Articles | Volume 14, issue 5
https://doi.org/10.5194/gmd-14-2525-2021
https://doi.org/10.5194/gmd-14-2525-2021
Development and technical paper
 | 
06 May 2021
Development and technical paper |  | 06 May 2021

The Environment and Climate Change Canada Carbon Assimilation System (EC-CAS v1.0): demonstration with simulated CO observations

Vikram Khade, Saroja M. Polavarapu, Michael Neish, Pieter L. Houtekamer, Dylan B. A. Jones, Seung-Jong Baek, Tai-Long He, and Sylvie Gravel

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Vikram Khade on behalf of the Authors (28 Nov 2020)  Author's response   Manuscript 
ED: Referee Nomination & Report Request started (04 Dec 2020) by Ignacio Pisso
RR by Anonymous Referee #1 (08 Dec 2020)
ED: Publish as is (24 Mar 2021) by Ignacio Pisso
AR by Vikram Khade on behalf of the Authors (26 Mar 2021)  Manuscript 
Download
Short summary
A new modeling system has been developed at Environment and Climate Change Canada to ingest observations of carbon monoxide (CO) into a coupled weather and constituent transport model. We show that accounting for the uncertainty in surface flux leads to a better estimate of CO distributions. The benefit of assimilating observations from different simulated networks varies with region. This is the first step towards developing a state and flux estimation system for greenhouse gases.