Articles | Volume 14, issue 1
https://doi.org/10.5194/gmd-14-205-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-14-205-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Spin-up characteristics with three types of initial fields and the restart effects on forecast accuracy in the GRAPES global forecast system
Zhanshan Ma
State Key Laboratory of Earth Surface Processes and Resource Ecology, and College of Global Change and Earth System Science, and Joint Center for Global Change Studies, Beijing Normal University, Beijing, 100875, China
National Meteorological Center, Beijing, 100081, China
Numerical Weather Prediction Center of China Meteorological Administration, Beijing, 100081, China
State Key Laboratory of Earth Surface Processes and Resource Ecology, and College of Global Change and Earth System Science, and Joint Center for Global Change Studies, Beijing Normal University, Beijing, 100875, China
Jiandong Gong
National Meteorological Center, Beijing, 100081, China
Numerical Weather Prediction Center of China Meteorological Administration, Beijing, 100081, China
Jin Zhang
National Meteorological Center, Beijing, 100081, China
Numerical Weather Prediction Center of China Meteorological Administration, Beijing, 100081, China
National Meteorological Center, Beijing, 100081, China
Numerical Weather Prediction Center of China Meteorological Administration, Beijing, 100081, China
Jian Sun
National Meteorological Center, Beijing, 100081, China
Numerical Weather Prediction Center of China Meteorological Administration, Beijing, 100081, China
Yongzhu Liu
National Meteorological Center, Beijing, 100081, China
Numerical Weather Prediction Center of China Meteorological Administration, Beijing, 100081, China
Jiong Chen
National Meteorological Center, Beijing, 100081, China
Numerical Weather Prediction Center of China Meteorological Administration, Beijing, 100081, China
Qingu Jiang
National Meteorological Center, Beijing, 100081, China
Numerical Weather Prediction Center of China Meteorological Administration, Beijing, 100081, China
Related authors
Jiong Chen, Yong Su, Zhe Li, Zhanshan Ma, and Xueshun Shen
EGUsphere, https://doi.org/10.5194/egusphere-2025-2704, https://doi.org/10.5194/egusphere-2025-2704, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Weather forecasts sometimes show high-frequency noise degrading predictions. Our study reveals stripe patterns arise from mismatches between dynamic and physical calculations in models. Simplified experiments demonstrate that adjusting their connection eliminates stripes. This advances numerical weather prediction understanding, aiding forecasters and the public. Our diagnostic methods provide a framework for solving this global meteorological modeling challenge.
Zhe Li, Qijun Liu, Xiaomin Chen, Zhanshan Ma, Jiong Chen, and Yuan Jiang
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-439, https://doi.org/10.5194/gmd-2020-439, 2021
Preprint withdrawn
Short summary
Short summary
Hailstorm is one of the severe disaster weathers for agricultural countries. Hail microphysics processes have been added in the double-moment microphysics scheme in the operational model GRAPES_Meso and a severe squall line hailstorm is simulated. Compared with the observation, simulation results can capture the basic character of this squall line hailstorm. Results imply the ability of high-resolution GRAPES_Meso on forecasting hailstorm.
Yongzhu Liu, Xiaoye Zhang, Wei Han, Chao Wang, Wenxing Jia, Deying Wang, Zhaorong Zhuang, and Xueshun Shen
Geosci. Model Dev., 18, 4855–4876, https://doi.org/10.5194/gmd-18-4855-2025, https://doi.org/10.5194/gmd-18-4855-2025, 2025
Short summary
Short summary
In order to investigate the feedbacks of chemical data assimilation on meteorological forecasts, we developed a strongly coupled aerosol–meteorology four-dimensional variational (4D-Var) assimilation system, CMA-GFS-AERO 4D-Var, based on the framework of the incremental analysis scheme of the China Meteorological Administration Global Forecasting System (CMA-GFS) operational global numerical weather model. The results show that assimilating BC (black carbon) observations can generate analysis increments not only for BC but also for atmospheric variables.
Jiong Chen, Yong Su, Zhe Li, Zhanshan Ma, and Xueshun Shen
EGUsphere, https://doi.org/10.5194/egusphere-2025-2704, https://doi.org/10.5194/egusphere-2025-2704, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Weather forecasts sometimes show high-frequency noise degrading predictions. Our study reveals stripe patterns arise from mismatches between dynamic and physical calculations in models. Simplified experiments demonstrate that adjusting their connection eliminates stripes. This advances numerical weather prediction understanding, aiding forecasters and the public. Our diagnostic methods provide a framework for solving this global meteorological modeling challenge.
Jingye Ren, Songjian Zou, Honghao Xu, Guiquan Liu, Zhe Wang, Anran Zhang, Chuanfeng Zhao, Min Hu, Dongjie Shang, Lizi Tang, Ru-Jin Huang, Yele Sun, and Fang Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-1483, https://doi.org/10.5194/egusphere-2025-1483, 2025
Short summary
Short summary
In this study, a new framework of cloud condensation nuclei (CCN) prediction in polluted region has been developed and it achieves well prediction of hourly-to-yearly scale across North China Plain. The study reveals a significant long-term decreasing trend of CCN concentration at typical supersaturations due to a rapid reduction in aerosol concentrations from 2014 to 2018. This improvement of our new model would be helpful to aerosols climate effect assessment in models.
Runzhuo Fang, Jinfeng Ding, Wenjuan Gao, Xi Liang, Zhuoqi Chen, Chuanfeng Zhao, Haijin Dai, and Lei Liu
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-186, https://doi.org/10.5194/essd-2025-186, 2025
Preprint under review for ESSD
Short summary
Short summary
IMPMCT is a dataset containing a 24-year record (2001–2024) of polar storms in the Nordic Seas. These storms, called Polar Mesoscale Cyclones (PMCs), sometimes cause extreme winds and waves, threatening marine operations. IMPMCT combines remote sensing measurements and reanalysis data to construct a comprehensive PMCs archive. It includes 1,184 PMCs tracks, 16,630 cloud patterns, and 4,373 wind records, providing fundamental data for advancing our understanding of their development mechanisms.
Qiaomin Pei, Chuanfeng Zhao, Yikun Yang, Annan Chen, Zhiyuan Cong, Xin Wan, Haotian Zhang, and Guangming Wu
EGUsphere, https://doi.org/10.5194/egusphere-2025-1172, https://doi.org/10.5194/egusphere-2025-1172, 2025
Short summary
Short summary
This study investigates smoke's impact on atmospheric warming over the Himalayan and Tibetan Plateau (HTP) using MODIS fire data, ground-based and satellite aerosol observations, and model simulations. It finds that smoke aerosols – predominantly concentrated between 6 and 8 km in the mid-troposphere over southern HTP – likely alter regional atmospheric stability by modifying the vertical temperature profile, as indicated by a reduced lapse rate.
Hong Li, Yi Yang, Jian Sun, Yuan Jiang, Ruhui Gan, and Qian Xie
Geosci. Model Dev., 17, 5883–5896, https://doi.org/10.5194/gmd-17-5883-2024, https://doi.org/10.5194/gmd-17-5883-2024, 2024
Short summary
Short summary
Vertical atmospheric motions play a vital role in convective-scale precipitation forecasts by connecting atmospheric dynamics with cloud development. A three-dimensional variational vertical velocity assimilation scheme is developed within the high-resolution CMA-MESO model, utilizing the adiabatic Richardson equation as the observation operator. A 10 d continuous run and an individual case study demonstrate improved forecasts, confirming the scheme's effectiveness.
Hongfei Hao, Kaicun Wang, Chuanfeng Zhao, Guocan Wu, and Jing Li
Earth Syst. Sci. Data, 16, 3233–3260, https://doi.org/10.5194/essd-16-3233-2024, https://doi.org/10.5194/essd-16-3233-2024, 2024
Short summary
Short summary
In this study, we employed a machine learning technique to derive daily aerosol optical depth from hourly visibility observations collected at more than 5000 airports worldwide from 1959 to 2021 combined with reanalysis meteorological parameters.
Hao Fan, Xingchuan Yang, Chuanfeng Zhao, Yikun Yang, and Zhenyao Shen
Atmos. Chem. Phys., 23, 7781–7798, https://doi.org/10.5194/acp-23-7781-2023, https://doi.org/10.5194/acp-23-7781-2023, 2023
Short summary
Short summary
Using 20-year multi-source data, this study shows pronounced regional and seasonal variations in fire activities and emissions. Seasonal variability of fires is larger with increasing latitude. The increase in temperature in the Northern Hemisphere's middle- and high-latitude forest regions was primarily responsible for the increase in fires and emissions, while the changes in fire occurrence in tropical regions were more influenced by the decrease in precipitation and relative humidity.
Li Liu, Chao Sun, Xinzhu Yu, Hao Yu, Qingu Jiang, Xingliang Li, Ruizhe Li, Bin Wang, Xueshun Shen, and Guangwen Yang
Geosci. Model Dev., 16, 2833–2850, https://doi.org/10.5194/gmd-16-2833-2023, https://doi.org/10.5194/gmd-16-2833-2023, 2023
Short summary
Short summary
C-Coupler3.0 is an integrated coupler infrastructure with new features, i.e. a series of parallel-optimization technologies, a common halo-exchange library, a common module-integration framework, a common framework for conveniently developing a weakly coupled ensemble data assimilation system, and a common framework for flexibly inputting and outputting fields in parallel. It is able to handle coupling under much finer resolutions (e.g. more than 100 million horizontal grid cells).
Lixing Shen, Chuanfeng Zhao, Xingchuan Yang, Yikun Yang, and Ping Zhou
Atmos. Chem. Phys., 22, 419–439, https://doi.org/10.5194/acp-22-419-2022, https://doi.org/10.5194/acp-22-419-2022, 2022
Short summary
Short summary
Using multi-year data, this study reveals the slump of sea land breeze (SLB) at Brisbane during mega fires and investigates the impact of fire-induced aerosols on SLB. Different aerosols have different impacts on sea wind (SW) and land wind (LW). Aerosols cause the decrease of SW, partially offset by the warming effect of black carbon (BC). The large-scale cooling effect of aerosols on sea surface temperature (SST) and the burst of BC contribute to the slump of LW.
Yue Sun and Chuanfeng Zhao
Atmos. Chem. Phys., 21, 16555–16574, https://doi.org/10.5194/acp-21-16555-2021, https://doi.org/10.5194/acp-21-16555-2021, 2021
Short summary
Short summary
Using high-resolution multi-year warm season data, the influence of aerosol on precipitation time over the North China Plain (NCP), Yangtze River Delta (YRD), and Pearl River Delta (PRD) is investigated. Aerosol amount and type have significant influence on precipitation time: precipitation start time is advanced by 3 h in the NCP, delayed 2 h in the PRD, and negligibly changed in the YRD. Aerosol impact on precipitation is also influenced by precipitation type and meteorological conditions.
Tianmeng Chen, Zhanqing Li, Ralph A. Kahn, Chuanfeng Zhao, Daniel Rosenfeld, Jianping Guo, Wenchao Han, and Dandan Chen
Atmos. Chem. Phys., 21, 6199–6220, https://doi.org/10.5194/acp-21-6199-2021, https://doi.org/10.5194/acp-21-6199-2021, 2021
Short summary
Short summary
A convective cloud identification process is developed using geostationary satellite data from Himawari-8.
Convective cloud fraction is generally larger before noon and smaller in the afternoon under polluted conditions, but megacities and complex topography can influence the pattern.
A robust relationship between convective cloud and aerosol loading is found. This pattern varies with terrain height and is modulated by varying thermodynamic, dynamical, and humidity conditions during the day.
Yikun Yang, Chuanfeng Zhao, Quan Wang, Zhiyuan Cong, Xingchuan Yang, and Hao Fan
Atmos. Chem. Phys., 21, 4849–4868, https://doi.org/10.5194/acp-21-4849-2021, https://doi.org/10.5194/acp-21-4849-2021, 2021
Short summary
Short summary
The occurrence frequency of different aerosol types and aerosol optical depth over the Arctic, Antarctic and Tibetan Plateau (TP) show distinctive spatiotemporal differences. The aerosol extinction coefficient in the Arctic and TP has a broad vertical distribution, while that of the Antarctic has obvious seasonal differences. Compared with the Antarctic, the Arctic and TP are vulnerable to surrounding pollutants, and the source of air masses has obvious seasonal variations.
Xingchuan Yang, Chuanfeng Zhao, Yikun Yang, and Hao Fan
Atmos. Chem. Phys., 21, 3803–3825, https://doi.org/10.5194/acp-21-3803-2021, https://doi.org/10.5194/acp-21-3803-2021, 2021
Short summary
Short summary
We investigate the spatiotemporal distributions of aerosol optical properties and major aerosol types, along with the vertical distribution of the major aerosol types over Australia based on multi-source data. The results of this study provide significant information on aerosol optical properties in Australia, which can help to understand their characteristics and potential climate impacts.
Xingchuan Yang, Chuanfeng Zhao, Yikun Yang, Xing Yan, and Hao Fan
Atmos. Chem. Phys., 21, 3833–3853, https://doi.org/10.5194/acp-21-3833-2021, https://doi.org/10.5194/acp-21-3833-2021, 2021
Short summary
Short summary
Using long-term multi-source data, this study shows significant impacts of fire events on aerosol properties over Australia. The contribution of carbonaceous aerosols to the total was 26 % of the annual average but larger (30–43 %) in September–December; smoke and dust are the two dominant aerosol types at different heights in southeastern Australia for the 2019 fire case. These findings are helpful for understanding aerosol climate effects and improving climate modeling in Australia in future.
Zhe Li, Qijun Liu, Xiaomin Chen, Zhanshan Ma, Jiong Chen, and Yuan Jiang
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-439, https://doi.org/10.5194/gmd-2020-439, 2021
Preprint withdrawn
Short summary
Short summary
Hailstorm is one of the severe disaster weathers for agricultural countries. Hail microphysics processes have been added in the double-moment microphysics scheme in the operational model GRAPES_Meso and a severe squall line hailstorm is simulated. Compared with the observation, simulation results can capture the basic character of this squall line hailstorm. Results imply the ability of high-resolution GRAPES_Meso on forecasting hailstorm.
Cited articles
Anthes, R. A., Kuo, Y., Hsie, E., Low-Nam, S., and Bettge, T. W.:
Estimation of skill and uncertainty in regional numerical models,
Q. J. Roy. Meteor. Soc.,
115, 763–806, https://doi.org/10.1002/qj.49711548803, 1989.
Arakawa, A. and Schubert, W. H.:
Interaction of a cumulus cloud ensemble with the large-scale environment, Part I,
J. Atmos. Sci.,
31, 674–701, https://doi.org/10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2, 1974.
Bauer, P., Thorpe, A., and Brunet, G.:
The quiet revolution of numerical weather prediction,
Nature,
525, 47–55, https://doi.org/10.1038/nature14956, 2015.
Bjerknes, V.:
Das Problem der Wettervorhersage, betrachtet vom Standpunkte der Mechanick und der Physik [The problem of weather prediction as seen from the standpoint of mechanics and physics],
Meteorol. Z.,
21, 1–7, 1904.
Bryan, K.:
Accelerating the convergence to equilibrium of ocean–climate models,
J. Phys. Oceanogr.,
14, 666–673, https://doi.org/10.1175/1520-0485(1984)014<0666:ATCTEO>2.0.CO;2, 1984.
Carlin, J. T., Gao, J., Snyder, J. C., and Ryzhkov, A. V.:
Assimilation of ZDR columns for improving the spinup and forecast of convective storms in storm-scale models: proof-of-concept experiments,
Mon. Weather Rev.,
145, 5033–5057, https://doi.org/10.1175/MWR-D-17-0103.1, 2017.
Chen, D. H. and Shen, X. S.:
Recent progress on GRAPES Research and Application [in Chinese],
J. Appl. Meteorol. Sci.,
17, 773–777, 2006.
Chen, F., Janjic, Z., and Mitchell, K.:
Impact of Atmospheric Surface-layer Parameterizations in the new Land-surface Scheme of the NCEP Mesoscale Eta Model,
Bound.-Lay. Meteorol.,
85, 391–421, 1997.
Chen, X. M., Liu, Q. J., Zhang, J. C.:
A numerical simulation study on microphysical structure and cloud seeding in cloud system of QiLian Mountain Region,
Meteorol. Mon.,
33, 33–43, 2007 (in Chinese).
Dai, Y., Zeng, X., Dickinson, R. E., Baker, I., Bonan, G. B., Bosilovich, M. G., Denning, A. S., Dirmeyer, P. A., Houser, P. R., Niu, G., Oleson, K. W., Schlosser, C. A., and Yang, Z.:
The Common Land Model,
B. Am. Meteorol. Soc.,
84, 1013–1023, https://doi.org/10.1175/BAMS-84-8-1013, 2003.
Danek, C., Scholz, P., and Lohmann, G.:
Effects of High Resolution and Spinup Time on Modeled North Atlantic Circulation,
J. Phys. Oceanogr.,
49, 1159–1181, 2019.
Düben, P. D., McNamara, H., and Palmer, T. N.:
The use of imprecise processing to improve accuracy in weather & climate prediction,
J. Comput. Phys.,
271, 2–18, 2014.
Errico, R. and Baumhefner, D.:
Predictability Experiments Using a High-Resolution Limited-Area Model,
Mon. Weather Rev.,
115, 488–504, https://doi.org/10.1175/1520-0493(1987)115<0488:PEUAHR>2.0.CO;2, 1987.
Ge, G., Gao, J., and Xue, M.: Impacts of Assimilating Measurements of Different State Variables with a Simulated Supercell Storm and Three Dimensional Variational Method, Mon. Weather Rev., 141, 2759–2777, 2013.
Giorgi, F. and Mearns, L. O.:
Introduction to special section: Regional climate modeling revisited,
J. Geophys. Res.-Atmos.,
104, 6335–6352, https://doi.org/10.1029/98JD02072, 1999.
Hao, M., Zhang, H., Tao, S., and Gong, J.:
Application of Variational Quality Control to Regional GRAPES-3DVAR,
Plateau. Meteorol.,
32, 122–132, 2013 (in Chinese).
Hong, S. Y. and Pan, H. L.:
Nonlocal boundary layer vertical diffusion in a medium-range forecast model,
Mon. Weather Rev.,
124, 2322–2339, https://doi.org/10.1175/1520-0493(1996)124<2322:NBLVDI>2.0.CO;2, 1996.
IPCC: Climate change 2013: The physical science basis, in: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Working Group I Technical Support Unit,
Cambridge University Press, Cambridge, UK, 1535 pp., https://doi.org/10.1017/CBO9781107415324, 2013.
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang, J., Leetmaa, A., Reynolds, R., Jenne, R., and Joseph D.:
The NCEP/NCAR 40-year reanalysis project,
B. Am. Meteorol. Soc.,
77, 437–471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2, 1996.
Kasahara, A., Balgovind, R. C., and Katz, B.:
Use of satellite radiometric imagery data for improvement in the analysis of divergent wind in the tropics,
Mon. Weather Rev.,
116, 866–883, https://doi.org/10.1175/1520-0493(1988)116<0866:UOSRID>2.0.CO;2, 1988.
Kasahara, A., Mizzi, A. P., and Donner, L. J.:
Impact of Cumulus Initialization on the Spinup of Precipitation Forecasts in the Tropics,
Mon. Weather Rev.,
120, 1360–1380, https://doi.org/10.1175/1520-0493(1992)120<1360:IOCIOT>2.0.CO;2, 1992.
Khatiwala, S., Visbeck, M., and Cane, M. A.:
Accelerated simulation of passive tracers in ocean circulation models,
Ocean Model.,
9, 51–69, https://doi.org/10.1016/j.ocemod.2004.04.002, 2005.
Kleczek, M. A., Steeneveld, G. J., and Holtslag A. A. M.:
Evaluation of the Weather Research and Forecasting Mesoscale Model for GABLS3: Impact of Boundary-Layer Schemes, Boundary Conditions and Spin-Up,
Bound.-Lay. Meteorol.,
152, 213–243, https://doi.org/10.1007/s10546-014-9925-3, 2014.
Knoll, D. A. and Keyes, D. E.:
Jacobian-free Newton–Krylov methods: a survey of approaches and applications,
J. Comput. Phys.,
193, 357–397, https://doi.org/10.1016/j.jcp.2003.08.010, 2004.
Li, J., Chen, B., Huang, W., and Zhang X.:
Investigation of the impact of cloud initialization on numerical prediction of a convective system,
J. Trop. Meteorol.,
34, 198–208, 2018 (in Chinese).
Li, Y., Liu, J., Dong, P., and Liu, H.: Analysis of the impact radar data assimilation on the numerical forecast of Jianghuai Rainstorm by using GRAPES-3Dvar, Meteor. Mon., 37, 403–411, 2011 (in Chinese).
Linus, M. and Erland, K.:
Factors influencing skill improvements in the ECMWF forecasting system,
Mon. Weather Rev.,
141, 3142–3153, https://doi.org/10.1175/MWR-D-12-00318.1, 2013.
Liu, K., Chen, Q., and Sun, J.:
Modification of cumulus convection and planetary boundary layer schemes in the GRAPES global model,
J. Meteorol. Res.,
29, 806–822, 2015.
Liu, S., Jiang, H., Hu, F., Zhang, C., Liu, H., Liang, F., Xin, G., and Wang, J.:
Research of spin-up processes of land surface model of RAMs for different initial soil parameters,
Acta Meteorol. Sin.,
66, 351–358, 2008 (in Chinese).
Lo, J. C.-F., Yang, Z.-L., and Pielke Sr., R. A.: Assessment of three dynamical climate downscaling methods using the Weather Research and Forecasting (WRF) model, J. Geophys. Res.-Atmos., 113, D09112, https://doi.org/10.1029/2007JD009216, 2008.
Ma, Z.: Simulation data from GRAPES_GFS2.3.1 for three types of initial fields and cases with restart, Baidu, Inc, https://pan.baidu.com/s/1QwBbw7PKQ6e8gZTbYhx9iA (last access: 18 December 2020), 2019.
Ma, Z., Liu, Q., Zhao, C., Shen, X., Wang, Y., Jiang, J. H., Li, Z., and Yung, Y.:
Application and evaluation of an explicit prognostic cloud cover scheme in GRAPES global forecast system,
J. Adv. Model. Earth Sy.,
10, 652–667, https://doi.org/10.1002/2017MS001234, 2018.
Morcrette, J.-J., Barker, H. W., Cole, J. N. S., Iacono, M. J., and Pincus, R.:
Impact of a new radiation package, McRad, in the ECMWF Integrated Forecast System,
Mon. Weather Rev.,
136, 4773–4798, https://doi.org/10.1175/2008MWR2363.1, 2008.
Pan, H. and Wu, W.:
Implementing a mass flux convective parameterization package for the NMC medium-range forecast model, series: Office Note 409,
National Centers for Environmental Prediction, NMC, Washington, DC, 1–40, available at: https://repository.library.noaa.gov/view/noaa/11429 (last access: 18 December 2020), 1995.
Pincus, R., Barker, H. W., and Morcrette, J.-J.:
A fast, flexible, approximate technique for computing radiative transfer in inhomogeneous cloud fields,
J. Geophys. Res.-Atmos.,
108, 4376, https://doi.org/10.1029/2002JD003322, 2003.
Qian, J. H., Seth, A., and Zebiak S.:
Reinitialized versus Continuous Simulation for Regional Climate Downscaling,
Mon. Weather Rev.,
131, 2857–2874, https://doi.org/10.1175/1520-0493(2003)131<2857:RVCSFR>2.0.CO;2, 2003.
Rimac, A., van Geffen, S., and Oerlemans, J.: Numerical simulations of glacier evolution performed using flow-line models of varying complexity, Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2017-67, 2017.
Scher, S. and Messori, G.: Weather and climate forecasting with neural networks: using general circulation models (GCMs) with different complexity as a study ground, Geosci. Model Dev., 12, 2797–2809, https://doi.org/10.5194/gmd-12-2797-2019, 2019.
Senatore, A., Mendicino, G., Gochis, D. J., Yu, W., Yates, D. N., and Kunstmann, H.:
Fully coupled atmosphere-hydrology simulations for the central Mediterranean: Impact of enhanced hydrological parameterization for short and long time scales,
J. Adv. Model. Earth Sy.,
7, 1693–1715. https://doi.org/10.1002/2015MS000510, 2015.
Séférian, R., Gehlen, M., Bopp, L., Resplandy, L., Orr, J. C., Marti, O., Dunne, J. P., Christian, J. R., Doney, S. C., Ilyina, T., Lindsay, K., Halloran, P. R., Heinze, C., Segschneider, J., Tjiputra, J., Aumont, O., and Romanou, A.: Inconsistent strategies to spin up models in CMIP5: implications for ocean biogeochemical model performance assessment, Geosci. Model Dev., 9, 1827–1851, https://doi.org/10.5194/gmd-9-1827-2016, 2016.
Shen, X., Su, Y., Hu, J., Wang, J., Sun, J., Xue, J., Han, W., Zhang, H., Lu, H., Zhang, H., Chen, Q., Liu, Y., Liu., Q., Ma, Z., Jin, Z., Li, X., Liu, K., Zhao., B., Zhou, B., Gong., J., Chen, D., and Wang, J:
Development and Operation Transformation of GRAPES Global Middle-range Forecast System,
J. Appl. Meteorol. Sci.,
28, 1–10, 2017 (in Chinese).
Sheng, C., Pu, Y., and Gao, S.:
Effect of Chinese Doppler radar data on nowcasting output of mesoscale model,
Chin. J. Atmos. Sci.,
30, 93–107, 2006 (in Chinese).
Souto, M. J., Balseiro, C. F., and Pérez-Muñuzuri, V., Xue, M., and Brewster, K.: Impact
of cloud analysis on numerical weather prediction in the Galician region of Spain, J. Appl. Meteorol., 42, 129–140, https://doi.org/10.1175/1520-0450(2003)042<0129:IOCAON>2.0.CO;2, 2003.
Su, Y., Shen, X., Peng, X., Li, X., Wu, X., Zhang, S., and Chen, X.:
Application of PRM Scalar Advection Scheme in GRAPES Global Forecast System,
Chin. J. Atmos. Sci.,
37, 1309–1325. https://doi.org/10.3878/j.issn.1006-9895.2013.12164, 2013 (in Chinese).
Wehbe, Y., Temimi, M., Weston, M., Chaouch, N., Branch, O., Schwitalla, T., Wulfmeyer, V., Zhan, X., Liu, J., and Al Mandous, A.: Analysis of an extreme weather event in a hyper-arid region using WRF-Hydro coupling, station, and satellite data, Nat. Hazards Earth Syst. Sci., 19, 1129–1149, https://doi.org/10.5194/nhess-19-1129-2019, 2019.
Weiss, S. J., Pyle, M. E., Janjic, Z., Bright, D. R., Kain, J. S., and DiMego, G. J.:
The operational High Resolution Window WRF model runs at NCEP: Advantages of multiple model runs for severe convective weather forecasting,
Preprints, 24th Conference on Severe Local Storms, 27–31 October 2008, American Meteorological Society, Savannah, GA, CD-ROM P10.8,
available at: https://www.spc.noaa.gov/publications/weiss/wrf-hrw.pdf (last access: 18 December 2020), 2008.
Weygandt, S. S., Shapiro, A., and Droegemeier, K. K. :
Retrieval of Model Initial Fields from Single-Doppler Observations of a Supercell Thunderstorm. Part II: Thermdynamic Retrieval and Numerical Prediction,
Mon. Weather Rev.,
130, 454–476, https://doi.org/10.1175/1520-0493(2002)130<0454:ROMIFF>2.0.CO;2, 2002.
Wolcott, S. W. and Warner, T. T.:
A moisture analysis procedure utilizing surface and satellite data,
Mon. Weather Rev.,
109, 1989–1998, https://doi.org/10.1175/1520-0493(1981)109<1989:AMAPUS>2.0.CO;2, 1981.
Xie, S. C., Liu, X. H., Zhao, C. F., and Zhang, Y. Y.:
Sensitivity of CAM5 simulated Arctic clouds and radiation to ice nucleation parameterization,
J. Climate,
26, 5981–5999, https://doi.org/10.1175/JCLI-D-12-00517.1, 2013.
Xue, C., Chen, X., Wu, Y., Xu, X., and Gao, Y.:
Application of radar assimilation in local severe convective weather forecast,
Chin. J. Atmos. Sci.,
41, 673–690, 2017 (in Chinese).
Xue, M., Wang, D., Gao, J., Brewster, K., and Droegemeier K. K.:
The advanced regional prediction system (ARPS), storm-scale numerical weather prediction and data assimilation,
Meteorol. Atmos. Phys.,
82, 139–170, 2003.
Zhang, L., Liu, Y., Liu, Y., Gong, J., Lu, H., Jin, Z., Tian, W., Liu, G., Zhou, B, and Zhao, B.:
The operational global four-dimensional variational data assimilation system at the China Meteorological Administration,
Q. J. Roy. Meteor. Soc.,
145, 1882–1896, https://doi.org/10.1002/qj.3533, 2019.
Zhao, C. F., Klein, S. A., Xie, S. C., Liu, X. H., Boyle, J. S., and Zhang Y. Y.:
Aerosol First Indirect effects on non-precipitating low-level liquid cloud properties as simulated by CAM5 at ARM sites,
Geophys. Res. Lett.,
39, L08806. https://doi.org/10.1029/2012GL051213, 2012.
Zhi, X. F., Gao, J., and Zhang, X. L.:
An application of the Doppler radar data in the nowcasting using mesoscale model,
Scientia Meteorologica Sinica,
30, 143–150, 2010 (in Chinese).
Zhong, Z., Hu, Y. J., Min, J. Z., and Xu, H. L.:
Numerical experiments on the spin-up time for seasonal-scale regional climate modeling,
Acta Meteorol. Sin.,
21, 409–419, 2008.
Zhu, L. J., Gong, J. D., Huang, L. P., Chen, D. H., Jiang, Y., and Deng, L. T.:
Three-dimensional cloud initial field created and applied to GRAPES numerical weather prediction nowcasting,
J. Appl. Meteorol. Sci.,
28, 38–51, 2017 (in Chinese).
Short summary
The spin-up in GRAPES_GFS, under different initial fields, goes through a dramatic adjustment in the first half-hour of integration and slow dynamic and thermal adjustments afterwards. It lasts for at least 6 h, with model adjustment gradually completed from lower to upper layers in the model. Thus, the forecast results, at least in the first 6 h, should be avoided when used. In addition, the spin-up process should repeat when the model simulation is interrupted.
The spin-up in GRAPES_GFS, under different initial fields, goes through a dramatic adjustment in...