruction is parameter-
ized following JPL (2011). The same [OH] climatology is
used for CH4 and CO. Specifically, the [OH] monthly cli-
matology is from Spivakovsky et al. (2000) and is regrid-
ded to the GEM-MACH-GHG grid. The production of CO
from CH4 is computed assuming each methane molecule de-
stroyed becomes a CO molecule.

For the CH4 simulation, the surface fluxes were obtained
from CarbonTracker-CH4 (CT-CH4; Bruhwiler et al., 2014).
As CT-CH4 surface fluxes are available from 2000 to 2010,
the last 5-year mean (2006–2010) fluxes were used for the
2015 EC-CAS simulation. The initial condition (IC) for CH4
for 1 January 2015 was approximated with the CH4 atmo-
spheric mole fractions from CT-CH4 at the end of 2010 as
well as a globally uniform offset to account for the increase
in CH4 from 2010 to 2015 (30 ppb, estimated based on the
difference from observations at the South Pole). Even though
the initial condition is not correct, the impact of the errors in
the CH4 initial condition (the synoptic spatial patterns) dissi-
pates within weeks. These prescribed CH4 surface fluxes and
initial conditions appear reasonable, as the model-simulated
CH4 compares well with surface observations.

To define the CO initial state, an inversion constrained by
space-based observations from the MOPITT (Measurement
of Pollution in the Troposphere) instrument v7J (Drummond,
1992) was performed with GEOS-Chem on a 4◦× 5◦ grid.
The CO combustion emissions are from the Hemispheric
Transport of Air Pollutants (http://www.htap.org, last ac-
cess: 28 April 2021) (Janssens-Maenhout et al., 2015). Bio-
genic emissions of isoprene, methanol, acetone and monoter-
penes are from a GEM-MACH simulation, with an assumed
yield of CO from the oxidation of these hydrocarbons that is
based on the GEOS-Chem CO-only simulation employed in
Kopacz et al. (2010) and Jiang et al. (2011, 2015a, 2017). The
monthly CO posterior surface fluxes obtained for Decem-
ber 2014 and throughout 2015 were used in EC-CAS EnKF
cycles. As GEOS-Chem is widely used for the assimilation of
MOPITT CO data, we use a posterior CO distribution from
GEOS-Chem for 1 December 2014 at 18:00:00 UTC as the
initial state on 27 December 2014 at 18:00:00 UTC.

2.3 The ensemble Kalman filter used for weather
forecasting

ECCC has been developing an ensemble Kalman filter
(EnKF) for medium-range weather prediction since the mid
1990s (Houtekamer et al., 1996). In 2005, ECCC became the
first to implement an EnKF for operational global weather
forecasting (Houtekamer and Mitchell, 2005). As an opera-
tional system, the ECCC EnKF is constantly evolving and
improving. However, in order to implement the extensions
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for CO assimilation described in this article, it was nec-
essary to freeze a version. Thus, our EnKF branches off
from the Global Ensemble Prediction System (GEPS) ver-
sion 4.1.1 that was implemented operationally on 15 De-
cember 2015 and described in Houtekamer et al. (2014).
The history of changes to the operational GEPS is available
at https://eccc-msc.github.io/open-data/msc-data/nwp_geps/
readme_geps_en/ (last access: 28 April 2021). The history is
also discussed in Houtekamer et al. (2014). The current op-
erational version is described in Houtekamer et al. (2019).

There are multiple ways to formulate an EnKF. The GEPS
algorithm uses a so-called stochastic formulation (Lawson
and Hansen, 2004) in which each ensemble member assim-
ilates a different set of observations. The observation sets
are obtained by perturbing the actual observations with re-
alizations from the prescribed observation error covariance
matrix. This formulation may have an advantage when deal-
ing with nonlinear error growth (Lawson and Hansen, 2004).
Although the EnKF equations have been defined numerous
times before, we present the equations here as some readers
may be more familiar with CTM applications.

The Kalman filter equation (Ghil et al., 1981; Cohn and
Parrish, 1991) at a particular DA cycle at time t is given by

xa(t)= xf(t)+Pf(t)HT (t)[H(t)Pf(t)HT (t)+R(t)]−1

(yo(t)−H(t)xf(t)), (1)

where xf is the forecast field produced by a 6 h forecast of
GEM-MACH, xa is the analysis produced by combining the
information content in the forecast fields and the observa-
tions, H is the observation operator that maps the model
state to the observation space, Pf(t) is the forecast error co-
variance matrix, yo is the observation vector of dimension
m and matrix R of dimension m×m represents the error
in yo. In Eq. (1), xf and xa are state vectors of dimension
d = 400×200×(80×4+2). The dimensionality of the model
grid is 400× 200. The number of vertical levels is 80. There
are four three-dimensional meteorological variables, namely
temperature, two horizontal components of winds and the
natural logarithm of specific humidity. In addition, the state
vector includes the two-dimensional fields of surface pres-
sure and radiative temperature at the surface. With the en-
semble approach, the forecast error covariance, Pf(t) need
not be computed explicitly. Instead, the terms in Eq. (1) in-
volving Pf(t) are computed as follows:

PfHT
=

1
(N − 1)

N∑
i=1

(xf
i − x

f)(Hxf
i −Hxf)T (2)

HPfHT
=

1
(N − 1)

N∑
i=1

(Hxf
i −Hxf)(Hxf

i −Hxf)T , (3)

where xf and Hxf are the ensemble means. The t in paren-
theses is dropped for readability. The summation is over the
ensemble members.

The quantity

K(t)= PfHT
[HPfHT

+R]−1 (4)

in Eq. (1) is known as the Kalman gain, where the t in paren-
theses for quantities on the right side is dropped for read-
ability. (HPfHT

+R) can be a huge matrix (order ≈ 106)
(Houtekamer et al., 2019), and its inversion is computation-
ally onerous. This problem is circumvented by solving this
equation sequentially (Cohn and Parrish, 1991; Anderson,
2001; Houtekamer and Mitchell, 2001). In sequential pro-
cessing, the total number of observations m is subdivided
into Nb subsets, known as batches, containing, at most, p

observations each.
The assimilation then proceeds as follows:

xa
1(t)= x

f(t)+PfHT
1 [H1PfHT

1 +R1]
−1(yo

1−H1x
f)

Pass 1

xa
2(t)= x

a
1(t)+PfHT

2 [H2PfHT
2 +R2]

−1(yo
2−H2x

a
1)

Pass 2
...

xa
Nb

(t)= xa
Nb−1(t)+PfHT

Nb
[HNbPfHT

Nb
+RNb ]

−1

(yo
Nb
−HNbx

a
Nb−1) Pass Nb.

The subscripts 1,2, . . .,Nb represent the pass numbers.
xa

Nb
(t) is the updated state (as if all of the observations were

processed simultaneously). The analysis from a given pass is
used as the forecast field in the next pass. At each pass, 600
observations are assimilated at most.

Although the covariance estimate Pf obtained from the en-
semble is state dependent, owing to the small size of the en-
semble, this estimate is noisy. This is remedied by the use of
physical localization. The Kalman gain in Eq. (4) is modified
as follows:

K(t)= (ρm ◦ (P
fHT ))[ρo ◦ (HPfHT )+R]−1, (5)

where ρm and ρo constitute the physical localization in the
model space and observation space, respectively, and ◦ de-
notes the Hadamard product. These matrices contain weights
that smoothly decrease towards zero as the distance from
the observation increases. The localization in the model
space (ρm) requires the distance between observations and
model coordinates, whereas the localization in the obser-
vation space (ρo) requires the distance between observa-
tions (Houtekamer et al., 2016). The covariances in PfHT

are multiplied elementwise by ρm. Similarly, the covariances
in HPfHT are multiplied elementwise by ρo. The ensem-
ble size is typically much smaller than the dimensionality
of the model. For example, in this work the ensemble size is
64 while the model dimensionality is ≈ 107. Consequently,
the correlation estimate calculated from the ensemble can be
spurious. Localization is designed to ameliorate this prob-
lem of spurious correlations (Hamill et al., 2001). The rate of
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the weight decrease is dictated by the Gaspari–Cohn function
(Gaspari and Cohn, 1999; Houtekamer and Mitchell, 2001).
The localization radii for meteorological variables are the
same as those given in Table 3 of Houtekamer et al. (2014).
The batches of observations are created within four vertical
layers, and the localization radius increases with the height of
the layer, ranging from 2100 km for the lowest layer (1050–
400 hPa) to 3000 km for the highest layer (14–2 hPa).

To simulate model errors, the GEPS 4.1.1 uses different
model parameters for different forecast ensemble members.
These parameters are associated with the most uncertain pa-
rameterized physical processes such as boundary layer turbu-
lence and deep convection (Table S1). Each ensemble mem-
ber is assigned a unique combination of optional values. The
GEPS 4.1.1 also uses an additive homogeneous, isotropic cli-
matological error produced using the so-called NMC method
(Parrish and Derber, 1992; Bannister, 2008) for additional
model error simulation (Houtekamer et al., 2019).

Some features of later implementations of GEPS were
also incorporated in EC-CAS. During the forecasting step,
an incremental analysis updating (IAU) scheme (Bloom
et al., 1996; Houtekamer et al., 2019) from GEPS
5.0.0 is applied to control high-frequency waves gen-
erated by analysis insertion during the ensemble fore-
casts. GEPS 5.0.0 is detailed at the Meteorological Service
of Canada Open Data website (https://eccc-msc.github.io/
open-data/msc-data/nwp_geps/changelog_geps_en/, last ac-
cess: 28 April 2021).

A few more changes were made specifically for EC-CAS.
First, the horizontal resolution was coarsened to 0.9◦ (400×
200 grid points in a uniformly spaced latitude–longitude
grid). Second, the number of ensemble members was reduced
from 256 to 64. Third, satellite radiances were removed
from the types of meteorological data to be assimilated.
Thus, EC-CAS assimilates radiosonde, surface (from ships
and land sites), aircraft, scatterometer, cloud-drift winds and
GPS radio occultation (GPS-RO) observations. The first two
changes were needed for computational efficiency during
model development and testing. The impact of all three
changes is shown in Sect. S1 of the Supplement. Figures S1
to S4 compare the statistics (bias and standard deviation)
of observation minus model differences for radiosondes at
00:00 and 12:00 UTC for zonal wind, meridional wind, tem-
perature and dew point depression. As expected, our system
has degraded performance relative to the full system, most
notably for the error standard deviation for wind components.
Other EnKF systems for CO data assimilation use 30 mem-
bers (Gaubert et al., 2016; Barré et al., 2015; Miyazaki et
al., 2015). Increases in ensemble size are envisioned in the
future. The reason for not assimilating satellite radiances is
evident from Figs. S5 and S6. Scores for wind components
and temperature in the stratosphere are actually better with-
out these observations. Radiance assimilation is challenging
in the stratosphere due to a combination of factors: the co-
variance localization in a region with a long horizontal cor-

relation length, dense observations and the use of a sequen-
tial algorithm (Houtekamer et al., 2016). Although moisture
in the troposphere is degraded without radiance assimilation,
we preferred to retain the improved performance of the wind
fields, particularly in the tropics (Fig. S6). Interestingly, the
CO EnKF systems of Barré et al. (2015) and Gaubert et
al. (2016) also do not assimilate satellite radiance measure-
ments.

2.4 EnKF extensions for CO data assimilation

The state vector discussed in Sect. 2.3 is augmented to in-
clude the CO field. Variable localization (Kang et al., 2011)
is implemented in the EnKF code by modifying Eq. (5) as
follows:

K(t)= (ρv
m ◦ ρm ◦ (P

fHT ))[ρv
o ◦ ρo ◦ (HPfHT )+R]−1. (6)

Each element of ρv
m and ρv

o is either one or zero. Unlike the
physical localization matrices, the elements of variable local-
ization matrices are not distance dependent; they are rather
variable type dependent. A given element is one if the row
and column variable is of the same type and is zero oth-
erwise. The (i,j)th element of ρv

m and ρv
o is set to one if

the user desires an observation of the j th variable to impact
the update of the ith variable. Setting the (i,j)th element to
zero ensures that the observation of the j th variable does not
contribute to the update of the ith variable. For example, if
both the row and column of HPfHT correspond to a CO ob-
servation, the respective element of ρv

o is set to one. In our
initial implementation of EC-CAS, presented in this work,
variable localization is implemented such that meteorologi-
cal observations do not directly update CO state and CO ob-
servations do not update the meteorological state as in Inness
et al. (2015), Barré et al. (2015) and Gaubert et al. (2016).
As Miyazaki et al. (2011) and Kang et al. (2011) show that
CO2 updates through wind observations are beneficial, this
issue will be considered in future EC-CAS developments. It
is worth noting that it is still possible for the CO state to indi-
rectly improve due to the assimilation of wind observations.
This can occur because improvement in winds due to mete-
orological observations leads to an improvement in the spa-
tial distribution of CO. An important tuning parameter of the
EnKF is the localization radius. Various localization radii for
CO forecast error covariances were tried. Values of 2000 km
in the horizontal and 4 km in the vertical gave the best re-
sults. The EnKF code with the extensions developed here is
available in Khade et al. (2020).

3 Experimental design

The current paper describes the experiments run for the de-
velopment and testing of the state estimation of CO using
simulated observations. The ultimate goal is to develop a
system that ingests real GHG observations. However, testing
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of the system using simulated observations is an important
milestone. It not only demonstrates that the system is work-
ing properly but also illustrates and defines errors achievable
in the best-case scenario (under idealized conditions). In this
work, we use simulated CO observations which are unbiased
and have uncorrelated errors.

The experiments in this work are run from 27 De-
cember 2014 at 18:00:00 UTC to 28 February 2015 at
00:00:00 UTC. At cold start, 65 perturbations of meteorolog-
ical variables are drawn from the same climatological (static)
covariance matrix that was used to generate additive model
error. These 65 perturbations are added to the meteorologi-
cal base state valid at 27 December 2014 at 18:00:00 UTC.
This produces 65 ensemble members for the meteorological
variables. Out of the 65 ensemble members the 65th ensem-
ble member is designated as the “truth”. The remaining 64
ensemble members are used for the EnKF estimation exper-
iment. With this approach, the truth member is a plausible
member of the ensemble having been generated from the
same probability density function. The meteorological ob-
servations are drawn from the trajectory of the truth at 00:00,
06:00, 12:00 and 18:00 Z every day, at which time DA is car-
ried out. The observation networks used in this work are de-
scribed in Sect. 3.2. An important facet of this work is ac-
counting for surface flux error in the CO estimate. This is ac-
complished through the use of an ensemble of surface fluxes.

3.1 Surface flux perturbation

The error in surface flux is an important source of error in the
CO estimate. This is especially true close to the surface. For
example, biases in CO analyses near the surface in polluted
urban areas were attributed to surface emissions errors (In-
ness et al., 2013). Here, surface flux error is simulated using
perturbed surface flux fields. The posterior of the 4D-Var-
based GEOS-Chem inversion constrained by MOPITT ob-
servations is used in this work as the truth. These posterior
surface flux fields are constant over a period of 1 month (see
Fig. 2).

The surface flux ensemble (64 members) is generated us-
ing a spectral algorithm (see Appendix A of Mitchell and
Houtekamer, 2000). The surface flux perturbations are gen-
erated such that they are spatially correlated over a distance
(half width) of 1000 km. The standard deviation of the spread
is set to 40% of the value of the true surface flux as in Barré
et al. (2015). The true surface flux field is used by the 65th
ensemble member, which generates the truth trajectory. Two
sets of 64 surface flux ensemble members are generated: one
for January and February 2015, respectively. Each member
of the surface flux ensemble is used with a distinct member
of the meteorology ensemble.

Figure 1. Schematic overview of EC-CAS v1.0. There is an ensem-
ble of 64 prescribed CO surface fluxes. In EC-CAS v1.0, surface
flux fields are not estimated; instead, the perturbed flux field is used
to account for uncertainty in CO due to error in the surface flux.
The 64-member forecast ensemble is used along with the observa-
tions, and the statistics of observation errors are used as input for
the EnKF. The 64 analyses of meteorology and CO generated by
the EnKF are used as initial conditions for the next 6 h forecast.
This cycle repeats every 6 h.

3.2 Observation networks

The families of meteorological observations used in this
work are summarized in Table 1. The location and times
of these observations are real, although the observation val-
ues are simulated. These meteorological observations are as-
similated in all of the experiments presented in this work.
The EnKF is tested with five different CO observational net-
works. These are summarized in Table 2. The first network –
HYPNET – is a hypothetical network. It has spatially dense
coverage of in situ observations. In this network the obser-
vations are located every 1000 km on three planes: 1, 5 and
9 km. These heights are with respect to the local topography.
The globally averaged topography is 376 m. Therefore, the
heights of these planes with respect to mean sea level are
roughly 1.376, 5.376 and 9.376 km. The locations of obser-
vations are shown in Fig. 3a.

The ECCC surface network (Worthy et al., 2005) con-
sists of 17 observing stations in Canada (see Fig. 3c, d
and Table A1). These stations provide measurements at an
hourly frequency. Although the ECCC network has expanded
rapidly in the past decade to 25 sites in 2020, only the 17
sites providing hourly measurements in 2015 are simulated
here. GAW is an acronym of Global Atmospheric Watch
(https://gaw.kishou.go.jp, last access: 28 April 2021). The 44
stations from the GAW network used in the current work are
shown in Fig. 3c and are listed in Table A2. These stations
observe at an hourly frequency. The NOAA surface obser-
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Table 1. Columns shows the typical number of meteorological observations assimilated in each 6 h DA cycle.

Type 00:00 UTC 00:06 UTC 00:12 UTC 00:18 UTC

Upper air 54 765 3471 51 508 2057
Aircraft 78 780 54 065 56 708 78 829
Satellite winds 29 749 32 813 33 597 31 719
Surface 9927 10 314 10 271 9984
Scatterometer 18 221 17 484 19 462 16 782
GPS-RO 7064 5564 6390 6527

Table 2. CO observation networks used in this work.

Network Spatial coverage Temporal coverage

HYPNET Every 1000 km at levels near 1, 5 and 9 km Every 6 h
ECCC surface 17 stations (Canada only) Hourly
GAW surface 44 stations Hourly
NOAA surface 69 stations ∼Weekly
MOPITT One retrieval per 100 km Global coverage every 3 d.

Figure 2. The true CO surface flux field for January 2015.

vation network consists of 69 flasks (see Fig. 3b). The ob-
servations from these flasks are temporally sparse, averaging
approximately one per week.

MOPITT (Measurement of Pollution in the Troposphere)
(Drummond, 1992) is an instrument onboard the Terra
NASA Earth Observation Satellite (EOS) that was launched
in December 1999. MOPITT is an important component of
the global CO observing system because it measures spectra
in both the near-infrared and thermal infrared ranges; thus,
its retrieved profiles are sensitive to CO in the lower tropo-
sphere during daytime over land, where the flux signal from
surface emissions is most readily detected. As a result of this
sensitivity to lower tropospheric CO and due to the long ob-
servational record, MOPITT data are widely used for inverse
modeling of CO emissions and for air quality studies (Arel-
lano and Hess, 2006; Fortems-Cheiney et al., 2011; Barré
et al., 2015; Jiang et al., 2015a; Yin et al., 2015; Mizzi et
al., 2016; Inness et al., 2019; Gaubert et al., 2020; Miyazaki

et al., 2020). It has a nadir footprint of 22 km×22 km and
a 612 km cross-track scanning swath, with an orbit that re-
peats every 3 d. We used V7J MOPITT data with locations
thinned to one observation per grid box. The coverage on a
particular day is shown in Fig. 4. The retrieved profiles are
reported on a on 10-layer vertical grid, namely surface, 900,
800, . . . 100 hPa. The MOPITT retrievals yobs can be de-
scribed as follows:

yobs
= ypr

+A(xtruth
− ypr), (7)

where xtruth is the true atmospheric profile; A is the MOPITT
averaging kernel, which reflects the sensitivity of the retrieval
to the true state; and ypr is the a priori profile used in the re-
trieval. To generate the pseudo MOPITT data, we sample the
65th ensemble model at the locations and times of real MO-
PITT data, interpolate the profiles to the MOPITT grid, and
then apply Eq. (7), with xtruth given by the CO profile from
the 65th ensemble member. As a result of the smoothing in-
fluence of the retrieval on xtruth, the observations operator for
MOPITT must also account for this influence. Consequently,
the observation operator is analogous to Eq. (7) and is given
by

Hx = ypr
+A(xgem

− ypr), (8)

where xgem is the model profile interpolated to the MOPITT
vertical grid.

In the HYPNET, GAW, ECCC and NOAA networks,
the observation operator is an interpolation operator. The
HYPNET, GAW, ECCC and NOAA network are temporally
static, whereas the MOPITT-like observations change loca-
tions depending on the particular DA cycle. The observation
errors are set to 10% of the observation values for all net-
works in our work. The validation of the MOPITT V7J data
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Figure 3. In each panel, topography is shown using color (see color scale). (a) HYPNET exists at 1, 5 and 9 km. At each of these levels, the
observations are located 1000 km apart in the horizontal. There are 622 observation locations at each height and a total of 622× 3= 1866
observations every 6 h. (b) The locations of flask observations from the NOAA network. (c) The GAW and ECCC station locations. (d) The
ECCC station locations, which are also shown in the inset of panel (c).

Figure 4. An example of the distribution of MOPITT satellite
observations. Thinned MOPITT orbits on 11 January 2015 at
00:00:00 UTC are shown.

by Deeter et al. (2017) found that the standard deviation of
the retrieved profiles, relative to independent in situ data var-
ied between 10 % and 16 %. As a result, for the synthetic data
generated here, we chose a uniform 10 % observation error.

In summary, five different observation networks are sim-
ulated out of which four have a significant impact on the
CO estimation error. The idealistic aspects of the design in-

clude using simulated (unbiased) observations and ensuring
that the truth is consistent with the prior distribution. With
these simplifications and a uniformly dense observation net-
work such as HYPNET, we can check that our code is cor-
rectly implemented. The estimation errors are obtained from
a best-case scenario; therefore, it is expected that higher mag-
nitudes of errors will be obtained with real observations. The
benefit of testing EC-CAS with more realistic networks like
ECCC, GAW and MOPITT is that it provides a qualitative
sense of whether the system is behaving properly, as one
can predict how networks with data gaps may behave rela-
tive to the uniformly dense network. It should be noted that
although the observations are simulated here, we are not per-
forming observing system simulation experiments (OSSEs)
(see https://community.wmo.int/wwrp-publications (last ac-
cess: 28 April 2021) for a discussion of designing OSSEs).
OSSEs (Prive et al., 2018) are used to compare the results ob-
tained with different observing systems and require careful
configuration and tuning of assimilation system parameters
so that conclusions might be quantitatively reasonable.
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4 Results

This section discusses the improvement in the CO state
due to the assimilation of HYPNET, surface observations
and MOPITT-like retrievals, in four separate experiments.
The four CO data assimilation experiments are denoted by
EXP_HYP, EXP_GAW, EXP_NOAA and EXP_MOP. The
EXP_GAW experiment assimilates the GAW and ECCC sur-
face observations, whereas the EXP_NOAA experiment as-
similates the NOAA and ECCC surface observations. The
improvement is defined with respect to a control experiment,
which is referred to as EXP_CNTRL. The control experiment
(EXP_CNTRL) assimilates simulated meteorological obser-
vations (see Table 1) but does not assimilate simulated CO
observations. The CO data assimilation experiments assimi-
late the same meteorological observations as assimilated by
the EXP_CNTRL experiment in addition to their CO obser-
vations. The results of the EXP_CNTRL experiment are dis-
cussed in Sect. 4.1. Section 4.2 illustrates the role of dynam-
ically changing spatial correlations in an EnKF update. The
results of the four CO data assimilation experiments are de-
scribed in Sect. 4.3.

4.1 Control experiment

Before delving into results of the CO data assimilation, it
is important to examine the results of assimilating the me-
teorological variables. CO is advected by the winds; hence,
it is critical to ensure that the assimilation of meteoro-
logical observations is working well. Figure 5a shows the
time series of global mean temperature forecast and analy-
sis root mean square error (RMSE) from 27 December 2014
at 18:00:00 UTC to 28 February 2015 at 00:00:00 UTC from
the EXP_CNTRL experiment; see Sect. S2 of the Supple-
ment for mathematical details of the global mean computa-
tion. The RMSE is calculated based on the error between the
ensemble mean and the truth which is available at every grid
point. As observations are assimilated, the RMSE decreases
and stabilizes to 0.5 ◦C in about 7 d. The RMSE of forecasts
and analyses of horizontal wind components and moisture
stabilize at similar rates to that of temperature (Fig. 5).

The column mean of the ensemble mean of CO averaged
over the 7-week assimilation period is shown in Fig. 6a. The
values of CO are clearly higher in regions of high surface
flux (see Fig. 2). The CO from central Africa is advected
to the equatorial Atlantic by the easterly winds. Figure 6b
shows the ensemble spread of the CO analysis which is es-
timated by the standard deviation about the analysis mean.
This quantifies the expected error from the EnKF in the CO
mean. The spread in the CO ensemble at any grid point is due
to perturbations in the surface flux and spread in the winds.
Figure 6c shows the CO analysis RMSE which quantifies the
actual error between the ensemble mean and truth. Clearly,
comparing Fig. 6a and c, the RMSE is higher in regions with
higher CO values. As noted earlier, the regions with high CO

correspond to regions of large surface flux. The similarity of
the spatial pattern of the CO ensemble spread (Fig. 6b) and
the RMSE (Fig. 6c) and its comparable strength is encourag-
ing because it indicates that the DA system is simulating the
actual error well with 64 ensemble members.

The forecast and analysis RMSE are identical because CO
observations are not assimilated in the EXP_CNTRL exper-
iment. The time series of RMSE over the analysis period
is shown by the blue curve in Fig. 7a. The RMSE in Jan-
uary 2015 stabilizes to about 19 ppb. The surface flux field
changes in February 2015 and, hence, the RMSE enters a dif-
ferent regime starting on ∼ 1 February 2015. The RMSE of
the control experiment is a baseline against which the RMSE
values from CO data assimilations are compared.

4.2 Role of estimated correlations

The correlations estimated using the forecast ensemble play
a key role in spreading the information from a given CO ob-
servation to other grid points for any observational network.
The correlation estimate changes dynamically depending on
the surface flux perturbations and winds. This state depen-
dence of the sample correlation is an important characteristic
of ensemble-based filters. The role of the sample correlation
and physical localization is illustrated for an observation lo-
cated at Toronto.

Figure 8 shows the spatial correlation structure for the
Toronto location at two different times from EXP_CNTRL.
In Eq. (1), the term (yo(t)−H(t)xf(t)) is the “innovation”.
This quantity is in observational space and is, thus, a scalar
for the case of a single observation located in Toronto. The
sample correlation Pf(t)HT (t) is used to map the innovation
into model space. This is the correlation between the ensem-
ble of xf(t) and H(t)xf(t). For simplicity, we take the near-
est grid point to Toronto as its actual location so that H(t)

is a row vector of zeros with one at the index correspond-
ing to the Toronto grid point. The innovation in CO at the
Toronto grid point updates the CO at all the other grid points
in proportion to the correlation as estimated by the fore-
cast ensemble. The regions of high correlation change sig-
nificantly from 15 January 2015 at 06:00:00 UTC to 22 Jan-
uary 2015 at 12:00:00 UTC. Consequently, the impact of the
CO observation at Toronto on other grid points is different
on 15 January 2015 at 06:00:00 UTC and 22 January 2015 at
12:00:00 UTC. In theory (that is, given an infinite ensemble
size), a given CO observation should update the CO estimate
at all other grid points globally. However, with a small en-
semble size, spurious correlations develop and, hence, phys-
ical localization is required so that a given CO observation
updates the CO state only within a limited region defined
by the horizontal localization radius (hlr) and vertical local-
ization radius (vlr) (see Sect. 2.4). The red circle in Fig. 8
has radius of hlr= 2000 km. The Gaspari–Cohn function
(Houtekamer and Mitchell, 1998) used for physical localiza-
tion has its maximum in Toronto and decays moving away
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Figure 5. The time series of the RMSE of meteorological variables from the EXP_CNTRL are shown. J and F, marked on the x axis, indicate
the start of January and February, respectively. The analyses is shown in red, and the forecast RMSE is shown in blue.

from the observation’s location. This function is used as a
weight to modulate the correlation values. As a result, the
impact of the observation decays with distance from the ob-
servation. Distance-dependent localization assumes that the
sample correlation given by the ensemble is less trustwor-
thy (more likely to be spurious) as one moves further away
from the observation. As noted in Sect. 2.4, variable local-
ization ensures that CO observations do not update meteoro-
logical variables. Therefore, the estimates of meteorological
variables are the same in all of the experiments.

4.3 CO DA experiments

The EXP_HYP experiment assimilates HYPNET observa-
tions (see Sect. 3.2) in addition to the same meteorolog-
ical observations assimilated in the EXP_CNTRL experi-
ment. The HYPNET observations are assimilated starting
on 10 January 2015 at 18:00:00 UTC after a spin-up from
27 December 2014 at 18:00:00 UTC to 10 January 2015 at
18:00:00 UTC. This spin-up period allows time for the me-

teorological assimilation to stabilize (Fig. 5) before the CO
data assimilation begins. This spin-up also helps the devel-
opment of correlations within the CO field.

Figure 6d shows the column-averaged CO RMSE for the
EXP_HYP experiment. Compared with the RMSE for the
EXP_CNTRL experiment, the RMSE decreases substantially
because HYPNET observations effectively constrain the CO
state. The time series of RMSE for the EXP_HYP experiment
is shown by the red curve in Fig. 7a. The blue and red curves
overlap from 27 December 2014 at 18:00:00 UTC to 10 Jan-
uary 2015 at 18:00:00 UTC during the spin-up period. As
soon as CO observations are assimilated starting on 10 Jan-
uary 2015 at 18:00:00 UTC, the RMSE decreases. The reduc-
tion in the RMSE due to the assimilation of HYPNET obser-
vations is ∼ 7 ppb. This reduction is defined as the “benefit”:

benefit= RMSE(control)−RMSE(DA). (9)
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Figure 6. In each panel, column means (0–5 km) averaged from 10 January 2015 at 18:00:00 UTC to 28 February 2015 at 00:00:00 UTC
are shown: (a) CO ensemble mean of the control experiment; (b) CO ensemble spread of the control experiment; (c) RMSE of the control
experiment; and (d) RMSE of the EXP_HYP experiment.

Figure 7. Column (0–5 km) mean RMSE of CO analyses from various experiments: (a) the control, EXP_CNTRL (blue curve), and the
DA experiment assimilating HYPNET observations, EXP_HYP (red curve); and (b) the control, EXP_CNTRL (blue curve), and the DA
experiment assimilating MOPITT-like observations, EXP_MOP (red curve). The blue curves in panels (a) and (b) are identical. J and F,
marked on the x axis, indicate the start of January and February, respectively. The 24 h oscillations in the curves are meteorology induced.

The relative benefit is defined as

relative_benefit= 100×
benefit

RMSE(control)
. (10)

The second term in Eq. (9) is the RMSE of the experiment
which assimilates CO observations. As the EXP_CNTRL ex-
periment does not assimilate CO observations, the benefit

measures the value of assimilating CO observations from a
particular network. This metric quantifies the extent to which
CO observations constrain the CO state. Figure 9a shows the
spatial structure of the benefit in the EXP_HYP experiment.
This figure is basically the difference between Fig. 6c and
d. The benefit is positive in most parts of the globe except
in parts of Tibet and eastern China. A negative benefit value
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Figure 8. The spatial correlation of CO between Toronto (shown by the white cross) and other locations in the horizontal plane defined by
the lowest model level. The red circle – representing a 2000 km radius – shows the horizontal localization. The correlation is estimated using
the 64 forecast ensemble members.

means that the assimilation of CO observations increased the
RMSE compared with the EXP_CNTRL experiment. Nega-
tive values can occur because of the statistical nature of data
assimilation. However, if the data assimilation system is well
tuned, such regions of negative benefits should be few and
small, as seen here. By comparing the spatial structure of
the RMSE in Fig. 6c and the benefit in Fig. 9a, it is clear
that the benefit is proportional to the RMSE. This makes
sense because where the RMSE is large, the observations
have a larger scope for improving the CO state estimate. The
mean relative benefit (Eq. 10) in this experiment is 41 %.
This means that the assimilation of HYPNET observations
decreases the control RMSE by 41 %.

The time series of the RMSE from the EXP_MOP experi-
ment is shown by the red curve in Fig. 7b. The similarity of
the amplitudes (about 9 ppb) of the red curves in Fig. 7a and b
indicates, surprisingly, that the global benefit of MOPITT-
like data is only a little worse than that due to the hypotheti-
cally dense in situ network (HYPNET). However, in our ex-
periments, the observations are unbiased and the observation
operator is perfect. The spatial structure of the benefit due
to the assimilation of MOPITT-like retrievals (EXP_MOP) is
shown in Fig. 9b. By comparing Fig. 9a and b, it is evident
that the benefit due to the assimilation of HYPNET observa-
tions and MOPITT-like retrievals is also comparable in the
column mean, in spite of the different spatiotemporal distri-
bution of observations. The mean relative benefit due to the
assimilation of MOPITT-like retrievals is 38 % whereas that
due to assimilation of HYPNET is 41 %.

Figure 10a shows the benefit of the EXP_GAW experi-
ment. Both the GAW and ECCC networks are assimilated in
this experiment. The combined network is temporally dense
with observations every hour but is spatially sparse except in

Canada and western Europe (Fig. 3c, d). The relative ben-
efit in this experiment is 8 %. Figure 10b shows the bene-
fit over North America averaged from 0 to 5 km. All of the
ECCC stations are located in the bottom 1 km. Figure 10d
shows the benefit over North America averaged from 0 to
1 km. The bulk of the benefit is in the eastern part of this
domain, although the ECCC stations are located both in east-
ern and western Canada. The area of highest benefit of about
10–40 ppb is centered on ECCC stations located in Ontario.
Even though no stations are located in the USA in this exper-
iment, the benefit of observations in Ontario reaches as far as
Florida, spreading throughout eastern USA. This is because
of the flow-dependent spatial correlation between locations
of observations in Ontario and the eastern part of USA, which
is evident in Fig. 8, as well as subsequent downstream trans-
port during the forecast step. The western part of Canada has
a weak benefit in spite of having several observation sites
in this region. This is because the RMSE in the western re-
gion is substantially lower than that in the eastern region (see
Fig. 10c). Thus, there is little scope for the observations to
improve upon the control RMSE. The relative benefit over
North America is 38 %.

Figure 10a shows that the assimilation of GAW observa-
tions results in significant benefit over Europe and parts of
central Africa. The benefit in Europe is due to the high spa-
tial density of GAW stations there. However, with only five
stations in Africa, a benefit of 5–20 ppb in central Africa is
produced. Some benefit is also seen over northeastern China
and Malaysia due to GAW stations located in these regions.

The last experiment, EXP_NOAA, assimilates data from
the NOAA flask stations in addition to those from the ECCC
surface stations. It is seen (figure not shown) that the benefit
over Canada is the same as that seen in EXP_GAW. However,
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Figure 9. Column (0–5 km) mean benefit averaged from 10 January 2015 at 18:00:00 UTC to 28 February 2015 at 00:00:00 UTC. In panel (a),
the marked boxes show the domains of North America, South America, Europe, Africa, South Asia and East Asia. These domains are used
in Fig. 11. Note that all of the domains contain both ocean and land. The South American domain includes a large part of the Pacific Ocean.

Figure 10. In all panels, the averages from 10 January 2015 at 18:00:00 UTC to 28 February 2015 at 00:00:00 UTC are shown: (a) column (0–
5 km) mean benefit from EXP_GAW; (b) the North American domain from panel (a); (c) column (0–1 km) mean RMSE from EXP_CNTRL;
and (d) column (0–1 km) mean benefit from EXP_GAW.

globally, the NOAA flask stations do not result in any signif-
icant benefit over any other region. This is because the flask
observations are available, on average, only once a week.
This experiment is not discussed further in this work.

In the case of the assimilation of HYPNET and MOPITT-
like observations (Fig. 9a, b), many parts of the Atlantic, Pa-
cific, Indian and other oceans show significant benefit. The
CO surface flux over oceans is practically zero compared
with that on land. The HYPNET and MOPITT-like obser-
vations over oceans contribute to the benefit over oceans.
However, the improvement of the CO state over land also

contributes to the benefit over oceans. For example, any im-
provement in the CO state over central Africa improves the
state over tropical Atlantic ocean due to the downwind trans-
port.

In the discussion so far, the horizontal and temporal struc-
ture of benefit was explored. Figure 11 examines the vertical
structure of benefit. Figure 11a shows the globally averaged
profile of the control RMSE and benefits from the three CO
DA experiments. The average RMSE of the control experi-
ment (EXP_CNTRL) peaks close to the surface with a value
of 21 ppb. The average benefit in the bottom 4 km is ∼ 7 ppb
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Figure 11. Profiles of the benefit and control RMSE averaged over different domains. In each panel, the black curve shows the control
RMSE scaled down by a factor of 3. The colored curves show the benefits due to the assimilation of three different observational networks
(EXP_HYP, EXP_MOP and EXP_GAW). Panel (a) shows the globally averaged profiles. The other panels show profiles averaged over the
domains shown in Fig. 9a. The limits on the x axis are different in each panel.

in the EXP_HYP and EXP_MOP experiments. Comparing
the shapes of the blue and red curve to the black curve, the
benefit is proportional to the control RMSE except in the bot-
tom ∼ 1 km. The shape of the benefit profile is dictated both
by the shape of the control RMSE and the location of ob-
servations in the particular network. The EXP_HYP profile
shows a local peak at 1 km. This is because HYPNET obser-
vations are located at 1 km. HYPNET observations are also
located at 5 km. However, the control RMSE decreases by
a factor of 2 from 1 to 5 km; consequently, the benefit also
decreases. The peak in the blue profile at ∼ 3 km is due to a
combination of RMSE values and information content in the
MOPITT-like retrievals.

The profiles averaged over Africa (Fig. 11b) have similar
shapes to those in Fig. 11a. This is because both the RMSE
and benefit in Africa are high compared with other parts of
the globe (see Figs. 6c and 9). Hence, the global average is
dominated by values over Africa. The average height of the
GAW observations is 2.2 km. The benefit in the EXP_GAW
experiment has a peak value of ∼ 4 ppb at 3.5 km. This is

because the GAW station located at Mount Kenya (0.06◦ S,
37.29◦ E) has an altitude of 3678 m. Additionally the site at
Assekrem, Algeria (23.26◦ N, 5.63◦ E), is situated at an alti-
tude of 2715 m. The EnKF spreads the information content
from these observations to the surrounding regions through
the flow-dependent covariances used in the analysis step and
through downstream transport in the forecast step.

The profiles for North America are shown in Fig. 11c. The
average height of the ECCC observations is 0.38 km. The
benefit due to the ECCC observations close to the surface is
∼ 4.1 ppb. The benefit due to the assimilation of ECCC ob-
servations decreases monotonically with height because the
RMSE decreases monotonically and also because the ECCC
observations cannot constrain the CO state beyond the verti-
cal localization radius. The average height of stations in east-
ern Canada is 0.212 km. These stations make a major contri-
bution to the benefit over North America. Temporally HYP-
NET observes every 6 h, whereas ECCC stations observe ev-
ery hour. Both the higher temporal frequency and the lower
altitude contribute to the higher benefit close to the surface
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in case of the ECCC observations compared with HYPNET
observations, which are located at about 1 km.

Figure 11d shows the profiles for Europe. The average
height of the GAW observations is 1.13 km. In the case of
the GAW network, the benefit is 5.9 ppb close to the surface.
As in the case of North America, the better performance of
GAW stations in the bottom 500 m is a due to both the lower
altitude of the stations and the higher temporal frequency of
observations compared with the HYPNET.

It is evident that the spatiotemporal structure of the benefit
is similar between HYPNET and MOPITT, both horizontally
and vertically. This suggests that, in the idealistic setting of
unbiased observations and precisely known observation and
model error covariances, the performance of MOPITT-like
retrievals is similar to in situ observations. It should be noted
that MOPITT-like observations are spatially more dense than
our HYPNET observation network. HYPNET has informa-
tion at three vertical levels, whereas MOPITT has an infor-
mation content with 1 or 2 degrees of freedom (Deeter et al.,
2012) so that limited vertical information is provided by the
two networks.

5 Conclusions and further work

A new atmospheric composition data assimilation system
based on an operational weather forecast model (EC-CAS
v1.0) was developed and validated for the estimation of
the three-dimensional state of CO using simulated observa-
tions from the HYPNET, ECCC, GAW and MOPITT net-
works. The spread in CO is obtained by perturbing the winds,
surface flux fields and physics parameterizations. The CO
spread approximately matches the RMSE, suggesting that an
ensemble size of 64 is acceptable for CO estimation. How-
ever, these conclusions are based on the assimilation of sim-
ulated observations which are unbiased.

These experiments lead to a qualitative understanding of
the decrease in RMSE due to the assimilation of observed
CO from realistic networks. With all of the networks, it is
seen that the benefit due to the assimilation of CO observa-
tions is proportional to the CO RMSE. Another factor that
controls the pattern of the benefit is the location of observa-
tions; for example, the GAW network has only one station in
central Africa, and the observations from this station are able
to effectively constrain the CO state within 2000 km, which
is the localization radius used in these experiments. The ben-
efit is the highest in the plane at which this observation is lo-
cated. The CO state close to the surface is better constrained
by observations in the lowermost 500 m than observations at
1 km. This is suggested by the results in North America and
Europe. The CO state over the ocean is constrained due to
the improvement of the CO state over surface-flux-rich land
regions which is transported downstream during the fore-
cast and also due to the assimilation of observations over
the oceans. In the case of MOPITT-like data assimilation,

the benefit in central Africa (which is the region with the
strongest surface flux) ranges from 10 to over 40 ppb. The
downwind transport results in a benefit of 5 to 40 ppb over
the tropical Atlantic. The benefits over southern and eastern
Asia range from 2 to 20 ppb. These quantitative findings are
expected to change when real observations are assimilated.
Biases in observations and correlations in the observational
errors along with model errors that are unaccounted for make
the assimilation of real observations more challenging; thus,
the error reductions are expected to be smaller.

This work has presented only the very first step in the de-
velopment of EC-CAS. There are many further stages of de-
velopment because the goal of EC-CAS is to estimate the
three-dimensional fields of CO, CO2 and CH4 and their sur-
face fluxes along with meteorological fields by assimilat-
ing all available observations of meteorological variables and
chemical species using an ensemble smoother. These include
both in situ and remotely sensed measurements. The imme-
diate next step is to modify EC-CAS 1.0 to allow the update
of the CO surface flux by CO observations, as we demon-
strated here that the CO state estimation is working well. Af-
ter the ability to estimate surface fluxes is demonstrated, EC-
CAS will be tested for the estimation of CO and CO2 three-
dimensional fields and their surface fluxes using real obser-
vations. The estimates of surface flux can be improved using
a smoother (Liebelt, 1967) rather than a filter, as a smoother
assimilates observations earlier as well as later than the anal-
ysis time. Ultimately, an ensemble Kalman smoother (Boc-
quet, 2016) will be developed.
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Appendix A

Table A1. Information about ECCC surface sites used in this study. The altitude is given in meters above sea level.

No. Code Station name Latitude Longitude Altitude

1 ABT Abbotsford 49.01 −122.34 60.3
2 ALT Alert 82.45 −62.52 200.0
3 BLK Baker Lake 64.33 −96.01 94.8
4 BRA Bratt’s Lake 50.20 −104.71 595.0
5 CBY Cambridge Bay 69.13 −105.06 35.0
6 CHL Churchill 58.74 −93.82 29.0
7 DWS Downsview 43.78 −79.47 198.0
8 EGB Egbert 44.23 −79.78 251.0
9 ESP Estevan Point 49.38 −126.54 7.0
10 EST Esther Alberta 51.67 −110.21 707.0
11 ETL East Trout Lake 54.35 −104.99 493.0
12 FMS Fort McKay 57.15 −111.64 250.0
13 FNE Fort Nelson 58.84 −122.57 361.0
14 FSD Fraserdale 49.88 −81.57 210.0
15 LLB Lac La Biche 54.95 −112.47 540.0
16 TPD Turkey Point 42.64 −80.55 231.0
17 WSA Sable Island 43.93 −60.01 5.0

Table A2. Information about GAW surface sites used in this study. The altitude is given in meters above sea level.

No. Code Station name Latitude Longitude Altitude No. Code Station name Latitude Longitude Altitude

1 AMY Anmyeon-do 36.5383 126.3300 71.0 23 IZO Izaña 28.3090 −16.4993 2403.0
2 ASK Assekrem 23.2667 5.6333 2715.0 24 JFJ Jungfraujoch 46.5475 7.9851 3580.0
3 BEO Moussala 42.1792 23.5856 2931.0 25 KMW Kollumerwaard 53.3333 6.2667 3.5
4 BKT Bukit Kototabang −0.2019 100.3180 874.0 26 KOS Košetice 49.5833 15.0833 535.0
5 CGR Capo Granitola 37.6667 12.6500 9.0 27 KTB Kloosterburen 53.4000 6.4200 0.0
6 CMN Monte Cimone 44.1667 10.6833 2172.0 28 KVV Krvavec 46.2973 14.5333 1750.0
7 CPT Cape Point −34.3534 18.4897 260.0 29 LMT Lamezia Terme 38.8763 16.2322 14.0
8 CUR Monte Curcio 39.3160 16.4232 1800.9 30 MKN Mount Kenya −0.0622 37.2972 3682.5
9 CVO Cabo Verde 16.8640 −24.8675 20.0 31 MNM Minamitorishima 24.2883 153.9833 27.1
10 ECO Lecce 40.3358 18.1245 86.0 32 NGL Neuglobsow 53.1428 13.0333 62.0
11 GAT Gartow 53.0657 11.4429 99.0 33 PAY Payerne 46.8129 6.9435 494.5
12 GAT Gartow 53.0657 11.4429 129.0 34 PDI Pha Din 21.5731 103.5157 1478.0
13 GAT Gartow 53.0657 11.4429 201.0 35 PDM Pic du Midi 42.9372 0.1411 2881.0
14 GAT Gartow 53.0657 11.4429 285.0 36 PUY Puy de Dome 45.7723 2.9658 1467.0
15 GAT Gartow 53.0657 11.4429 410.0 37 RIG Rigi 47.0674 8.4633 1036.0
16 GLH Giordan 36.0700 14.2200 167.0 38 RYO Ryori 39.0319 141.8222 280.0
17 HBA Halley −75.3500 −26.3900 38.0 39 SNB Sonnblick 12.9578 47.0542 3111.0
18 HKG Hok Tsui 22.2095 114.2578 60.0 40 SSL Schauinsland 47.9000 7.9167 1205.0
19 HPB Hohenpeissenberg 47.8000 11.0200 1003.0 41 TLL El Tololo −30.1683 −70.8036 2159.0
20 HPB Hohenpeissenberg 47.8011 11.0246 1035.0 42 YON Yonagunijima 24.4667 123.0106 50.0
21 HPB Hohenpeissenberg 47.8011 11.0246 1078.0 43 ZSF Zugspitz 47.4165 10.9796 2670.0
22 HPB Hohenpeissenberg 47.8011 11.0246 1116.0 44 ZUG Zugspitz-Gipfel 47.4211 10.9859 2965.5
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Code and data availability. The source code is publicly avail-
able from https://doi.org/10.5281/zenodo.3908545 (Khade et al.,
2020) under the GNU Lesser General Public License version
2.1 (LGPL v2.1) or the ECCC Atmospheric Sciences and Tech-
nology license version 3. The model data output is available
at http://crd-data-donnees-rdc.ec.gc.ca/CCMR/pub/2020_Khade_
ECCAS_all_data/ (Khade and Neish, 2020).

Supplement. The supplement related to this article is available on-
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