Articles | Volume 14, issue 1
https://doi.org/10.5194/gmd-14-205-2021
https://doi.org/10.5194/gmd-14-205-2021
Development and technical paper
 | 
12 Jan 2021
Development and technical paper |  | 12 Jan 2021

Spin-up characteristics with three types of initial fields and the restart effects on forecast accuracy in the GRAPES global forecast system

Zhanshan Ma, Chuanfeng Zhao, Jiandong Gong, Jin Zhang, Zhe Li, Jian Sun, Yongzhu Liu, Jiong Chen, and Qingu Jiang

Related authors

Simulation study of a Squall line hailstorm using High-Resolution GRAPES-Meso with a modified Double-Moment Microphysics scheme
Zhe Li, Qijun Liu, Xiaomin Chen, Zhanshan Ma, Jiong Chen, and Yuan Jiang
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-439,https://doi.org/10.5194/gmd-2020-439, 2021
Preprint withdrawn
Short summary

Related subject area

Climate and Earth system modeling
Improving the representation of major Indian crops in the Community Land Model version 5.0 (CLM5) using site-scale crop data
Kangari Narender Reddy, Somnath Baidya Roy, Sam S. Rabin, Danica L. Lombardozzi, Gudimetla Venkateswara Varma, Ruchira Biswas, and Devavat Chiru Naik
Geosci. Model Dev., 18, 763–785, https://doi.org/10.5194/gmd-18-763-2025,https://doi.org/10.5194/gmd-18-763-2025, 2025
Short summary
Evaluation of CORDEX ERA5-forced NARCliM2.0 regional climate models over Australia using the Weather Research and Forecasting (WRF) model version 4.1.2
Giovanni Di Virgilio, Fei Ji, Eugene Tam, Jason P. Evans, Jatin Kala, Julia Andrys, Christopher Thomas, Dipayan Choudhury, Carlos Rocha, Yue Li, and Matthew L. Riley
Geosci. Model Dev., 18, 703–724, https://doi.org/10.5194/gmd-18-703-2025,https://doi.org/10.5194/gmd-18-703-2025, 2025
Short summary
Design, evaluation, and future projections of the NARCliM2.0 CORDEX-CMIP6 Australasia regional climate ensemble
Giovanni Di Virgilio, Jason P. Evans, Fei Ji, Eugene Tam, Jatin Kala, Julia Andrys, Christopher Thomas, Dipayan Choudhury, Carlos Rocha, Stephen White, Yue Li, Moutassem El Rafei, Rishav Goyal, Matthew L. Riley, and Jyothi Lingala
Geosci. Model Dev., 18, 671–702, https://doi.org/10.5194/gmd-18-671-2025,https://doi.org/10.5194/gmd-18-671-2025, 2025
Short summary
Amending the algorithm of aerosol–radiation interactions in WRF-Chem (v4.4)
Jiawang Feng, Chun Zhao, Qiuyan Du, Zining Yang, and Chen Jin
Geosci. Model Dev., 18, 585–603, https://doi.org/10.5194/gmd-18-585-2025,https://doi.org/10.5194/gmd-18-585-2025, 2025
Short summary
The very-high-resolution configuration of the EC-Earth global model for HighResMIP
Eduardo Moreno-Chamarro, Thomas Arsouze, Mario Acosta, Pierre-Antoine Bretonnière, Miguel Castrillo, Eric Ferrer, Amanda Frigola, Daria Kuznetsova, Eneko Martin-Martinez, Pablo Ortega, and Sergi Palomas
Geosci. Model Dev., 18, 461–482, https://doi.org/10.5194/gmd-18-461-2025,https://doi.org/10.5194/gmd-18-461-2025, 2025
Short summary

Cited articles

Anthes, R. A., Kuo, Y., Hsie, E., Low-Nam, S., and Bettge, T. W.: Estimation of skill and uncertainty in regional numerical models, Q. J. Roy. Meteor. Soc., 115, 763–806, https://doi.org/10.1002/qj.49711548803, 1989. 
Arakawa, A. and Schubert, W. H.: Interaction of a cumulus cloud ensemble with the large-scale environment, Part I, J. Atmos. Sci., 31, 674–701, https://doi.org/10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2, 1974. 
Bauer, P., Thorpe, A., and Brunet, G.: The quiet revolution of numerical weather prediction, Nature, 525, 47–55, https://doi.org/10.1038/nature14956, 2015. 
Bjerknes, V.: Das Problem der Wettervorhersage, betrachtet vom Standpunkte der Mechanick und der Physik [The problem of weather prediction as seen from the standpoint of mechanics and physics], Meteorol. Z., 21, 1–7, 1904. 
Bryan, K.: Accelerating the convergence to equilibrium of ocean–climate models, J. Phys. Oceanogr., 14, 666–673, https://doi.org/10.1175/1520-0485(1984)014<0666:ATCTEO>2.0.CO;2, 1984. 
Download
Short summary
The spin-up in GRAPES_GFS, under different initial fields, goes through a dramatic adjustment in the first half-hour of integration and slow dynamic and thermal adjustments afterwards. It lasts for at least 6 h, with model adjustment gradually completed from lower to upper layers in the model. Thus, the forecast results, at least in the first 6 h, should be avoided when used. In addition, the spin-up process should repeat when the model simulation is interrupted.
Share