Response to Reviewer 1

The reviewer’s comments are in black. Our responses are in blue text. The modifications and additions to
the text are highlighted in yellow in the revised manuscript PDF file. However, to see what was deleted,
please see the annotated original manuscript PDF file.

General comments: The paper describes the new development of the coupled weather and atmospheric
composition system based on the Environment and Climate Change Canada’s (ECCC’s) operational
Ensemble Kalman Filter (EnKF). While the paper describes this new configuration as an important advance
for the ECCC system it misses important points to provide an accurate and complete description that such
system should deserves. The first major point that needs to be addressed is that the paper advertises in
several places that it is a greenhouse gases (GHG) atmospheric data assimilation and surface flux inversion
system. However only CO atmospheric data assimilation is showcased. I would strongly recommend that
the authors remove all claims that a flux inversion GHG system has been setup and then use a different
terminology such as simply “atmospheric composition data assimilation” or “atmospheric carbon data
assimilation” as in the title. The study uses synthetic observation to evaluate the system. Therefore, why
the authors did not simulate the HYPNET CO2 and CH4 observations and perform the assimilation of such
to at least justify the GHG component of the system? It seems that the added value of the paper is the
extension of the ECCC operational system to atmospheric composition using CO assimilation as a proof of
concept. While the focus is on CO assimilation, very little importance is given to the meteorology
assimilation evaluation in such configuration. How does this compare to the actual operational ECCC
system? Almost no references are given to reader to refer to the NWP system and its evaluation. I would
recommend the authors to give a short summary on the meteorological data assimilation rather than
ascertaining that the meteorological data assimilation is working as expected. The overall presentation of
the paper requires strong efforts to improve clarity. Almost all parts of the paper lack clarity. Some parts
are over emphasising some aspects that are not relevant for the evolution of the system while other parts
that are important are covered very briefly. To give few examples:
= Very little is explained about the simulation of MOPITT synthetic observations, averaging kernels
and their errors. It seems that a paragraph is maybe missing.
= Extensive description of the meteorological setup is given but very little is described and showed
about the actual meteorological data assimilation results.
= Some of the terminology used is not really common for atmospheric data assimilation, I would
encourage the author to revise this throughout the text.
= Several misleading statements about data assimilation and atmospheric composition need to be
corrected.
Please refer to the specific comments for details.

Response: We are grateful to the Reviewer for their careful reading of the manuscript and for helpful
suggestions. Our original intention was to present our work as the first of a long series of steps to reach
our final goal of a greenhouse gas and flux estimation system using an operational weather forecast model.
However, both Reviewers felt that the presentation did not sufficiently distinguish the completed work from
the context of the desired future work. This led both Reviewers to conclude that the organization of the
manuscript was confusing and possibly misleading. We appreciate this feedback and have rewritten the
manuscript to focus on only the CO state estimation work which was completed. The overall context and
goals of our project are now limited to only the first paragraph in the Introduction, and to a discussion of
future work in the Conclusions sections. The term “greenhouse gas” also does not appear anywhere except
those two mentioned locations where goals or future work is described. Also, as suggested by the Reviewer,
we have provided much more detail about the meteorological assimilation system, both the pre-existing,
operational system and our modifications to it in the revised section 2.3. A new supplemental section shows
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comparisons of our EC-CAS meteorological estimation with that of the original system (Figures S1-S6) as
well as a Table S1 of the types of model perturbations used. Also, the behaviour of meteorological fields
in the simulated observation context is now shown with 3 extra panels in Figure 5. In addition, as requested
by the Reviewer, the data assimilation terminology was modified as suggested, and all of the specific
comments were addressed. Finally, more information about the generation of simulated MOPITT
observations was added (line 268-281 in original manuscript and lines 279-297 in the revised manuscript).
Overall, we feel that the revised manuscript has greatly benefitted from feedback of both Reviewers. Below,
we respond point-by-point to each of the specific comments made by this Reviewer.

Specific comments:

Line 38: Be consistent, so maybe replace by air quality. Or explain that air quality is partly driven by
weather.

Response: Good point. “weather” has been changed to “air quality” (line 38 - line 45 in revised
manuscript).

Lines 39-41: This sentence has some shortcomings that could mislead the reader. Be consistent with the
previous sentence and please develop this statement in more precise information. Air quality is a bit
different from tropospheric pollution. Tropospheric atmospheric composition prediction is essential to air
quality prediction which is looking at surface levels of pollutants. Tropospheric pollution prediction relates
to longer time scales than 5 days, especially for CO. Air quality is driven by emissions variations and
synoptic variations of weather regimes.

Response: Thanks for the clarification. “Tropospheric pollution” has been replaced by “Tropospheric
atmospheric composition prediction” in this sentence (line 39 = line 45).

Line 41: Which data assimilation systems are we talking about here?
Response: The word “those” has been deleted for clarity (line 41 - line 47 ).

Line 63 and line 65: Swap years to chronological order
Response: The introduction was rewritten and the paragraph containing these lines was deleted.

Line 78: This system now can estimate emissions using state augmentation as described in Gaubert et al.,
2020 (Gaubert, B., Emmons, L. K., Raeder, K., Tilmes, S., Miyazaki, K., Arellano Jr., A. F., Elguindi, N., Granier,
C., Tang, W., Barré, J., Worden, H. M., Buchholz, R. R., Edwards, D. P., Franke, P., Anderson, J. L., Saunois, M.,
Schroeder, J., Woo, J.-H., Simpson, L. J., Blake, D. R., Meinardi, S., Wennberg, P. O., Crounse, J., Teng, A., Kim, M.,
Dickerson, R. R., He, H., and Ren, X.: Correcting model biases of CO in East Asia: impact on oxidant distributions
during KORUS-AQ, Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-599, in review, 2020.)
Response: Thanks for the update. The statement on lines 79-80 has been deleted. This reference now
appears in the revised section 3.2.

Lines 81-82: Maybe this is a bit misleading as the paper seems to focus on CO (even if CO is important for
GHG estimations). Also, the term "estimate GHGs" is a bit vague in my opinion. Maybe replace to
something more specific such as "estimate CO atmospheric distribution".

Response: “GHGs” has been changed to “CO atmospheric distribution” ( line 82 - line 65).
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Lines 88-91: This paragraph is not necessary here as some of it should be moved to the introduction.
Response: This paragraph was deleted.

Line 88: “Trial fields” is quite uncommon data assimilation terminology. Maybe replace by forecast,
background, prior or first guess fields depending on what you are meaning by trial here.

Response: “Trial fields” used to be quite common in atmospheric data assimilation. The problem with
“background” is that inverse modellers (especially those dealing with CO,) reserve that term for the large
global mean over which local spatial perturbations exist. In addition, inverse modellers use the term “prior”
to refer to the flux priors and applying this to the CO state could be confusing. We replaced “trial fields”
with “forecast fields” throughout the article. Similarly “trial ensemble” has been replaced by “forecast
ensemble” throughout the article.

Lines 88-90: The first and second stage are not explicitly mentioned. I would rewrite those two general
sentences with a more traditional way to introduce the general concepts of data assimilation.
Response: As noted above, this paragraph was deleted.

Lines 94-95: The sentence “The model is initialized: : :” is confusing please rephrase.

Response: The statement has been changed to: “A number (N=64) of 6 h model forecasts are
simultaneously integrated from N meteorological and CO initial conditions with forcing from N perturbed
CO surface fluxes.” (lines 94-95 - 73-75).

Line 95: Please “trial fields” replace with appropriate traditional data assimilation terminology throughout
the text.

Response: As indicated in the response to comments for Line 88 above, we have replaced “trial fields”
throughout the manuscript with “forecast fields”. This paragraph (lines 93-101) has been rewritten for
clarity (lines 73-83 in revised manuscript).

Line 97: “Blending” is not really the correct word for the data assimilation procedure. I would recommend
the author to use the appropriate vocabulary for data assimilation in the literature that tackles atmospheric
data assimilation.

Response: As noted above lines 93-101 have been rewritten.

Lines 99-101: You do not really need to specify what will be the sections to come here. Consider removing.
Response: We have deleted the sentence in lines 99-101.

Line 108: I do not think that “lib” is the appropriate terminology here. Please again replace with, for
example: "... 80 vertical levels from the surface to 0.1 hPa."
Response: Done. (line 108 - line 89).

Line 109: what type of hybrid coordinate? There are several of them.
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Response: It is a log hybrid pressure and sigma coordinate that is commonly used (with slight variations)
in operational weather forecast models. The provided reference (Girard et al., 2014) describes it in detail.

Line 114-155: Please be more specific and add diffusivity in this sentence.
Response: Done. (line 114 - line 95-96).

Line 120: Not correctly written. The atmospheric chemistry scheme is not removed for CO2. You remove
the reactive chemistry in a model to increase its performance. Please rephrase.

Response: The sentence was changed to: “In contrast, GEM-MACH-GHG uses a simple parameterized
chemistry for CHs and CO while CO; is treated as a passive tracer.” (line 120 = lines 101-102).

Line 130: Start a new paragraph here as you now write about CH4 surface fluxes.
Response: Done. (line 130 - line 112).

Line 135: Start a new paragraph here as you now write about CO emissions.
Response: Done. (line 136 - line 119).

Line 148: Please define xf and xa here. xf and xa are commonly called the prior and posterior state
respectively in the EnKF terminology. Alternatively, you could call them forecast (hence the superscript f)
and analysis (hence the superscript a). Please consider using the commonly used atmospheric data
assimilation vocabulary throughout the text for more clarity.

Response: xf and xa have been defined as the forecast and analysis states. (line 148 > line 145).

Line 148: Consider directly defining the other elements of the equation 1 before going into explanations.
Response: Lines 153-154 were moved to lines 146-147 in the revised manuscript.

Line 152-153: The sentence “Pf is the forecast error: : :” is a bit vague, please be more specific in the
definitions.
Response: We have introduced equations 2 and 3 which define P'H" and HP'H'.

Line 196: I think there are more relevant papers for this statement. In Inness et al., 2015 the system used
was a CTM configuration where the meteorological fields are forced by external meteorological fields. In
that sense the DA system could not drive any constrain on the meteorology. Please cite instead Barré et al.,
2015 and/or Gaubert et al., 2016 and/or Kang et al., 2012 and so on... Those papers are using EnKF with
this variable localisation between atmospheric composition and meteorological variables.

Response: Actually, Inness et al. 2015 does refer to a coupled system with chemistry modules embedded
in the meteorological model. The older MACC system (Inness et al. 2013) was coupled in an offline way
to the IFS, but Inness et al. 2015 point out that the earlier approach was not computationally efficient and
that chemical tendencies were held fixed for 1 hour and this caused problems at the day/night boundary
(see their Introduction). This was the motivation for a fully online chemistry model (called C-IFS).
Furthermore, Inness et al. (2015) state on p3 (section 2.2) that “the error covariance matrix between
chemical species or between chemical species and dynamics fields is diagonal”. Thus variable localization
was done by them. However, it is true that other references could be added here. We added Barré et al.,
2015 and Gaubert et al. 2016. (line 196 —> line 226 ).
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Line 200-201: The sentence “The spatial correlation: : :” seems to have no link with the previous ones.
Please remove or develop in a new paragraph.
Response: The statement was deleted.

Lines 209-210: The sentence “To simulate model : : :” is unclear. Please rephrase and possibly add a
reference for this error representation method.

Response: The discussion of the meteorological system was moved to the section 2.3 and rewritten. This
section now pertains to only the additional changes needed for CO data assimilation.

Lines 214-215: But this paper is not doing flux estimation. Maybe consider changing to atmospheric
composition data assimilation and change to the appropriate references.

Response: As noted in our response above, this section was rewritten and moved to section 2.3. There is
no mention of studies related to flux estimation in the revised section 2.3 and section 2.4.

Lines 218-219: “In EC-CAS, for the meteorological assimilation, the same scheme is used, but for GHGs,
no such additive error is present.” Is this the configuration used in this paper? If yes, why then bother going
though all these details above?

Response: This paragraph was rewritten as noted in our last 2 responses. We moved all discussion of the
EnKF configuration for meteorology to section 2.3. This then simplifies and clarifies the additional changes
needed for CO assimilation.

Line 224: Then why not using synthetic GHG observation of CO2 and CH4 (amongst other GHGs)?
Response: Although the model does include CO, and CH4 as well as CO, and our ultimate goal is to
assimilate all 3 constituents, it is a major undertaking to test and validate the system for each of the three
species. Each species is quite different in nature and in fact has a completely different literature. Thus the
team involved in the validation exercise for a given species would be different. As an example of the
differences, CO» has a lifetime of ~200 years and a very large background with primary surface fluxes from
the terrestrial biosphere, ocean, fossil fuel emissions, fires, and land use change. However, CH4 primary
surface fluxes include agriculture, wetlands, ocean, anthropogenic emissions, fires and an atmospheric sink
and it does not have such a large background value. Thus CO; has large positive and negative surface
sources whereas CH4 has mainly positive surface sources. Thus the best way to simulate surface flux
uncertainty in the two cases will differ. Also, because CO; has a huge background and we are interested in
variations of 1-10%, the type of forecast error variance inflation needed will differ from CH4. CO differs
again in having a larger dynamic range in mole fractions than either CO, or CH4 and the shortest lifetime
of the three species. Thus, timescales for forecast error variance saturation will differ. Then we come to
the observing networks, which are quite different for all 3 species. This is just to name a few of the
differences. We do plan to study the assimilation of each species separately, in good time.

Line 236: change to “the use of a surface flux”. I would recommend the authors to be consistent with this
terminology as fluxes are not necessarily at the surface in the atmosphere.
Response: Good point. We now refer to surface fluxes here and elsewhere in the paper.



Lines 269-270: “: : : its retrieved profiles are sensitive to CO in the lower troposphere where : : :” MOPITT
retrievals are sensitive throughout the entire troposphere. The multispectral retrievals allow an enhanced
sensitivity towards the surface over land only when the conditions are favourable. Please correct and amend
the text accordingly.

Response: We have revised the sentence to read “retrieved profiles are sensitive to CO in the lower
troposphere during daytime over land, where the flux signal from surface emissions is most readily
detected.” (line 269-270 - line 279-281)

Line 271: What are those data assimilation systems? This statement is not true. Number of air quality DAS
only assimilate surface stations. Please be more accurate here.

Response: We have changed the sentence to read “As a result of this sensitivity to lower tropospheric
CO, and the long observational record, MOPITT data are widely used for inverse modelling of CO
emissions and for air quality studies” . We have added references to indicate some of the specific data
assimilation systems for which this statement is true. “(e.g. Arelleno and Hess 2006; Fortems et al. 2011;
Barré et al. 2015; Jiang et al. 2015b; Yin et al. 2015; Mizzi et al. 2016; Inness et al. 2019; Gaubert et al.
2020;1 Miyazaki et al. 2020). (line 271 - lines 281-283 ).

Line 273-274: This statement is misleading. You do not use the averaging kernel to construct the
observation operator. You feed the observation operator with the averaging kernel to sample the first guess.
Response: We have modified the text to better explain the need to account for the averaging kernel in the
observation operator. (Please see lines 288-298 in the revised manuscript).

Line 276: This is unclear. Does this mean you discard all observations that have a retrieval surface pressure
below 1000 hPa? I do hope you are not doing this. Please clarify the sentence.

Response:The sentence we wrote does not accurately reflect what we did. The 10 levels are a fixed grid.
There are no actual observations below the surface. The lowest retrieved level corresponds to the surface
level, which may lie at lower pressures than 1000 hPa. We have deleted this sentence and modified line
275 by replacing “1000 hPa” by “surface”. (line 275 - line 286).

Lines 277-278: This is not the proper definition of the averaging kernel matrix. Please use the common
definition given by Rodgers 2000. Inverse Methods for Atmospheric Sounding. Theory and Practice.
https://doi.org/10.1142/3171 | July 2000. Pages: 256. By (author):; Clive D Rodgers (Oxford).

Response: Please see the modified text from lines 285-298.

Line 278: H is not a forward operator but only an observation operator in the Kalman filter as it does not
need to generate a forward model prediction to get a model equivalent quantity. It is true in for example the
4D Var formulation. Please correct.

Response: We have replaced “forward operator” by “observation operator”. Please see lines 293-294 in
the revised manuscript.



Line 281: The authors do not use the same system as in Jiang et al., 2015a. If they do this needs to be clearer
earlier in the paper. If not, please recall a bit more of the methodology or use the appropriate reference to
the system used in this paper.

Response: The assimilation systems are different, but those differences are not relevant here. We have
removed this sentence since explaining the methodology of the Jiang et al. study would not be helpful for
the discussion here.

Line 285: “varied between 10-16%” is this the value that the authors use to set up the observation errors. It
seems that few sentences are missing to explain the setup on MOPITT observation errors.

Response: We have used 10% to set up observations errors. We cite Deeter to justify this value. Please see
lines 302-304 in the revised manuscript.

Lines 289-290: This sentence is hard to understand. Please rewrite.
Response: We have rewritten these lines.. Please see lines 305-311 in the revised manuscript.

Line 290: “other issues” Please be specific of what other issues.
Response:Please see lines 305-311 in the revised manuscript.

Lines 293-299: So why do the authors bother simulating observations then? Why not testing the DAS in
real conditions? Please justify more clearly the choices here and certainly earlier in the paper.

Response: An important stage in the development of any data assimilation algorithm is to prove that it
works. We know from data assimilation theory, that in the absence of bias in observations and models and
with plentiful, and accurate observations, the system should work. By simulating observations, we can
satisfy the constraints of unbiased observations. We have tried to achieve a balance between a highly
idealized setup and reality by allowing the transport model to have imperfections and by using (simulated
observations from) real networks like ECCC and MOPITT. Adding different observation networks gives
us a further qualitative sense of whether the system is behaving properly since we can guess how using
more realistic networks with data gaps will behave relative to the uniformly dense network. Assimilating
simulated observations helps us to build confidence in the system we have built. This is only the first step.
We will be assimilating real observations. Please see lines 305-311 in the revised manuscript.

Lines 308-309: The statement “An ensemble of forecasts: : :” is incomplete as is, | would remove it as this
would need couple sentence to make this point clear and this paragraph is not the place for that.
Response: These 2 statements were deleted. We have explained the role of state dependent correlation in
spreading observational information in other sections.

Lines 311-312: This was already mentioned earlier. Remove.
Response: Done



Line 320: Regarding the reference to Pires et al., 1996, I think numerical weather prediction and
predictability ranges have evolved since the mid-90’s. Please use a more recent reference. Also, the time of
the DAS RMSE stabilisation is not due to weather predictability but mostly due to the DAS setup, i.e.
background error, observation density, type and error and so on... Please rewrite the related statements.
Response: The statement was deleted.

Lines 321-322: The authors could add winds, surface pressure and RH (or another NWP variable of your
choice) in a four-panel plot to make your point stronger and avoid such statement.
Response: Figure 5 was expanded to include other meteorological variables.

Line 328: What is the “additive model error term”? Is it inflation? Please refer to the section where it is
defined and explained? If not define here and/or add the appropriate reference.

Response: The statement has been rewritten for clarity. It now reads: “The spread in the CO ensemble at
any grid point is due the perturbations in the flux and those in winds”. (lines 328 = 337-338).

Lines 332-333: This is statistically expected considering Gaussianity and the truth being drawn from the
prior distribution itself. Please modify the statement accordingly.

Response: Though one can make sure that at initial time that the Gaussianity is respected (by drawing from
Gaussian flux distribution and initial conditions), one cannot control the extent to which forecast
distributions are Gaussian. This is due to the nonlinearities in transport model. Therefore Gaussianity is an
assumption that can be violated based on the state (time and location).
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Line 337: change “establishes” by “is
Response: Done (line 337 = line 346).

Line 338-339: The authors should stop recalling what would be the next sub-sections at the end of each
sub-sections.
Response: These lines were deleted.

Line 341: Please use more common vocabulary; “trial” is not used in atmospheric data assimilation.
Response: As previously noted, “trial” was replaced by “forecast” throughout the manuscript.

Line 347: what is the matrix inverse. Is it the inverse of P?,H?, R? Or K? Please be more specific.
Response: We have rewritten this section to better focus on the illustration of state dependent correlation
and localization.

Lines 351-352: The sentence “The scaling factor: : :” is hard to understand. What is the scaling factor of
the innovation? Please define.

Response: We have rewritten this section. The scaling factor is (HP'H+R). We have dropped this sentence
since it is not central to the illustration of distance dependent localization.



Lines 356-357: The statement “In theory a given: : :” is misleading statement. In the theoretical case of a
perfect ensemble with an infinite number of members, the spurious correlation would not exist, and you
would not need to localise. Hence you would apply the filter globally. Please remove or change accordingly.
Response: “In theory” was meant to indicate exactly this situation of an ensemble with infinite members.
However, this is made more explicit in the revised text. (line 356-357 —> 361).

Line 359: The statement “small correlations cannot be trusted” is misleading. A GC localisation is not
applied to remove small correlations but spurious correlations that are far from the observation location.
Small correlations are not necessarily spurious. This also depends on the ensemble size and nature of the
state (e.g. lifetime and transport). Please remove or change accordingly.

Response: We agree with the reviewer that both small and large sample correlations can be spurious. We
have removed the sentence. However, small correlations are harder to estimate. The sample correlation
coefficient has an uncertainty associated with it. The correlation coefficient can be viewed as an estimator.
The pdf of this estimator is complex and depends on the sample size and the true correlation (see attached
pages from Hoel’s Introduction to Mathematical Statistics, Wiley, 1974). For example, with our sample
size of 64, for a true correlation of 0.9, the sample correlation coefficient (r) will be estimated as lying with
the range 0.84 <r < 0.94 with 95% confidence. However for the same sample size of 64, a true correlation
of 0.1 will be estimated as lying between -0.15 < r < 0.34 to 95% confidence. Note that the uncertainty
range for a high correlation is smaller than that for a low correlation (here a range of 0.1 versus 0.49). So,
it is indeed harder to correctly estimate small correlations for a given sample size.

Line 363: What the meteorological cut off values? Please detail and/or provide reference.
Response: A reference to the values used is included in section 2.3. Please see lines 186-188 in the revised
manuscript.

Line 365: Change “has a peak” to “has its maximum”.
Response: Done. (line 365 = 366).

Line 407: Change “blob” to “area”.
Response: Done. (line 407 = 411).

Lines 409-410: This is incomplete. The transport of corrected concentration plays a major role as well. I
would say this is the combination of both in your case. Please update the text accordingly.

Response: The correlations are a result of the flow-dependent transport. This clarification has been made
to the text. We also note the role of downstream transport during the forecasts. Please see lines 414-415
in the revised manuscript.

Line 411: If the surface only concentrations and not the 0-Skm column were displayed different results
might appear as the observation network is at the surface. Also, it is hard to tell in figure 6 that the RMSE
is much lower in Western Canada as this is at the edge of the colour scale. The authors should zoom and
adjust the plot to make the point clearer.

Response: This is a very good suggestion. We have included two more panels in figure 10. Panel ¢ shows
the RMSE and panel d shows the benefit averaged over 0-1 km. The height of the ECCC stations varies
from 5 to 707 meters.



Lines 441-442: Again, this is not only the EnKF but also the transport of corrected concentration by the
model itself that improves the RMSE. Please correct the text.

Response: The EnKF includes the model forecasts as part of the algorithm. However, we believe the
Reviewer’s point is to distinguish between the analysis step and the forecast step, and indeed both are
important for transporting information of observations downstream. (Lines 441-442 = lines 447-448).

Line 471: I would disagree with that statement. The vertical information content in the MOPITT retrieval
as opposed to HYPNET is not precisely located but spreads across the vertical. So, this is not because the
degrees of freedom on the vertical are comparable that the vertical information is similar. Please correct the
statement.

Response: The reviewer is correct in noting that the MOPITT information is distributed in the vertical.
We have modified the text to state that “HYPNET has information at three vertical levels while MOPITT
has an information content with one to two degrees of freedom (Deeter et al., 2012) so that limited vertical
information is provided by the two networks.” (Lines 471 = lines 464-466).

Line 473: The authors do not show this as a not directly GHG gas has been assimilated. I would suggest
removing GHG but change to something as "atmospheric composition" as only CO assimilation has been
demonstrated in the paper.

Response: We have rewritten the manuscript to avoid discussing GHGs except to mention our future work.
We changed “GHG” to “atmospheric composition”. (line 473 - 468).

Lines 484: This is true, but this needs to be reformulated correctly. Please mention atmospheric transport.
Response: We have modified the statement to include transport. (Line 484 - 480-481).

Lines 494-495: T am not convinced this is a conclusion from Miyazaki et al., 2012. CO surface flux errors
can be correlated with other fields if you consider the co-emission of different species through a given
sector. Remove or change the statement accordingly.

Response: We have deleted this paragraph since it deals with flux estimation and is therefore more relevant
to a paper which deals with flux estimation.

Line 506: The authors did not show anything about flux inversions. Please remove this statement.
Response: We have removed this statement.

Line 508: Please define smoother. Add a reference. Use the book from Bocquet et al., 2016 for definitions
of the smoother.

Response: We have defined a smoother. We have added two references — Liebelt for the definition of
smoother and Bocquet, 2016 for the formulation of the smoother we want to develop. See lines 494-495 in
the revised manuscript.

Line 509: Future observations? That do not exist unfortunately... Please remove or correct.
Response: The statement has been clarified to indicate that a smoother uses observations later than the
time of the analysis as well as those from earlier than the analysis time. See line 494-495.
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Figure 7: What do the numbers in the x-axis indicate? Please clarify or change
Response: The x-axis labels refer to the date from 28 Dec. 2014 to 28 Feb 2015. The figure has been
revised. Figure 5 has been similarly revised.
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Response to Reviewer 2

The Reviewer’s comments are in black text. Our responses are in blue text. The modifications and
additions to the text are highlighted in yellow in the revised manuscript PDF file. However, to see what
was deleted, please see the annotated original manuscript PDF file.

General comments: The paper discusses first developments towards an assimilation system for optimizing
greenhouse gas concentrations to analyze the carbon cycle globally, but also for Canada. The new
developments comprise an extension of the Environment and Climate Change Canada‘s operationally used
Ensemble Kalman Filter to CO observations. The new systems behavior is analyzed using identical twin
experiments.

The paper is of general concern for GMD but lack of clarity in the argumentation. While the system aims
at analyzing the carbon cycle on a global scale, but also for Canada, the analyzed time interval from 27
December 2014 to 28 February 2015 is sub-optimal. The papers Fig. 2 suggests that CO fluxes for January
2015 are negligible for Northern Canada. The identical twin experiments should be conducted in the wild
fire season to proof the systems ability of analyzing the CO state appropriately even in challenging wild
fire episodes. While assimilating synthetic CO observations, the paper claims at several points to be a
greenhouse gas assimilation system and that the model state to be optimized is augmented by CO, CO?2,
and CH4. A clear distinction between future efforts towards the full system, covering also CO2 and CH4,
and the current state of the system is not given. In the introduction, it is not made clear how CO assimilation
can also improve the concentrations of greenhouse gases. A paragraph about this aspect would be
appreciated.

Response: We thank the Reviewer for the many helpful comments and suggestions. Both Reviewers felt
that the manuscript did not sufficiently distinguish between the completed work (CO state estimation) and
the context of our desired future work of building a full greenhouse gas state and flux estimation system.
Thus, we have revised the manuscript to mention our context in only the first paragraph of the Introduction,
and our future work in the Conclusions section. The term “greenhouse gas” no longer appears except in
these two places.

The focus of this work is on the presentation of the CO state estimation. Thus, the experiments we
performed in winter were adequate for our purposes because there is significant wildfire activity in the
tropics to generate reasonable CO fields. However, for our future flux estimation work, the Reviewer is
absolutely correct that we should test the system during the Canadian fire season (boreal summer).
Nevertheless, we carried out some new identical twin experiments in summer 2015. Please see section 3
in the supplementary material. Figure S7 compares our true flux fields in January and July 2015. July 2015
was very active in terms of Canadian forest fires. Therefore the RMSE over North America is much higher
in July 2015 than in Jan-Feb 2015. It is seen from the results that the benefit over North America during
summer is much larger than that during winter (Figures S8-S10).

We have also provided references to the literature that relate CO and greenhouse gas estimation. Please see
revised lines 34-36. For our system, the initial intention is qualitative: simulations where all three species
show the same patterns in a given region indicate a fire source of CO,. It is also generally expected, by the
CO; flux estimation community, that additional information from other species such as CO will be needed



in the future to attribute surface fluxes to natural or anthropogenic sources. However, the best means for
using CO in this fashion has yet to be resolved. Our inclusion of CO prepares for the eventuality of the
whole field identifying the best means to constrain CO; fields with CO measurements.

Specific comments:

generally, the Grammar of the paper, especially the use of commas and articles, should be reviewed
Response : We have carefully reviewed the manuscript with this focus.

line 17: replace “GHG” by “greenhouse gases (GHG)”
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Abstract. In this study, we present the development of a new coupled weather and greenhouse gas (GHG) data assimilation
system based on Environment and Climate Change Canada’s (ECCC’s) operational Ensemble Kalman Filter (EnKF). The
estimated meteorological state is augmented to include three chemical constituents: CO5, CO and CHy. Variable localization
is used to prevent the direct update of meteorology by the observations of the constituents and vice versa. Physical localization
is used to damp spurious analysis increments far from a given observation. Perturbed flux fields are used to account for the
uncertainty in CO due to error in the fluxes. The system is demonstrated for the estimation of 3-dimensional CO states using
simulated observations from a variety of networks. First, a hypothetically dense uniformly distributed observation network is
used to demonstrate that the system is working. More realistic observation networks based on surface hourly observations, and
space-based observations provide a demonstration of the complementarity of the different networks and further confirm the
reasonable behaviour of the coupled assimilation system. Having demonstrated the ability to estimate CO distributions, this

system will be extended to estimate surface fluxes in the future.
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1 Introduction

Environment and Climate Change Canada (ECCC) operates a GHG measurement network which has seen rapid expansion

during the past decade. ECCC also possesses a GHG inventory reporting division. As required by United Nations Framework
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on Climate Change (UNFCCC) commitments, Canadian emissions are quantified and reported using bottom-up methods (NIR
2019, http://www.publications.gc.ca/site/eng/9.506002/publication.html). In order to assess the national impact of mitigation
efforts, knowledge of the natural sources and sinks is also needed. The challenge is that there are huge uncertainties in the
natural carbon budget for Canada. For example, Crowell et al. (2019) find a range of uncertainty estimates of Boreal North
American (which is primarily Canada plus Alaska) fluxes from 480 to 700 TgC yr! for an ensemble of inversion results for
2015 er 2016. This uncertainty in the biospheric uptake is comparable to the NIR estimate of anthropogenic emissions (568
and 559 TgC yr! for 2015 and 2016 respectively) for Canada, In addition, there is much unknown about the fate of carbon
stored in the permafrost under a warming climate (Voigt et al., 2019), and this will have implications for the global as well
as the Canadian carbon budget. Thus, ECCC has a need to better understand and quantify GHG sources and sinks on the
national scale. The ECCC Carbon Assimilation System (EC-CAS) was proposed to address these needs using the available
tools, namely, operational atmospheric modelling and assimilation systems. The goal of EC-CAS is to characterize CO4, CO
and CH,4 distributions and fluxes both globally and over Canada with a focus on the natural carbon cycle. An important aspect
of the impact of climate change on boreal forests is the influence of wildfires on the carbon balance in these regions. Over the
past several decades there has been an increase in the frequency of wildfires and this trend is expected to continue (Abatzoglou
and Williams, 2016; Flannigan et al., 2009), which will have a significant impact on the Canadian carbon budget and on the

Canadian economy. It is for this reason that EC-CAS also includes CO alongside the greenhouse gases CO2 and CHy.

Carbon Monoxide (CO) plays a role in both tropospheric chemistry and in climate. In terms of air quality, CO is an im-
portant precursor of tropospheric ozone, but it is also a by-product of incomplete combustion and thus correlates well with
anthropogenic sources of greenhouse gases from fossil fuel and biofuel burning and from forest fires. CO has a lifetime of
1-2 months which is in-between the weather and climate timescales and thus data assimilation systems (DAS) that assimilate
CO can focus on either the air quality or the climate problem. Tropospheric pellatien prediction concerns short time scales
(forecasts up to 5 days) whereas climate problems concern the estimation of surface fluxes over months to years. Fhese data
assimilation systems whose primary objective is to better understand and predict tropospheric pollution typically use a coupled
weather and chemistry model with short assimilation windows (e.g. 12 h) to initiate short forecasts. The CO observations are
used to estimate CO initial states for the forecasts with either an Ensemble Kalman Filter (EnKF) (Barré et al., 2015; Miyazaki
et al., 2012) or a 4-d Variational (4D-Var) approach (Inness et al., 2019, 2015). The chemistry model typically includes the
numerous gas phase and aerosol reactions relevant for air quality. On the other hand, systems focused on CO’s influence on cli-
mate are typically “inversion systems” wherein observations of CO concentrations are used to estimate CO surface fluxes. Here
again, both ensemble (Miyazaki et al., 2015, 2012) and variational (Jiang et al., 2017, 2015a, b, 2013, 2011; Fortems-Cheiney
et al., 2011) approaches have been used. Typically a chemistry transport model (CTM) driven by offline meteorological analy-

ses is used. Simplified chemistry models with monthly hydroxide (OH) fields (Yin et al., 2015; Fortems-Cheiney et al., 2011;
Jiang et al., 2017, 2015a, b, 2013, 2011) or full tropospheric chemistry models (Miyazaki et al., 2015, 2012) may be used.
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EC-CAS will-adapt the operational Ensemble Kalman Filter (EnKF) (Houtekamer et al., 2014) to perform a coupled meteorol-
ogy, GHG-state and-GHGflux estimation using-the-approach-ef Liv-et-al-201H ) Kanget-al-2012, 201 EC-CAS directly
simulates and accounts for all components oi transport error (i.e. errors arising from model formulation, meteorological state,
GHG initial conditions) as well as observation and flux errors. See Polavarapu et al. (2016) for a detailed discussion of transport

errors. EC-CAS will also be able to handle the vast quantities of observations that are anticipated since currently, roughly 10°

observations are already assimilated every day for weather forecasts. %—mmﬂ—d;&%ﬂbaehs—ﬂ}a{—EG%s—eem?&m&eﬂaﬂy

In the present paper we introduce the first version of EC-CAS to demonstrate the extension of the ensemble Kalman filter

(Houtekamer et al., 2014) to estimate GHGs. This new coupled meteorological and GHG assimilation system is called EC-
CAS v1.0. To demonstrate that the system is working, 3-dimensional CO fields are estimated by assimilating observations
from four different networks. The outline of the paper is as follows. Section 2 describes the various components of EC-CAS
system. Section 3 presents the experimental design while section 4 describes the data assimilation (DA) experiments and their

results. Section 5 presents the conclusions of this work and delineates planned future developments of EC-CAS.
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2 System description and development

2.1 EC-CAS

The EC-CAS system consists of a coupled weather and GHG transport model as the forecast model and an Ensemble Kalman
filter (EnKF) as the data assimilation technique. Figure 1 shows a schematic overview of EC-CAS. The-medelis-initialized

h-Nrealizations-of-meteorological-variables-atevery-grid-point—The 6 h ensemble forecasts are used as the trialfields at each

105

110

115

2.2 The forecast model

The forecast model used in EC-CAS is called GEM-MACH-GHG (Polavarapu et al., 2016; Neish et al., 2019). This model
is a variant of GEM (Global Environmental Multiscale), ECCC’s operational weather forecast model (Coté et al., 1998a, b;
Girard et al., 2014) that was developed for the simulation of greenhouse gases. A detailed description of the GEM-MACH-
GHG model is found in Polavarapu et al. (2016), so only a few salient points are mentioned here along with recent model
updates. Compared to the operational global weather forecast model, GEM-MACH-GHG uses a lower resolution with 0.9°
grid spacing in both latitude and longitude and 80 vertical levels and-the-sameJid-of-0-1+>hPa. The vertical coordinate is a
type of hybrid terrain-following coordinate (Girard et al., 2014). The advection scheme uses a semi-Lagrangian approach for
both meteorology and tracers. Modifications were implemented to conserve tracer mass on the global scale (see Polavarapu
et al. (2016)). This included defining tracer variables as dry mole fractions. In addition, tracers are transported through the
Kain-Fritsch deep convection scheme (Kain and Fritsch, 1990; Kain, 2004) but not through a shallow convection scheme. The
boundary layer scheme uses a prognostic turbulent kinetic energy (TKE) equation to specify the thermal eddy diffusivity (see
McTaggart-Cowan and Zadra (2015)). In Polavarapu et al. (2016, 2018), it was necessary to impose a minimum valae of 10

m?2s~1! in the boundary layer. However, recent model improvements enabled the minimum value to be lowered to 1 m?s~! as
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in Kim et al. (2020). An operational air quality forecast model based on GEM is used to produce 48 h forecasts of air quality
health index on a lim area domain covering most of North America. This model is called GEM-MACH (Anselmo et al.,
2010; Gong et al., 2015; Pavlovic et al., 2016) and it employs moderately detailed parameterizations of tropospheric chemistry

using 42 gas-phase species, 20 aqueous-phase species, and nine aerosol chemical components. In contrast, GEM-MACH-GHG
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and-CO- This-is-beeause- GEM-MACH-GHG is used for multi-year simulations and flux estimations of long-lived constituents

with an EnKF so the computational expense of complete chemistry is prohibitive and difficult to justify for a system focused
on GHG fluxes. However, other model processes from GEM-MACH are used in GEM-MACH-GHG, namely, the vertical
diffusion and emissions injection. In GEM-MACH-GHG, the methane (CH,) parameterization involves a single loss rate with
a monthly [OH] climatology. The rate constant is specified following the JPL (2011) formulation for bimolecular reaction
for methane (see their page 1-12). The parameterized chemistry model used for CO is identical to that used in GEOS-Chem
(http://geos-chem.org) in that CO destruction is parameterized following JPL (2011). The same [OH] climatology is used for
CHy4 and CO. Specifically, the [OH] monthly climatology is from Spivakovsky et al. (2000) regridded to GEM-MACH-GHG’s
grid. The production of CO from CHy is computed assuming each methane molecule destroyed becomes a CO molecule.
For the CH,4 simulation, the fluxes were obtained from CT-CH, (Bruhwiler et al., 2014). Since CT-CH,4 fluxes are available
1 2000-2010, the last 5-year mean (2006-2010) fluxes were used as the fluxes for the 2015 EC-CAS simulation. The initial
condition (IC) for CHy for 1 January 2015 was approximated with the CH4 atmospheric mole fractions from CT-CHy at the
end of 2010 plus a globally uniform offset to account for the increase in CH4 from 2010 to 2015 (30 ppb, estimated based on
the difference from observations at the South Pole). Even though the initial condition is not correct, the impact of the errors
in the CHy initial condition (the synoptic spatial patterns) dissipates within weeks. These prescribed CH, fluxes and initial
conditions appear reasonable as the model simulated CH, compares well with surface observations. To define the CO initial
state, an inversion constrained by space based observations from MOPITT (Measurement of Pollution in the Troposphere)
instrument v7J (Drummond, 1992) was performed with GEOS-Chem on a 4° x 5° grid. The CO combustion emissions are
from Hemispheric Transport of Air Pollutants (http://www.htap.org) (Janssens-Maenhout et al., 2015). Biogenic emissions of
isoprene, methanol, acetone, and monoterpenes are from a GEM-MACH simulation, with an assumed yield of CO from the
oxidation of these hydrocarbons that is based on the GEOS-Chem CO-only simulation employed in Kopacz et al. (2010) and
Jiang et al. (2011, 2015a, 2017). The monthly CO posterior fluxes obtained for December 2014 and throughout 2015 were
used in EC-CAS EnKEF cycles. Since GEOS-Chem is widely used for assimilation of MOPITT CO data, we use a posterior CO
distribution from GEOS-Chem for 1 December 2014 18:00:00 UTC as the initial state on 27 December 2014 18:00:00 UTC.

2.3 EnKlEeguationsformeteorslogy

The Kalman Filter equation (Ghil et al., 1981; Cohn and Parrish, 1991) at a particular DA cycle at time ¢ is given by,

x'(t) = x/() + PIOH" @) [HOP (OB () +R(®)] ™ (v°(1) - Hb)x! (1)) (1)
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In this equation x/ and x“ are state vectors of dimension d = 400 x 200 x (80 x 4 + 2). The dimensionality of the model grid
is 400 x 200. The number of vertical levels is 80. There are four 3-dimensional meteorological variables, namely temperature,
two components of winds and humidity. In addition, the state vector includes the 2-dimensional fields of surface pressure and
radiative temperature at the surface. x/ is the trial field produced by a 6 hour forecast of GEM-MACH. x“ is the analysis
produced by combining the information content in the trial fields and the observations. P/ is the forecast error covariance
matrix calculated using the spread of the forecast ensemble about its mean. y° is the observation vector of dimension m
and matrix R of dimension m xm represents the error in y°. H is the forward operator which maps the model state to the

observation space.

The quantity,
K(t) = P/H' HP'H' +R]! 2)
in equation 1 is known as the Kalman gain, where the ¢ in the parenthesis for quantities on the right side are dropped for

readability.

(HP/ HT+R) is a huge matrix (order ~10°) (Houtekamer et al., 2019) and its inversion is computationally onerous. This
problem is circumvented by solving this equation sequentially (Cohn and Parrish, 1991; Anderson, 2001; Houtekamer and
Mitchell, 2001). In sequential processing, the total number of observations m are subdivided into IV} subsets, known as batches

containing at most p observations each.

Then, the assimilation proceeds as follows :

xi(t) = x(t)+ P HI'H,P'HT + R | (y{ — Hx/) Pass 1
x5(t) = x$(t)+ PfHQT [HngHQT +Ro] M (y§ — Hox?) Pass 2
xl]l\fb (t) = Xl}vb—l(t) + PfH,Z]\}b [HNbeH’lj\}b + RNb]il(y%/vb - HNbX?Vb—l) PaSS Nb

The subscripts 1,2, ..., N, represent the pass numbers. x§, (¢) is the updated state (as if all the observations were processed
simultaneously). The analysis from a given pass is used as the trial field in the next pass. At each pass at most 600 observations

are assimilated.
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Though the covariance estimate P/ obtained from the ensemble is state dependent, owing to the small size of the ensemble

this estimate is noisy. This is remedied by the use of physical localization. The Kalman gain in equation 2 is modified as,
K(t) = (pmo(P'H")) [poo (HP/H") +R]™ 3)

where py, and p, constitute the localization in the model space and observation space, respectively and o denotes the Hadamard
product. These matrices contain weights that smoothly decrease towards zero as the distance from the observation increases.
The localization in the model space (pp,) requires the distance between observations and model coordinates while the local-
ization in the observation space (p,) requires the distance between observations (Houtekamer et al., 2016). The covariances in
P/HT are multiplied elementwise by py,. Similarly the covariances in HP/H7 are multiplied elementwise by p,. The en-
semble size is typically much smaller than the dimensionality of the model. For example, in this work the ensemble size is 64
while the model dimensionality is~107. Consequently, the correlation estimate calculated from the ensemble can be spurious.
Localization is designed to ameliorate this problem of spurious correlations (Hamill et al., 2001). The rate of decrease of the

weight is dictated by the Gaspari-Cohn function (Gaspari and Cohn, 1999; Houtekamer and Mitchell, 2001).
2.4 EnKF extensions for GHG-and fluxes

The state vector discussed in section 2.3 is augmented to include the CO, CO5, CHy fields and their fluxes. This state is
referred to as the augmented state. Variable localization (Kang et al., 2011) is implemented in the EnKF code by modifying

equation 3 as follows.
K(t) = (pmopmo(PTH)) [p5op,o(HP/H") +R]™ “)

Each element of py, and pg is either 1 or 0. Unlike the physical localization matrices the elements of variable localization
matrices are not distant dependent; they are rather variable type dependent. A given element is 1 when the row and column
variable is of the same type and O otherwise. The (¢,7) th element of py;, and pY is set to one if one desires an observation
of the jth variable to impact the update of ith variable. Setting the (i, ) th element to zero ensures that the observation of
the jth variable does not contribute to the update of the ith variable. For example when the both the row and column of
HP/HT correspond to a CO observation, tirateferment of pY is set to 1. In our initial implementation of EC-CAS, presented
in this work, variable localization is implemented such that meteorological observations do not directly update CO state and
CO observations do not update the meteorological state as in Inness et al. (2015). Since Miyazaki et al. (2011) and Kang et
al. (2012) show that CO4 updates through wind observations are beneficial, this issue will be considered in future EC-CAS
developments. It is worth noting that it is still possible for the CO state to indirectly improve due to the assimilation of wind

observations. This can occur because improvement in winds due to meteorological observations leads to an improvement in the
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200

ined: The EnKF code with the extensions developed

here is available in Khade et al. (2020).

3 Experimental Design

The current paper describes the experiments run for the development and testing of state estimation of CO using simulated
observations. The ultimate goal is to develop a system that ingests real GHG observations. However, testing of the system
225 using simulated observations is an important milestone. It not only demonstrates that the system is working properly but also
illustrates and defines errors achievable in the best case scenario (under idealized conditions). In this work we use simulated

CO observations which are unbiased and have uncorrelated errors.

The experiments in this work are run from 27 December 2014 18:00:00 UTC to 28 February 2015 00:00:00 UTC. At cold

start 65 perturbations of meteorological variables are drawn from the same climatological (static) covariance matrix that was
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used to generate additive model error. These 65 perturbations are added to the meteorological base state valid at 27 December
2014 18:00:00 UTC. This produces 65 ensemble members for the meteorological variables. Out of the 65 ensemble members
the 65" ensemble member is designated as the truth. The remaining 64 ensemble members are used for the EnKF estimation
experiment. With this approach, the truth member is a plausible member of the ensemble having been generated from the same
probability density function. The meteorological observations are drawn from the trajectory of the truth at 00, 06, 12 and 18Z

every day at which time DA is carried out. The observation networks used in this work are described in section 3.2.

An important facet of this work is accounting for flux error in the CO estimate. This is accomplished through the use of a flux
ensemble.

3.1 Flux perturbation

The error in flux is an important source of error in the CO estimate. This is especially true close to the surface. For example,
biases in CO analyses near the surface in polluted urban areas were attributed to emissions errors (Inness et al., 2013). Here
flux error is simulated using perturbed flux fields. The posterior of the 4D-Var based GEOS-Chem inversion constrained by
MOPITT observations is used in this work as the fruth. These posterior flux fields are constant over a period of one month (see

Figure 2).

The flux ensemble, of size 64, is generated by using a spectral algorithm (See Appendix A of Mitchell and Houtekamer (2000)).
The flux perturbations are generated such that they are spatially correlated over a distance (half width) of 1000 km. The standard
deviation of the spread is set to 40% of the value of the true flux as in Barré et al. (2015). The true flux field is used by the
65" ensemble member which generates the truth trajectory. Two sets of 64 flux ensemble members are generated, ene-each
forJanuary-and-FHebraary2015. Each member of the flux ensemble is used with each (distinct) member of the meteorology

ensemble.

3.2 Observation networks

The families of meteorological observations used in this work are summarized in Table 1. The location and times of these
observations are real though the observation values are simulated. These meteorological observations are assimilated in all the

experiments presented in this work.

The EnKEF is tested with five different CO observational networks. These are summarized in Table 2. The first network,
HYPNET is a hypothetical network. It has spatially dense coverage of in situ observations. In this network the observations

are located every 1000 km on three planes —1 km, 5 km and 9 km. These heights are with respect to the local topography. The
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Type 0000 UTC | 0006 UTC | 0012 UTC | 0018 UTC
Upper air 54765 3471 51508 2057
Aircraft 78780 54065 56708 78829
Satellite winds | 29749 32813 33597 31719
Surface 9927 10314 10271 9984
Scatterometer 18221 17484 19462 16782
GPS-RO 7064 5564 6390 6527

Table 1. Columns shows the typical number of meteorological observations assimilated in each 6 h DA cycle.

Network Spatial coverage Temporal coverage
HYPNET every 1000 km at levels near 1,5,9 km | every 6 hours

ECCC surface | 17 stations (Canada only) hourly

GAW surface 44 stations hourly

NOAA surface | 69 stations ~ weekly

MOPITT 1 retrieval per 100 km Global coverage every 3 days.

Table 2. CO observation networks used in this work.

globally averaged topography is 376 m. Therefore, the heights of these planes with respect to mean sea level are roughly 1.376
km, 5.376 km and 9.376 km. The locations of observations are shown in Figure 3a.

260 The ECCC surface network (Worthy et al., 2005) consists of 17 observing stations in Canada (see Figure 3c, 3d and Table A1).
These stations provide measurements at an hourly frequency. Although the ECCC network has expanded rapidly in the past
decade to 25 sites in 2020, only the 17 sites providing hourly measurements in 2015 are simulated here. GAW is an acronym
of Global Atmospheric Watch (https://gaw.kishou.go.jp). The 44 stations from the GAW network used in the current work are
shown in Figure 3c and listed in Table A2. These stations observe at an hourly frequency. The NOAA surface observation net-

265 work consists of 69 flasks (see Figure 3b). The observations from these flasks are temporally sparse, averaging approximately

one per week.
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In the HYPNET, GAW, ECCC and NOAA networks the observation operator is an interpolation operator. The HYPNET,
GAW, ECCC and NOAA network are temporally static whereas the MOPITT observations change locations depending on
the particular DA cycle. The observation errors are set to 10% of the observation values for all networks in our work. The
validation of the MOPITT V7] data found that the standard deviation of the retrieved profiles varied between 10-16 % relative
to independent data (Deeter et al., 2017),

In summary, five different observation networks are simulated out of which four have a significant impact on the CO es-

timation errc
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300 4 Results

This section discusses the improvement in the CO state due to the assimilation of HYPNET, surface observations and MOPITT
retrievals, in four seperate experiments. The four CO data assimilation experiments are denoted by EXP_HYP, EXP_GAW.
EXP_NOAA and EXP_MOP. This improvement is defined with respect to a control experiment which is referred to as EXP_CNITRL.
EXP_GAW assimilates the GAW and ECCC surface observations while EXP_NOAA assimilates the NOAA and ECCC surface
305 observations. This-control-experiment assimilates simulated meteorological observations (see Table 1) but does not assimi-
late simulated CO observations. The CO data assimilation experiments assimilate the same meteorological observations as
assimilated by EXP_CNTRL in addition to their CO observations. The results of the EXP_CNTRL are discussed in section 4.1.
Section 4.2 illustrates the role of dynamically changing spatial correlations in an EnKF update. An-ensemble-forecast-contains

experiments are described in section 4.3. A

4.1 Control experiment

Before delving into the results of the CO data assimilation it is important to examine the results of the meteorological variables.
315 CO is advected by the winds and hence it is critical to ensure that assimilation of meterological observations is working
well. Figure 5 shows the timeseries of area-weighted temperature trial and analysis root mean square error (RMSE) from 27
December 2014 18:00:00 UTC to 28 February 2015 00:00:00 UTC in EXP_CNTRL experiment. The RMSE is calculated based

on the error between the ensemble mean and the truth which is available at every grid point. As observations are assimilated the

RMSE decreases and stabilizes to 0.5°C' in about 7 days %Hﬂiesea}eﬁe*peetedﬁme&&w—pfedi&abﬁ&yef—w&%heﬁs—&bem

The column mean of the ensemble mean of CO averaged over the 7 week assimilation period is shown in Figure 6a. The
values of CO are clearly higher in regions of high flux (see Figure 2). The CO from central Africa is advected to equatorial
325 Atlantic by the easterly winds. Figure 6b shows the ensemble spread of the CO analysis which is estimated by the standard
deviation about the analysis mean. This quantifies the EnKF expected error in the CO mean. The spread in the CO ensemble

at any grld point is due to perturbatlons in the flux; spread in the winds and-spread-obtained-by-using-differentrealizations-of
m- Figure 6¢ shows the CO analysis RMSE

which quantifies the actual error between the ensemble mean and truth. Clearly, comparing Figure 6a and 6¢ the RMSE is

330 higher in regions of higher values of CO. As noted earlier, the regions with high CO correspond to regions of large flux.

12


SarojaP
Cross-Out
forecast

SarojaP
Cross-Out

SarojaP
Cross-Out

SarojaP
Cross-Out

SarojaP
Sticky Note
Figure 5 was expanded and now has 4 panels showing additional meteorological variables.

SarojaP
Cross-Out

SarojaP
Cross-Out
and

SarojaP
Highlight

SarojaP
Sticky Note
Line too long was fixed in the revised version.

SarojaP
Cross-Out
The control experiment (EXP_CNTRL)

SarojaP
Cross-Out
global mean

khadev
Cross-Out

khadev
Cross-Out


335

340

345

350

355

360

https://doi.org/10.5194/gmd-2020-219
Preprint. Discussion started: 18 August 2020
(© Author(s) 2020. CC BY 4.0 License.

The similarity of the spatial pattern of CO ensemble spread (Figure 6b) and the RMSE (Figure 6c¢) is encouraging because it

indicates that the DA system is simulating the actual error well with 64 ensemble members.

The #iat and analysis RMSE are identical because CO observations are not assimilated in EXP_CNTRL. The time series of
RMSE over the period-ef-experimentation is shown by the blue curve in Figure 7a. The RMSE in January 2015 stabilizes to
about 16 ppb. The flux field changes in February 2015 and hence the RMSE enters a different regime starting on ~ 1 February
2015.

The RMSE of the control experiment establishes a baseline against which the RMSEs from CO data assimilations are com-

4.2 Role of estimated correlations

The correlations estimated using the trial ensemble plays a key role in spreading the information from a given CO observation
to other grid points for any observational network. The correlation estimate changes dynamically depending on the flux per-
turbations and winds. This state dependence of sample correlation is an important characteristic of ensemble-based filters. The

role of the sample correlation and physical localization is illustrated for an observation located at the University of Toronto.

Figure 8 shows the spatial correlation structure for the University of Toronto location at two different times from EXP_CNTRL.
In equation 1 the term (y°(t) — H(t)x/ (t)) is the innovation. This quantity is in the observational space and is thus a scalar
for the case of a single observation located at Toronto. Similarly, the matrix inverse in equation 1 is also a scalar. The sample
correlation Pf(t)H” (t) is used to map the innovation into model space. This is the correlation between the ensemble of
x7 (t) and H(t)x/(t). For simplicity, we take the nearest gridpoint to Toronto as its actual location so that H(t) becomes
a column vector of the identity matrix with the column index corresponding to the location of the Toronto gridpoint. This
renders P/ (¢)H” (¢) to be the column of P/ (#) corresponding to the Toronto gridpoint. The scaling factor of the innovation
and its uncertainty is neglected since magnitudes are of no concern. The innovation in CO at the University of Toronto location
updates the CO at all the other grid points in proportion to the correlation as estimated by the trial ensemble. The regions of
high correlation change significantly from 15 January 2015 06:00:00 UTC to 22 January 2015 12:00:00 UTC. Consequently,
the impact of the CO observation at University of Toronto on other grid points is different on 15 January 2015 06:00:00 UTC
and 22 January 2015 12:00:00 UTC. In theory a given CO observation should update the CO estimate at all other grid points
globally. However, due to the physical localization function a given CO observation updates the CO state only within a limited
region defined by the horizontal (hir) and vertical localization radius (vlr). Localization is necessary for E  because the
small ensemble size (64) will generate sampling noise in correlations. In-other-words:—small-correlations-cannot-be-trusted-
Correlations at large physical distance must be filtered because they are most likely spurious and would harm the analysis if

retained. The values employed in this work are hlr = 2000 km and vir = 4 km. Different values of hlr and vlr were tested and

13
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it was found that the best results were obtained for hlr = 2000 km and vlr = 4 km. Note that these values of hir and vir are
used for CO data assimilation only. The assimilation of meteorological observations uses different values for hlr and vir. The
red circle in Figure 8 has radius of hlr = 2000 km. The Gaspari-Cohn function (Houtekamer and Mitchell, 1998) (not shown in
the Figure) used for physical localization has a-peak at University of Toronto and decays moving away from the observation’s
location. This function is used as a weight to modulate the correlation values. As a result, the impact of the observation decays
with distance from the observation. Distance-dependent localization assumes that the sample correlation given by the ensemble
is less trustworthy (that is more spurious) as one moves away from the observation. As noted in section 2.4 variable localization
ensures that CO observations do not update meteorological variables. Therefore, the estimates of meteorological variables are

the same in all the experiments.
4.3 CO DA experiments

EXP_HYP gssimilates HYPNET observations (see section 3.2) in addition to the same meteorological observations assimilated
in EXP_CNTRL ; The HYPNET observations are assimilated starting on 10 January 2015 18:00:00 UTC after a spin up from
27 December 2014 18:00:00 UTC to 10 January 2015 18:00:00 UTC. This spin up period allows time for the meteorolog-
ical assimilation to stabilize (Figure 5) before the CO data assimilation begins. This spin up also helps the development of

correlations within the CO field.

Figure 6d shows the column averaged CO RMSE for the EXP_HYP experiment. Compared to the RMSE for the EXP_CNTRL
experiment the RMSE decreases substantially because HYPNET observations effectively constrain the CO state. The time
series of RMSE for the EXP_HYP jis shown by the red curve in Figure 7a. The blue and red curves overlap from 27 December
2014 18:00:00 UTC to 10 January 2015 18:00:00 UTC during the spin up period. As soon as CO observations are assimilated
starting on 10 January 2015 18:00:00 UTC, the RMSE decreases. The reduction in RMSE due to assimilation of HYPNET

observations is ~ 7 ppb. This reduction is defined as the benefit,

benefit = RMSE(control)— RMSE(DA) (6)

The relative benefit is defined as,

benefit
RM SE(control)

)

relative_benefit = 100 x

The second term in equation 6 is the RMSE of the experiment which assimilates CO observations. Since the EXP_CNTRL,
does not assimilate CO observations, benefit measures the value of assimilating CO observations from a particular network.

This metric quantifies the extent to which CO observations constrain the CO state. Figure 9a shows the spatial structure of

14


SarojaP
Cross-Out
its maximum


390

395

400

405

410

415

420

https://doi.org/10.5194/gmd-2020-219
Preprint. Discussion started: 18 August 2020
(© Author(s) 2020. CC BY 4.0 License.

benefit in the EXP_HYP experiment. This figure is basically the difference between Figures 6¢ and 6d. The benefit is positive
in most parts of the globe except in parts of Tibet and eastern China. A negative value of benefir means that assimilation of CO
observations increased the RMSE compared to the EXP_CNTRL. Negative values can occur because of the statistical nature of
data assimilation. However, if the data assimilation system is well tuned, such regions of negative benefits should be few and
small, as seen here. By comparing the spatial structure of RMSE in Figure 6¢ and benefit in Figure 9a it is clear that the benefit
is proportional to the RMSE. This makes sense because where the RMSE is large, the observations have a larger scope for
improving the CO state estimate. The gelative benefit (equation 7) in this experiment is 41%. This means that the assimilation

of HYPNET observations decreases the control RMSE by 41%.

The time series of RMSE in FXP_MOP js shown by the red curve in Figure 7b. The similarity of the amplitudes of the
red curves in Figures 7a and 7b indicates, surprisingly, that the global benefit of MOPITT data is only a little worse than
that due to the hypotetically dense in situ network (HYPNET). The spatial structure of the benefit due to the assimilation of
MOPITT retrievals (EXP_MOP) is shown in Figure 9b. Comparing Figure 9a and Figure 9b, it is evident that the benefit due to
assimilation of HYPNET observations and MOPITT]retrievals, is also quite similar in the column mean, in spite of the different

spatio-temporal distribution of observations. The relative benefit due to assimilation of MOPITT retrievals is 38%.

Figure 10a shows the benefit in EXP_GAW, Both the GAW and ECCC networks are assimilated in this experiment. The
combined network is temporally dense with observations every hour but is spatially sparse except in Canada and western
Europe (Figure 3c and 3d). The relative benefit in this experiment is 8%. Figure 10b shows the benefit over North America.
The bulk of the benefit is in the eastern part of this domain though the ECCC stations are located both in eastern and western
Canada. The bleb of highest benefit of about 10-20 ppb is centered on ECCC stations located in Ontario. Fheugh-USA-dees
nothave-any-stations-in-this-experiment, the benefit of observations in Ontario reaches as far as Florida spreading throughout
eastern USA. This is because of the spatial correlation between locations of observations in Ontario and the eastern part of
USA which is evident in Figure 8 The western part of Canada has a weak benefit inspite of having several observation sites in
this region. This is because the RMSE in the western region is substantially lower than that in the eastern region (see Figure 6c¢).
Thus there is little scope for the observations to improve upon the control RMSE. The relative benefit over North America is
38%.

Figure 10a shows that gssimilation, results in significant benefit over Europe and parts of central Africa. The benefit in Europe
is due to high spatial density of GAW stations there. However, with only 5 stations in Africa, a benefit of 5-20 ppb in central

Africa is produced. Some benefit is seen over north eastern China and Malaysia due to GAW stations located in these regions.

The last experiment, EXP_NOAA, assimilates the NOAA flask stations in addition to the ECCC surface stations. It is seen
(figure not shown) that benefit over Canada is same as that seen in EXP_GAW. However, globally the NOAA flask stations do
not result in any significant benefit over any other region. This is because the flask observations are available, on an average,

only once a week. This experiment is not discussed further in this work.
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In the case of the assimilation of HYPNET and MOPITT], observations (Figures 9a and 9b), many parts of Atlantic, Pacific,
Indian and other oceans show significant benefit. The CO flux over oceans is practically zero compared to that on land. The
HYPNET and MOPITT observations over oceans contribute to the benefit on oceans. However, the improvement of the CO
state over land also contributes to be benefit over oceans. For example any improvement in CO state over central Africa

improves the state over tropical Atlantic ocean due to the downwind transport.

In the discussion so far the horizontal and temporal structure of benefit was explored. Figure 11 examines the vertical structure
of benefit. Figure 11a shows the globally averaged profile of the control RMSE and benefits from the three CO DA experiments.
The average RMSE of the control experiment (EXP_CNTRL) peaks close to the surface with a value of 21 ppb. The average
benefit in the bottom 4 km is ~ 7 ppb in the EXP_HYP and EXP_MOP experiments, but is only ~ 1 ppb for the EXP_GAW
experiment. Comparing the shapes of the blue and red curve to the black curve, the benefit is proportional to the control RMSE
except in the bottom ~ 1 km. The shape of the benefit profile is dictated both by the shape of the control RMSE and the
location of observations in the particular network. The EXP_HYP profile shows a local peak at 1 km. This is because HYPNET
observations are located at 1 km. HYPNET observations are also located at 5 km. However the control RMSE decreases by
a factor of 2 from 1 km to 5 km. Consequently the benefit also decreases. The peak in the blue profile at ~ 3 km is due to a

combination of valae-of RMSE and information content in the MOPITT, retrievals.

The profiles averaged over Africa (Figure 11b) have similar shapes to those in Figure 11a. This is because both the RMSE and
benefit in Africa are high compared to other parts of the globe (see Figures 6¢ and 9). Hence the global average is dominated
by values over Africa. i
of the GAW observations is 2.2 km. The benefit in the EXP_GAW experiment has a peak value of ~ 4 ppb at 3.5 km. This is
because the GAW station located at Mount Kenya (0.06° S,37.29° E) has an altitude of 3678 meters. Additionally the site at
Assekrem, Algeria located at 23.26° N,5.63° E is situated at an altitude of 2715 meters. The EnKF spreads the information

m- The average height

content from these observations to the surrounding regions,

The profiles for North America are shown in Figure 11c. The-planes-of HYPNET-observations-are-located-at-approximately
13:-53-and-9-3dam-The average height of the ECCC observations is 0.38 km. The benefit due to the ECCC observations close

to the surface is ~ 4.1 ppb. The benefit in both HYPNET and MOPITT experiments is ~ 2 ppb. The benefit due to assimilation
of ECCC observations decreases monotonically with height because the RMSE decreases monotonically and also because
the ECCC observations cannot constrain the CO state beyond the vertical localization radius. The average height of stations
in eastern Canada is 242-meters. These stations make a major contribution to the benefit over North America. Temporally
HYPNET observes every 6 hours while ECCC stations observe every hour. Both, the higher temporal frequency and the lower
altitude contribute to the higher benefit close to the surface in case of the ECCC observations compared to HYPNET whieh-is
loeated-at1-km.
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Figure 11d shows the profiles for Europe.
939-km-The average height of the GAW observations is 1.13 km. In-the-ease-ef- GAW-netweork;the-benefit-is5-9-ppb-elose
to-the-surface; The HYPNET benefit-is-much-smaller- (-7ppb)- As in the case of North America the better performance of

GAW stations in the bottom 500 meters is a due to both the lower altitude of the stations and higher temporal frequency of

observations compared to the HYPNET.

470

475

480

It is evident that the spatio-temporal structure of benefit is similar between HYPNET and MOPITT, both horizontally and

vertically. This suggests that, in the idealistic setting of unbiased observations and precisely known observation and model

error covariances, the performance of MOPITT retrievals is similar to insitu observations. It is should be noted that MOPITT

observations are spatially more dense than our HYPNET observation network. fn-additien; HYPNET has information at three

vertical levels while MOPITT has an information content with one to two degrees of freedom (Deeter et al., 2012) so that
caling onissimilarind s,

5 Conclusions and further work

A new greenhouse-gas data assimilation system based on an operational weather forecast model (EC-CAS v1.0) was developed
and validated for the estimation of the 3-dimensional state of CO using simulated observations from HYPNET, ECCC, GAW
and MOPITT networks. The spread in CO is obtained by perturbing the winds, flux fields and physics parametrizations. The
CO spread approximately matches the RMSE suggesting that an ensemble size of 64 is acceptable for CO estimation. However,

these conclusions are based on the assimilation of simulated observations which are unbiased.

These experiments lead to a qualitative understanding of the decrease in RMSE due to the assimilation of CO observations
from realistic networks. With all networks it is seen that the benefit due to assimilation of ebservatiens-is proportional to the CO
RMSE. Another factor; which controls the pattern of benefif is the locations of observations. For example, the GAW network

has only one station in central Africa. The observations from this station are able to effectively constrain the CO state within
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2000 km, The benefit is the highest in the plane at which this observation is located. The CO state close to the surface is better
constrained by observations in the lowermost 500 m than the-observations at 1 km. This is suggested by the results in North
America and Europe. The CO state over the ocean is constrained partly due to the improvement of the CO state over flux-rich
land regions, In the case of MOPITT assimilation, the benefit in central Africa (which is the region with strongest flux) ranges
from 10 to over 40 ppb. The downwind transport results in a benefit of 5 to 40 ppb over the tropical Paeifie. The benefits
over south and east Asia range from 2 to 20 ppb. These quantitative findings are expected to change when real observations
are assimilated. Biases in observations and correlations in the observational errors along with unaccounted model errors make

assimilation of real observations more challenging so that the error reductions are expected to be smaller.

505

This work has presented only the very first step in the development of EC-CAS. There are many further stages of development
because the goal of EC-CAS is to estimate the 3-dimensional fields of CO, CO5 and CHy4 and their fluxes along with meteo-
rological fields by assimilating all available observations of meteorological variables and chemical species using an ensemble
smoother. These include both in situ and remotely sensed measurements. The immediate next step is to modify EC-CAS 1.0

to allow the update of the CO flux by CO observations since we demonstrated here that the CO state estimation is working

of data-assimilation: After the ability to estimate fluxes is demonstrated EC-CAS will be tested for estimation of CO and CO4

3-dimensional field and their fluxes using real observations. The estimates of flux can be improved by using a smoother rather

than a filter since a smoother assimilates future observations too. Ultimately, an ensemble Kalman smoother will be developed.
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Figure 1. EC-CAS v1.0. There are 64 prescribed CO flux-ensemble-members. In EC-CAS v1.0 flux fields are not estimated. Instead, the
perturbed flux field is used to account for uncertainty in CO due to error in the flux. The 64-member forecast ensemble is used along with the
observations and the statistics of observation errors as inputs to the EnKF. The 64 analyses of meteorology and CO generated by the EnKF

are used as initial conditions for the next 6 hour forecast. This cycle repeats every 6 h.
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Figure 2. The true CO flux field for January 2015.
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Figure 3. In each panel, topography is shown by the color. (a) HYPNET exists at 1 km, 5 km and 9 km. At each of these levels the
observations are located 1000 km apart in the horizontal. There are 622 observations locations at each height and total of 622 x 3 = 1866
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Figure 6. In each panel, column means (0-5 km) averaged from 10 January 2015 18:00:00 UTC to 28 February 2015 00:00:00 UTC are

shown. (a) CO ensemble mean of the control experiment. (b) CO ensemble spread of the control experiment. (¢) RMSE of the control

experiment. (d) RMSE of the HYPNET DA experiment.
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Figure 7. Column (0-10 km) mean RMSE of CO analyses from various experiments : (a) The control, EXP_CNTRL (blue curve) and the DA
experiment assimilating HYPNET observations, EXP_HYP (red curve). (b) The control, EXP_CNTRL (blue curve) and the DA experiment
assimilating MOPITT observations, EXP_MOP (red curve). The blue curves in panel(a) and (b) are identical. The 24 h oscillations in the

curves are meteorology induced.
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using the 64 trial ensemble members.
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Figure 9. Column (0-5 km) mean benefit averaged from 10 January 2015 18:00:00 UTC to 28 February 2015 00:00:00 UTC. In panel (a),

the marked boxes show the domains of North America, South America, Europe, Africa, South Asia and East Asia. These domains are used

in Figure 11. Note that all the domains contain both ocean and land. The South American domain includes a large part of the Pacific ocean.
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Figure 10. (a) Column (0-5 km) mean benefit averaged from 10 January 2015 18:00:00 UTC to 28 February 2015 00:00:00 UTC for the

experiment which assimilates near surface measurements from ECCC and GAW networks (EXP_GAW). (b) The North American domain

from panel (a).
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Figure 11. Profiles of benefit and control RMSE averaged over different domains. In each panel the black curve shows the control RMSE
scaled down by a factor of 3. The colored curves show the benefits due to the assimilation of three different observational networks
(EXP_HYP, EXP_MOP and EXP_GAW). Panel (a) shows the globally averaged profiles. The other panels show profiles averaged over

domains shown in figure 9a. The limits on the x-axis are different in each panel.
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510 Appendix

Code | Station name Latitude | Longitude | Altitude
1 ABT | Abbotsford 49.01 —122.34 60.3
2 ALT | Alert 82.45 —62.52 200.0
3 BLK | Baker Lake 64.33 —96.01 94.8
4 BRA | Bratts Lake 50.20 —104.71 595.0
5 CBY | Cambridge Bay 69.13 —105.06 35.0
6 CHL | Churchill 58.74 —03.82 29.0
7 DWS | Downsview 43.78 —179.47 198.0
8 EGB | Egbert 44.23 —79.78 251.0
9 ESP Estevan Point 49.38 —126.54 7.0
10 | EST Esther Alberta 51.67 —110.21 707.0
11 | ETL East Trout Lake 54.35 —104.99 493.0
12 | FMS | Fort McKay 57.15 —111.64 250.0
13 | FNE | Fort Nelson 58.84 —122.57 361.0
14 | FSD Fraserdale 49.88 —81.57 210.0
15 | LLB | Lac LaBiche 54.95 —112.47 540.0
16 | TPD | Turkey Point 42.64 —80.55 231.0
17 | WSA | Sable Island 43.93 —60.01 5.0

Table A1. Information about ECCC surface sites used in this study. The altitude is in meters above sea level.
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Code | Station name Latitude | Longitude | Altitude Code | Station name Latitude | Longitude | Altitude
1 | AMY | Anmyeon-do 36.5383 | 126.3300 71.0 | 23| 1ZO Izafia 28.3090 | —16.4993 2403.0
2 | ASK | Assekrem 23.2667 5.6333 2715.0 | 24| JFJ Jungfraujoch 46.5475 7.9851 3580.0
3 | BEO | Moussala 42.1792 23.5856 2931.0 | 25| KMW | Kollumerwaard 53.3333 6.2667 3.5
4 | BKT | Bukit Kototabang —0.2019 | 100.3180 874.0 | 26| KOS Kosetice 49.5833 15.0833 535.0
5 | CGR | Capo Granitola 37.6667 12.6500 9.0 | 27| KTB Kloosterburen 53.4000 6.4200 0.0
6 | CMN | Monte Cimone 44.1667 10.6833 2172.0 | 28| KVV | Krvavec 46.2973 14.5333 1750.0
7 | CPT Cape Point —34.3534 18.4897 260.0 | 29| LMT | Lamezia Terme 38.8763 16.2322 14.0
8 | CUR | Monte Curcio 39.3160 16.4232 1800.9 | 30| MKN | Mt. Kenya —0.0622 37.2972 3682.5
9 | CVO | Cape Verde 16.8640 | —24.8675 20.0 | 31| MNM | Minamitorishima 24.2883 | 153.9833 27.1
10| ECO | Lecce 40.3358 18.1245 86.0 | 32| NGL Neuglobsow 53.1428 13.0333 62.0
11| GAT | Gartow 53.0657 11.4429 99.0 | 33| PAY Payerne 46.8129 6.9435 494.5
12| GAT | Gartow 53.0657 11.4429 129.0 | 34| PDI Pha Din 21.5731 | 103.5157 1478.0
13| GAT | Gartow 53.0657 11.4429 201.0 | 35| PDM | Pic du Midi 42.9372 0.1411 2881.0
14| GAT | Gartow 53.0657 11.4429 285.0 | 36| PUY Puy de Dome 45.7723 2.9658 1467.0
15| GAT | Gartow 53.0657 11.4429 410.0 | 37| RIG Rigi 47.0674 8.4633 1036.0
16| GLH | Giordan 36.0700 14.2200 167.0 | 38| RYO Ryori 39.0319 | 141.8222 280.0
17| HBA | Halley —75.3500 | —26.3900 38.0 | 39| SNB Sonnblick 12.9578 47.0542 3111.0
18| HKG | Hok Tsui 22.2095 | 114.2578 60.0 | 40| SSL Schauinsland 47.9000 7.9167 1205.0
19| HPB | Hohenpeissenberg 47.8000 11.0200 1003.0 | 41| TLL El Tololo —30.1683 | —70.8036 2159.0
20| HPB Hohenpeissenberg 47.8011 11.0246 1035.0 | 42| YON Yonagunijima 24.4667 | 123.0106 50.0
21| HPB | Hohenpeissenberg 47.8011 11.0246 1078.0 | 43| ZSF Zugspitz 47.4165 10.9796 2670.0
22| HPB Hohenpeissenberg 47.8011 11.0246 1116.0 | 44| ZUG Zugspitz-Gipfel 47.4211 10.9859 2965.5

Table A2. Information about GAW surface sites used in this study. The altitude is in meters above sea level.
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Code and data availability. The source code is publicly available at https://doi.org/10.5281/zenodo.3908545 under the GNU Lesser General
Public License version 2.1 (LGPL v2.1) or ECCC’s Atmospheric Sciences and Technology licence version 3. The model data output are

available at http://crd-data-donnees-rdc.ec.gc.ca/CCMR/pub/2020_Khade ECCAS_all_data/.
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(a) (b)

(c) (d)

(e)

Fig. 2. Scatter diagrams and their associated values of r.

2 THE RELIABILITY OF r

If X and Y are jointly normally distributed the pairs of random sample
variables X, Y;, i = 1, - -+, n, will be independently distributed each with
the same distribution as X and Y. In terms of these random variables the
sample means and variances are denoted by X, ¥, S, and Sy, and the
sample correlation coefficient by

3 (X, - D% - 1)
r= .

BM.\f.ywh\
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-1 -5 0 5 1
Fig. 3. Distribution for r for p = 0 and p = .8 when n = 9.

After a sample of size » has been taken and the observational values
(=, v1), -, (x,,y,) made available, r as given by formula (1) can be
computed and is merely a number. However, in discussing how the function
r behaves in repeated sampling experiments, r is a random variable which is a
function of the n pairs of random variables X;, ¥;, i=1, ---, n. Itis
theoretically possible to derive the probability density function of r from the
density function of those n pairs of variables; however, both the form and
the derivation of this density are too complicated to be considered here.
It turns out that the density function of r depends only on the parameters p
and n, where n is the number of points in the scatter diagram. Graphs of
the density function of r for p = 0 and for p = .8 when n = 9 are shown in
Fig. 3.

It is clear from Fig. 3 that the distribution of r is decidedly non-normal
for large values of p; consequently it will not suffice to obtain the standard
deviation of r and use it to determine the accuracy of r as an estimate of p.
Fortunately, there exists a simple change of variable which transforms the
complicated distribution of r into an approximately normal distribution.
The resulting normal distribution may then be used to determine the accuracy
of r as an estimate of p in the same way that the normal distribution of X was
used to determine the accuracy of X as an estimate of u. This change of
variable is from r to 2z, where

Gv Nﬂw_omh.*.w.

1—r

It can be shown that when the preceding assumptions are satisfied, the
random variable z will be approximately normally distributed with mean

14+ p
l—0p

#e = % log,
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and standard deviation

1

Jn=3"

As an illustration of how this transformation is used, consider the problem
of determining an interval of values within which r could reasonably be
expected to fall if p = .8 and if r is based on a sample of size 28. Let
reasonably be understood to mean with a probability of .95. The construc-
tion of such an interval can be accomplished by first constructing such an
interval for z and then transforming it into an interval for r. The simplest
interval for z that possesses the desired property is the interval with end

points 2, = u, — 20, and z, = u, + 20,. For p = .8 and n = 28, it follows
from (3) that those end points are

O

2z =1}log9 — ~2= = 70

and /\mm

2, = %log9 + IN“H 1.50.
V25
From tables of the exponential function it will be found that values of » that
correspond to these values of z are r;, = .60 and r, = .91. Thus it can be
stated that the probability is approximately .95 that the sample correlation
coefficient will satisfy the inequality .60 < r < .91 when r is based on a
sample of 28 and p = .80. This example illustrates how unreliable r is as 4n
estimate of p unless one has a very large sample.

Although the preceding relationship simplifies the problem of determining
the accuracy of r as an estimate of p, it has the disadvantage of being
unreliable if X and Y do not have a joint normal distribution; consequently
unless one is quite certain that these variables possess such a distribution, at
least to a good approximation, the results should not be relied upon. ,

3 INTERPRETATION OF r

Given any two random variables X and Y one can ask the question whether
Sowo. variables are independent. Since two variables are independent if, and
only if, f(z, y) = g(x)h(y) where g(x) and h(y) are the marginal densities of
X and Y and since an extremely large sample would be required to determine
whether this relationship is being satisfied, it is clear that some other method
is needed to solve this problem. One approach is to introduce some measure
of the relationship between two variables, whose value is zero for independent
variables, and use it to determine whether the variables are anvmnaoaﬁ
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In view of the definition of f(, y), it is seen that the normal variables X and
Y are independent if, and only if, they are uncorrelated. Thus, the parameter
p completely determines whether or not two normal variables are inde-
pendently distributed. As a result, it suffices to determine whether p = 0 for
such a pair of variables to ascertain independence. Since the sample correla-
tion coefficient r serves as an estimate of p, it can be used to determine whether
it is reasonable to assume that p = 0,

If X and Y cannot be assumed to be normally distributed, even approxi-
mately, then p can no longer be used as a basis for determining the extent to
which X and Y are related. Figure 2 and Fig. 5, Chapter 6, both indicate the
inefficiency of p and r for measuring the extent of the relationship when X and
Y are not normally distributed.

Even though two variables may possess a joint normal distribution, and
therefore that p may be used as a measure of the strength of the relationship
of the two variables, it does not follow that the relationship as measured by p
is meaningful in a practical sense. The fact that two variables tend to increase
or decrease together does not imply that one has any direct or indirect effect
on the other. Both may be influenced by other variables in a manner that will
give rise to a strong mathematical relationship. The favorite example to
illustrate this fact is the one concerned with teachers’ salaries. Over a period
of years the correlation coefficient between teachers’ salaries and the
consumption of liquor turned out to be .98. During that period of time there
was a steady rise in wages and salaries of all types and a general upward
trend of good times. Under such conditions teachers’ salaries would also
increase. Moreover, the general upward trend in wages and buying power
would be reflected in increased purchases of liquor. Thus, the high correla-
tion merely reflected the common effect of the upward trend on the two
variables. This is a type of correlation that has received the name of spurious
correlation. The preceding discussion should make it clear that success with
correlation coefficients requires familiarity with the field of application as well
as with their mathematical properties and that both the reliability and
interpretation of r depend heavily upon the extent to which X and Y are
jointly normally distributed.

4 LINEAR REGRESSION

As has been observed, empirical correlation methods are often useful in
studying how two variables are related. It frequently happens, however, that
one studies the relationship between the variables in the hope that any
relationship that is discovered can be used to assist in making estimates or
predictions of one of the variables. Thus if the two variables are the high



