Articles | Volume 14, issue 1
Development and technical paper
12 Jan 2021
Development and technical paper |  | 12 Jan 2021

Spin-up characteristics with three types of initial fields and the restart effects on forecast accuracy in the GRAPES global forecast system

Zhanshan Ma, Chuanfeng Zhao, Jiandong Gong, Jin Zhang, Zhe Li, Jian Sun, Yongzhu Liu, Jiong Chen, and Qingu Jiang

Related authors

Simulation study of a Squall line hailstorm using High-Resolution GRAPES-Meso with a modified Double-Moment Microphysics scheme
Zhe Li, Qijun Liu, Xiaomin Chen, Zhanshan Ma, Jiong Chen, and Yuan Jiang
Geosci. Model Dev. Discuss.,,, 2021
Preprint withdrawn
Short summary

Related subject area

Climate and Earth system modeling
An emulation-based approach for interrogating reactive transport models
Angus Fotherby, Harold J. Bradbury, Jennifer L. Druhan, and Alexandra V. Turchyn
Geosci. Model Dev., 16, 7059–7074,,, 2023
Short summary
A sub-grid parameterization scheme for topographic vertical motion in CAM5-SE
Yaqi Wang, Lanning Wang, Juan Feng, Zhenya Song, Qizhong Wu, and Huaqiong Cheng
Geosci. Model Dev., 16, 6857–6873,,, 2023
Short summary
Technology to aid the analysis of large-volume multi-institute climate model output at a central analysis facility (PRIMAVERA Data Management Tool V2.10)
Jon Seddon, Ag Stephens, Matthew S. Mizielinski, Pier Luigi Vidale, and Malcolm J. Roberts
Geosci. Model Dev., 16, 6689–6700,,, 2023
Short summary
A diffusion-based kernel density estimator (diffKDE, version 1) with optimal bandwidth approximation for the analysis of data in geoscience and ecological research
Maria-Theresia Pelz, Markus Schartau, Christopher J. Somes, Vanessa Lampe, and Thomas Slawig
Geosci. Model Dev., 16, 6609–6634,,, 2023
Short summary
Monte Carlo drift correction – quantifying the drift uncertainty of global climate models
Benjamin S. Grandey, Zhi Yang Koh, Dhrubajyoti Samanta, Benjamin P. Horton, Justin Dauwels, and Lock Yue Chew
Geosci. Model Dev., 16, 6593–6608,,, 2023
Short summary

Cited articles

Anthes, R. A., Kuo, Y., Hsie, E., Low-Nam, S., and Bettge, T. W.: Estimation of skill and uncertainty in regional numerical models, Q. J. Roy. Meteor. Soc., 115, 763–806,, 1989. 
Arakawa, A. and Schubert, W. H.: Interaction of a cumulus cloud ensemble with the large-scale environment, Part I, J. Atmos. Sci., 31, 674–701,<0674:IOACCE>2.0.CO;2, 1974. 
Bauer, P., Thorpe, A., and Brunet, G.: The quiet revolution of numerical weather prediction, Nature, 525, 47–55,, 2015. 
Bjerknes, V.: Das Problem der Wettervorhersage, betrachtet vom Standpunkte der Mechanick und der Physik [The problem of weather prediction as seen from the standpoint of mechanics and physics], Meteorol. Z., 21, 1–7, 1904. 
Bryan, K.: Accelerating the convergence to equilibrium of ocean–climate models, J. Phys. Oceanogr., 14, 666–673,<0666:ATCTEO>2.0.CO;2, 1984. 
Short summary
The spin-up in GRAPES_GFS, under different initial fields, goes through a dramatic adjustment in the first half-hour of integration and slow dynamic and thermal adjustments afterwards. It lasts for at least 6 h, with model adjustment gradually completed from lower to upper layers in the model. Thus, the forecast results, at least in the first 6 h, should be avoided when used. In addition, the spin-up process should repeat when the model simulation is interrupted.