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Abstract. The spin-up refers to the dynamic and thermal ad-
justments made at the initial stage of numerical integration
in order to reach a statistical equilibrium state. The anal-
yses on the characteristics and effects of spin-ups are of
great significance for optimizing the initial field of the model
and improving its forecast skills. In this paper, three dif-
ferent initial fields are used in the experiments: the analy-
sis field of four-dimensional variational (4D-VAR) assimi-
lation, the 3 h prediction field in the operational forecasting
system, and the Final (FNL) Operational Global Analysis
data provided by National Centers for Environmental Pre-
diction (NCEP). Following this, the characteristics of spin-
ups in the version 2.3.1 of GRAPES (Global/Regional As-
similation and Prediction System) global forecast system
(GRAPES_GFS2.3.1) under different initial fields are com-
pared and analyzed. In addition, the influence of the lost
cloud-field information on the spin-up and forecast results
of the GRAPES model in the current operation is discussed
as well. The results are as follows. With any initial field, the
spin-up of GRAPES_GFS2.3.1 has to go through two stages
— the dramatic adjustment in the first half-hour of integra-
tion and the slow dynamic and thermal adjustments after-
wards. The spin-up in GRAPES_GFS2.3.1 lasts for at least
6h, and the adjustment is gradually completed from lower
to upper layers in the model. Therefore, in the evaluation of
the GRAPES_GFS2.3.1, the forecast results in the first 6 h
should be avoided, and the GRAPES_GFS2.3.1 with its own

analysis field performs better than the one using FNL reanal-
ysis data for the cold start in the spin-up because the varia-
tions in amplitude of the temperature and humidity tendency
are smaller and the spin-up time is slightly shorter. Based on
the 4D-VAR assimilation analysis field, the forecast in the
operational model is artificially interrupted and restarted af-
ter 3h of integration. In this process, as the cloud-field in-
formation is not retained, the spin-up should repeat in the
model. The characteristics of spin-up are mostly consistent
with those using the 4D-VAR assimilation analysis field as
the initial field. However, as the cloud-field information is not
retained in the current operation, the hydrometeor content in
the atmosphere at the early stage of the forecast is underesti-
mated, affecting the calculation accuracy of the radiation and
causing a systematic positive bias of temperature and geopo-
tential height fields at 500 hPa. In addition, the precipitation
is also underestimated at the early stage of the simulation,
affecting the forecast of typhoon tracks.

1 Introduction

Norwegian scholar Bjerknes (1904) first explicitly proposed
the theory of numerical forecasting in the early 20th century.
After more than a century of development, it has become an
effective way for studying climate change and its causes, as
well as forecasting climate and weather. In addition, higher
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requirements have been also raised for the improvement
of numerical forecast accuracy (Bauer et al., 2015; IPCC,
2013).

The numerical forecast accuracy is determined by a va-
riety of factors. The European Centre for Medium-Range
Weather Forecasts (ECMWF) concluded that the steady im-
provement of the numerical forecast in the past 30 years
can be mainly attributed to the improvement of the forecast
model itself, the application of more observation data, and
the development of data assimilation technology (Linus and
Erland, 2013). Among them, the performance of the fore-
cast model is mainly determined by the model resolution, the
accuracy of finite difference methods, and the representative-
ness of the physical process parameterization schemes. Ob-
servation data mainly depends on the development of moni-
toring technology, especially the application of satellite data.
Data assimilation integrates observation data from different
sources with model forecast elements so that the observa-
tion data can be comprehensively used by the models. The
main purpose of data assimilation is to create a simulated
atmosphere state closer to the real atmosphere, reduce the
bias of the initial atmosphere condition, and thereby improve
the quality of the initial field. In data assimilation, observa-
tion data from many sources are used. The uncertainties in
the observation data, the inconsistencies among observation
elements, and the model flaws (caused by model dynamic
assumptions, interactions between physical processes, static
data initialization and the radiation balance adjustment, etc.)
can lead to inconsistencies between the assimilated new ob-
servation input data and the original data in the model. There-
fore, the model needs to readjust the dynamic and thermal
processes at the initial stage of integration until a new sta-
tistical equilibrium state is reached. This process is called
the spin-up in numerical modeling, and the time required
to reach a new equilibrium state is called the spin-up time
(Wolcott and Warner, 1981; Kasahara et al., 1992; Séférian
et al., 2016; Sheng et al., 2006; Liu et al., 2008; Xue et al.,
2017). During the dynamic and thermal adjustment in the
spin-up, spurious gravity waves can be triggered, causing a
rapid increase in the root-mean-square error of the forecast
variables in the model and an underestimation of the fore-
cast precipitation (Wehbe et al., 2019; Qian et al., 2003). It
leads to unreliable forecast results during the spin-up. There-
fore, many studies generally do not consider the forecast re-
sults during the spin-up when evaluating the model forecasts
(Lo et al., 2008; Kleczke et al., 2014; Xie et al., 2013; Zhao
et al., 2012). If the spin-up time is too long in the opera-
tional model, it would inevitably affect the forecast accuracy
of the model. In addition, the overlong spin-up in the climate
model or the ocean model can consume excessive comput-
ing resources (Duben et al., 2014). Therefore, studying the
spin-up characteristics and reducing the spin-up time are of
great significance for improving the model forecast and sav-
ing computing resources.
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Due to different types and usages of numerical models, the
spin-up time in different models is greatly different. For ex-
ample, in global climate models, glacial models, and ocean
circulation models, the spin-ups usually take decades to hun-
dreds of years (Scher and Messori, 2019; Danek et al., 2019;
Rimac et al., 2017). However, in a regional climate model or
a land surface model, only several weeks to several months
are needed (Zhong et al., 2008; Rimac et al., 2017; Senatore
et al., 2015; Giorgi and Mearns, 1999; Chen et al., 1997).
In addition, the spin-up time is also affected by factors such
as the simulation domain, the simulation season, and the cir-
culation intensity (Anthes et al., 1989; Errico et al., 1987).
The spin-up time of short-term weather forecast models is
relatively short, usually several hours to about a dozen hours
(Weiss et al., 2008; Souto et al., 2003; Kasahara et al., 1988).
To reduce the impact of overlong spin-up on the accuracy of
numerical forecasts, many technical methods have been de-
veloped to shorten the spin-up time. For example, the “Dis-
torted Physics”, “Matrix method”, “Jacobian-free Newton—
Krylov” are used in marine models (Bryan, 1984; Khatiwala
et al., 2005; Knoll and Keyes, 2004), and the cloud analy-
sis method for assimilating unconventional observation data
such as satellites and radars is used in the short-term weather
forecast model to improve the initial humidity field and cloud
field, shorten the spin-up time, and improve the short-term
precipitation forecast (Li et al., 2011, 2018; Zhu et al., 2017;
Xue et al., 2003, 2017; Zhi et al., 2010; Carlin et al., 2017).

The Global/Regional Assimilation Prediction System
(GRAPES) is a numerical weather forecast model indepen-
dently developed by the China Meteorological Administra-
tion (CMA). It has become the core of the national numeri-
cal forecast operational system in China. Numerical Weather
Prediction Center of CMA has established a deterministic
weather forecast model system with a global horizontal grid
spacing of 25km and a national horizontal grid spacing of
3 km (Shen et al., 2017; Zhang et al., 2019; Ma et al., 2018;
Chen and Shen, 2006). Hao et al. (2013) used the three-
dimensional variational (3D-VAR) system to perform the
assimilation and analysis of initial fields in the GRAPES
regional model, achieving a good forecast result. The re-
search by Zhu et al. (2017) showed that the cloud analy-
sis method in the GRAPES regional model can effectively
shorten the spin-up time. After 1h integration in the model,
the precipitation forecast is very close to the observation, and
this has a positive impact on the threat score of precipita-
tion forecast within 12 h. Li et al. (2011) also showed sim-
ilar findings. The assimilation module of GRAPES global
forecast system (GRAPES_GFS) was upgraded from 3D-
VAR to a four-dimensional variational (4D-VAR) assimila-
tion system in July 2018. The analysis and forecast abil-
ity of a 4D-VAR assimilation system is significantly bet-
ter than 3D-VAR (Zhang et al., 2019). However, there are
still many unknowns to be answered. For example, what
are the characteristics of the spin-up at the early stage of
integration in GRAPES_GFS after the upgrade? In the re-
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search and development of the GRAPES-GFS, the widely-
used FNL (Final Operational Global Analysis) reanalysis
data provided by NCEP (National Centers for Environmen-
tal Prediction) (Kalnay et al., 1996) are usually adopted as
the model’s initial field to quickly evaluate the effects of
modification in dynamic core and physical processes on the
model forecast performance because the cold start simulation
with FNL consumes less computing resources than that of a
cycle assimilation simulation. Another question is what ad-
vantages the new 4D-VAR assimilation analysis fields have
in spin-up process compared with the cold-start simulation
with FNL. In addition, we should note that each forecast re-
sult of GRAPES_GFS is from the model integration fore-
cast based on the 4D-VAR assimilation analysis field 3h
ago in the current operational forecast system. For exam-
ple, the 12:00 UTC forecast result is based on the 4D-VAR
assimilation analysis field at 09:00 UTC. Actually, for nu-
merical weather prediction model’s users (especially fore-
casters), they are usually accustomed to referring the fore-
cast productions of model staring to integrate from 00:00 or
12:00 UTC (or more time, for example 18:00 UTC). Thus,
considering the habits of users when using the forecast re-
sults, GRAPES_GFS integrates for 3h (to 12:00 UTC) to re-
tain the essential meteorological element fields (U, V, T, Q,
H, TS Ps, etc.), and then the integration is terminated and
restarts from 12:00 UTC by using the newly saved meteoro-
logical field data. The model forecast results thereafter are re-
leased, that is, the forecast results at 12:00 UTC are obtained
by users. In this process, the cloud-field variables (the mass
and concentration of hydrometeors and cloud cover) during
the first 3 h of integration are not retained in the model, los-
ing the cloud information formed after the 3 h spin-up. The
reasons for the unretained cloud-field variables were mainly
based on the following considerations: the hydrometeor con-
tents are in very small amounts relative to water vapor, and
they can be quickly created in the spin-up process when
the model restarts. Moreover, this treatment can save stor-
age space and input—output (IO) time. However, its impacts
on the spin-up process and model forecast performance have
not yet been carefully analyzed and evaluated. Therefore, we
need to fully diagnose and analyze the necessity of the rep-
etition of GRAPES_GFS spin-up during the reintegration,
and the impact of the lost cloud-field information on the
later forecast. In this regard, the characteristics of spin-ups
in GRAPES_GFS using the 4D-VAR analysis data and the
FNL data separately as the initial field are compared and an-
alyzed, and the impacts of the cloud-field information loss in
the current operation on the spin-up after the model restart
and on later forecast results are discussed. This paper aims
to provide the scientific basis for understanding the charac-
teristics of GRAPES_GFS at the initial stage of integration
and improving the assimilation system and operational pro-
cedure.

The paper is organized as follows. In Sect. 2, the
GRAPES_GFS forecasting system and the experiment set-
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tings for one case study are introduced. In Sect. 3, the main
research results are presented. Finally, in Sect. 4, the main
conclusions are given, and some issues about spin-ups are
discussed.

2 GRAPES_GFS2.3.1 and experiment setup
2.1 GRAPES_GFS22.3.1

GRAPES is a global numerical weather prediction sys-
tem that is composed of an atmospheric model and a vari-
ational data assimilation system (3D-VAR/4D-VAR). The
framework of the atmospheric model is a fully compress-
ible non-hydrostatic dynamical one with semi-implicit and
semi-Lagrangian time difference scheme. In the horizon-
tal direction, the equidistant latitude—longitude grid system
with the Arakawa-C grid and central differencing of second-
order accuracy for variable staggering is used, and in the
vertical direction, the height-based terrain-following coordi-
nate with the Charney—Phillips staggering is adopted. Fore-
cast variables of GRAPES_GFS include the dimensionless
air pressure (Exner function), potential temperature, three-
dimensional wind field components, and specific humidity.
It also introduces the Piecewise Rational Method (PRM)
scalars (Su et al., 2013) into the model, which is a scheme
of water vapor advection. The physical parameterization
schemes used in the GRAPES_GFS operation mainly in-
clude the long-wave and short-wave radiation schemes (the
rapid radiative transfer model, RRTMG) (Morcrette et al.,
2008; Pincus et al., 2003), the land surface scheme (the
Common Land Model, CoLM) (Dai et al., 2003), the plane-
tary boundary layer scheme (Medium-Range Forecast, MRF)
(Hong and Pan, 1996), the deep and shallow cumulus convec-
tion parameterization scheme (the New Simplified Arakawa—
Schubert, NSAS) (Arakawa and Schubert, 1974; Liu et al.,
2015; Pan and Wu, 1995). The cloud physics scheme in-
cludes the macro cloud scheme dealing with the condensa-
tion process under the unsaturated condition of grid-average
water vapor, a double-moment cloud microphysical scheme,
and a cloud cover prognostic scheme (Chen et al., 2007; Ma
et al., 2018). On 1 July 2018, the GRAPES global 4D-Var
data assimilation system came into operation (Zhang et al.,
2019), which is called version 2.3.1 of GRAPES_GEFS (ab-
breviated as GRAPES_GFS2.3.1). The GRAPES_GFS2.3.1
version is adopted in this research.

2.2 Experiment setup

In this paper, GRAPES_GFS2.3.1, with the operational fore-
cast time of 00:00 UTC on 9 August 2019, is taken as an
example, and three experiments are set up to analyze the sim-
ilarities and differences in the spin-up characteristics of the
model using different initial fields. The settings are shown in
Table 1. In the first experiment, the analysis field provided by
the 4D-VAR assimilation analysis system in the operational
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forecast at 21:00 UTC on 8 August 2019 is used as the ini-
tial field to directly perform model integration forecasts, and
the initial time is 21:00 UTC on 8 August. This experiment
is called G21. For the second experiment, called GO0, its ini-
tial field adopts 3 h integration output of G21 without retain-
ing cloud-field information. That is to say, at 00:00 UTC on
9 August, it retains the G21’s 3 h forecast variables (u and
v wind field components, potential temperature, water va-
por, and dimensionless air pressure, etc.) required by the pre-
processing system and stops the integration. During the pro-
cess, the fields of all hydrometeor contents and cloud cover
are lost considering the limitation of IO time and disk space.
Then the model restarts at 00:00 UTC on 9 August with the
reserved forecast-field information for forecasting in GOO.
Moreover, the model output of GOO is exactly the forecast
results to be provided to users in the GRAPES_GFS2.3.1
operation. The third experiment uses the initial field from
the NCEP FNL reanalysis data at 00:00 UTC on 9 August
2019 to perform the integration forecast. The purpose is to
compare the spin-up characteristics of GRAPES_GFS2.3.1
model, respectively, using its own analysis field and FNL re-
analysis field as the initial field. This experiment is called
FO00. To analyze the impacts of the initial field on the fore-
cast, GOO and FOO produce a continuous 72h forecast. As
G21 starts the integration 3 h earlier than the other two, the
forecast of G21 lasts for 75 h to ensure the same forecast and
analysis period with G21 and GOO.

All  three experiments are based on the
GRAPES_GFS2.3.1 operational model, with a horizon-
tal grid spacing of 0.25°, 60 vertical layers, and a model
integration time step of 300s. The physical schemes used
are from the operational setup (as described in Sect. 2.1),
and the assimilation module is 4D-VAR assimilation system.
To explicitly analyze the spin-up characteristics of the
GRAPES_GFS2.3.1 at this early stage of integration, the re-
sults of each integration step are output, and the temperature
tendency (TT) and water vapor tendency (WVT) fields at
each model layer during the dynamic and physical processes
are retained.

In addition, the cloud-field information has not been saved
during the restart in the current operation. To examine its im-
pact on the accuracy of the later forecast, this study investi-
gates the super typhoon “Lekima” (no. 1909) that landed in
China during the selected forecast period, and the forecast
differences in cloud, precipitation field, and typhoon track
during Lekima between GO0 and G21 are analyzed.
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3 Results
3.1 Characteristics of spin-ups
3.1.1 Characteristics of total WVT and total TT

To analyze the spin-up characteristics of
GRAPES_GFS2.3.1, the initial fields in FOO, G21, and
GO0 are used to perform the integration, and the temporal
variations of the average total WVT and TT at different
heights from 00:00 to 12:00 UTC are calculated, as shown
in Fig. 1. Seen from the figure, both the WVT and TT show
sharp fluctuations at the initial stage of the integration in
the three experiments, especially during the first hour. After
3-6h of spin-up adjustment, the variation magnitudes of
WVT and TT gradually become gentle, but the variation
characteristics vary with different initial fields. At the early
stage of the integration, the WVT is adjusted in FOO and
G21, with the amplitude of —4.5gkg™'d~!. In G21, the
water vapor adjustment occurs in the lower layers of the
model (850 and 925 hPa), while the WVT is relatively gentle
without an obvious adjustment in the upper and middle
layers (500 and 300 hPa). In FOO, the water vapor adjustment
occurs at the upper levels of the model at the early stage of
integration. The WVT at 300 hPa can reach —4.5 gkg='d~!,
but it weakens immediately afterwards, probably due to the
supersaturated water vapor in the initial field from FNL
data. In FOO, the WVT in the lower layers of the model is
also significantly larger than that in G21. For example, at
850 hPa, the WVT in FOO maintains about 1gkg~'d~! for
a relatively long time but in G21 mostly changes within
0.5gkg='d"!. The corresponding temperature adjustment
processes in the two experiments present the same vari-
ation characteristics as the WVT adjustment. Therefore,
the spin-up in the integration using the analysis field of
GRAPES_GFS2.3.1 as the initial field is gentler than that
using the FNL reanalysis data as the initial field.

In G21 and GOO, the variations of both WVT and TT are
very consistent, indicating that GOO has inherited the temper-
ature and humidity structure of G21 well. However, GOO still
needs to go through the spin-up during which a gradually
stable adjustment process follows a sharp fluctuation at the
early stage of integration; i.e., the dynamic and thermal ad-
justments are required to reach a statistical equilibrium state
in the model. At the initial stage of integration in G0O, the
variation amplitudes of WVT and TT are smaller than those
in G21, but greater than those in G21 after the 3 h integra-
tion. It shows that although GOO can retain the temperature
and humidity structure of G21, the loss of cloud-field infor-
mation in the operation still has a destructive effect on the
model equilibrium state after 3 h adjustments. Based on the
variation of TT, the spin-up time required for GOO is gener-
ally less than that for G21. It takes about 6 to 8 h to reach a
TT equilibrium state in G21, but it is less than 6 h in GOO.
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Table 1. Model setup of three experiments used in this study.

209

Experiment  Initial Initial forecast Lead time
name field time (h)
G21 4D-VAR analysis fields 21:00 UTC, 8 August 2019 75
GO0 4D-VAR analysis fields plus 3 h integration ~ 00:00 UTC, 9 August 2019 72
FOO FNL reanalysis data 00:00 UTC, 9 August 2019 72
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Figure 1. Time evolution of global mean of the total water vapor tendency (WVT) and total temperature tendency (TT) at different vertical
levels from O to 12 h simulated by FOO (a, b), G21 (¢, d), and GOO (e, f) experiments. The unit of WVT and TT is gkg_1 d~!and Kd™ 1,

respectively.
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3.1.2 Tendency characteristics of the model dynamical
and physical processes

In GRAPES_GFS2.3.1, the total temperature tendency of
the model (ALL) is determined by dynamic core (DYN),
radiation process (RAD), turbulent mixing in planetary
boundary layer process (PBL), cumulus convection pro-
cess (CONV) and cloud physical process (CLOUD). Among
them, the total temperature tendency of all physical pro-
cesses (PHY) is defined as the sum of the last four
items (PHY =RAD + PBL 4+ CONV 4 CLOUD). Likewise,
the total water vapor tendency for ALL and PHY are same to
those of temperature tendency except for the radiation pro-
cess (RAD). Figure 2 shows the temporal variation of mean
WVT due to dynamic and physical processes at different
heights in FOO, G21 and GOO. In the middle and upper lay-
ers of the model (Fig. 2a and d), there is a drastic adjust-
ment in the atmosphere at the early stage of the integration
in FOO. It may be due to the supersaturated water vapor in
the initial field from FNL data, which causes the cloud to
condense very quickly, and thus a relatively stable state is
reached after three integration steps. At these levels in G21
(Fig. 2b and e), the total WVTs at the first few integration
steps are slightly larger than those at the subsequent integra-
tion steps. The variations of the WVTs from dynamic core
and turbulent mixing process in the planetary boundary layer
are much less than those from the cumulus convection pro-
cess and cloud physical process, and the latter two processes
jointly determined the variation of WVTs at 300 and 500 hPa.
There is not much difference in the dynamic field tenden-
cies between G21 and FOO. The magnitudes of the WVTs in
the dynamic processes of the two experiments are also very
close: around 0.5 gkg~!d~! at 500 hPa and 0.25 gkg™'d~!
at 300 hPa. Therefore, the differences of the upper middle-
level water vapor adjustments in the spin-ups between G21
and FOO are mainly caused by physical processes, and there
is a good consistency in the dynamic process between the
two experiments. At 925 hPa (the lower layer of the model),
the total WVT stays around 1 gkg~'d~! in FOO after three
integration steps, humidifying the atmosphere. In G21, it
reaches a relatively stable state after six integration steps,
and water vapor decreases overall. As the WVTs of the dy-
namical processes in FOO and G21 have the same magnitude
around 0.25 gkg™'d~!, the difference of the total WVT be-
tween G21 and FOO is mainly caused by physical processes.
The effect of the boundary layer on the WVT is similar in
both experiments, and the WVT is almost 3 gkg~'d~!. The
greatest difference between the two experiments is mainly
caused by the convection scheme. The convection in F0O is
relatively gentle, and the WVT from convection is around
—1gkg='d~!. In contrast, due to the strong dehumidifi-
cation ability of convection in G21, the WVT is between
—5and —2.5gkg~!d~!, which is significantly stronger than
that in FOO. At 925hPa, the water vapor mainly decreases
due to the strong convection process in G21. Such a signifi-
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cant difference in the convection processes between FOO and
G21 may be related to the low-level temperature and humid-
ity structures and the triggering conditions for convection.
Meanwhile, it can be seen that the difference in the initial
field of the model can significantly affect the physical pro-
cesses.

In summary, in the middle and upper atmosphere, the
fluctuation of WVT in G21 is weaker than that in FOO, in-
dicating the advantage of using the data assimilation cy-
cling as the initial field. Both experiments quickly reach a
quasi-equilibrium state after dramatic adjustments over sev-
eral integration steps. The water vapor adjustment in spin-ups
mainly occurs in the lower atmosphere of the model. The dif-
ference is mainly caused by different convection schemes. At
the same time, different initial fields of the temperature and
humidity structure may lead to a great difference in the de-
humidification ability of convection. For GOO and G21, the
WVTs of the dynamic and physical processes have roughly
the same characteristics. At all of the three levels, the WVTs
in GOO are slightly lower than those in G21.

In the middle and upper layers of the model, the dramatic
change of the TT in FOO mainly occurs within the first half-
hour of the integration (Fig. 3a and d). Among all the TTs
at the first integration step, the cloud physical process leads
to the largest one, followed by convection process, and they
are related to the water vapor condensation process (Fig. 2a
and d). For example, at 500 hPa, the global average heating
produced by the cloud microphysical condensation process at
the initial time can exceed 5 Kd~!, and it takes four integra-
tion steps to reach a relatively stable state. However, at this
level, the TT caused by the convection process is 3Kd~!,
and it only needs one integration step with the drastic adjust-
ment to get relatively stable. In addition, the TT caused by
the dynamic process fluctuates greatly at the first half-hour
of the integration. For example, at 300 hPa, the TT fluctuates
between 1.1 and 1.5Kd~!, and it requires extra 3 or 4 in-
tegration steps to reach a relatively stable state compared to
the physical processes. Nevertheless, after half an hour of
severe fluctuations, the TT caused by dynamic and physical
processes tends to be relatively stable. Overall, the temper-
ature increases by 0.25 to 0.5Kd~! in the middle and up-
per atmosphere in FOO. Compared with that in middle and
upper layers, the TT variation caused by the dynamic and
physical processes in the lower layer of the model (Fig. 3g)
shows a relatively small and rapid adjustment at the first in-
tegration step. However, no drastic adjustment is shown af-
terwards, and its variation is relatively stable. The TT of the
convection process at 925 hPa in FOO varies between 1.5 and
2Kd~!, which is mainly caused by condensing and dehu-
midifying of the atmosphere (Fig. 2g). Except for the cloud
physical process, which has a relatively small positive ten-
dency in the first four time steps, the TTs of dynamic core
and other physical processes are all negative. Overall, in FOO
the total atmospheric temperature is reduced with an ampli-
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Figure 2. Time evolution of mean water vapor tendency (WVT) of the dynamical core and each physical process at 300, 500, and 925 hPa
heights from O to 1 h simulated by the FOO (a, d, g), G21 (b, e, h), and GOO (c, f, i) experiments (values given in gkg_l d_l).

tude of about —1.2Kd~! in the first hour of the integration
at 925 hPa.

In G21, the TT in the middle and upper layers also ex-
periences a dramatic adjustment in the first half-hour of the
integration (Fig. 3b and e), and the main reason for the fluc-
tuation is the dehumidification and heating in the convection
process, which is different from that in FOO caused by the
cloud physical process. The temperature increase caused by
the convection process in G21 is 1 to 2.5 Kd~!, which is
about twice that in FOO. The TT caused by the cloud phys-
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ical process in G21 varies relatively gently. Similar to F0O,
the TT caused by the dynamic process in G21 also shows ob-
vious fluctuations, which may be caused by the drastic vari-
ations of physical processes. In the lower layer of 925 hPa
(Fig. 3h), the positive TT in G21 is also caused by convec-
tive dehumidification and heating, while other processes lead
to cooling. In terms of the total TT (dynamic core plus all
physical processes), FOO has a cooling effect with a value
of —1Kd~!, while G21 has a warming effect with a value

Geosci. Model Dev., 14, 205-221, 2021
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Figure 3. The same as Fig. 2 but for the results of temperature tendency. (values given in Kd~ 1.

within 1 Kd~!. The temperature increase rate of G21 gradu-
ally decreases with the integration step.

The characteristics of the TT variation in GO0 are consis-
tent with those in G21 (Fig. 3c, f and 1). In the first few time
steps, GOO also has an adjustment process, with the adjust-
ment amplitudes of TT close to half those in G21 at all lev-
els. After half an hour, the temperature tends to be relatively
stable. The TT variation in GOO indicates that although G21
has undergone a 3 h spin-up, GOO needs to undergo it again
due to the loss of cloud-field information during the restart,
and its fluctuation amplitude is not substantially smaller than
that of G21.

Geosci. Model Dev., 14, 205-221, 2021

3.1.3 Evolution characteristics of the cloud field

The comprehensive adjustment effect of the dynamic and
the physical processes on the water vapor and temperature
in the numerical model can be presented by the cloud state.
To reveal the dynamic and thermal adjustment processes in
GRAPES_GFS2.3.1 system at the beginning of the integra-
tion and the time required for the model to reach the sta-
tistical equilibrium state (spin-up time), this section uses
the total grid number of cloud (TGNC) in the model as
the index for analyses. Although the cloud is changing lo-
cally, the total area covered by cloud can be regarded as
a constant globally on average. Therefore, TGNC is used
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as the analysis index, and the model is considered to have
completed the spin-up when the TGNC gets relatively sta-
ble. The total hydrometeors content (THC, THC = cloud
water + raindrop + cloud ice + snow + graupel) greater than
1.0 x 10~* gkg™! in GRAPES_GFS2.3.1 is defined as the
grid with cloud, and the TGNC at a global scale or a certain
height is the sum of all the grids in the corresponding cloud
area.

Figure 4 shows the vertical distributions of TGNC at dif-
ferent lead times in three experiments. It can be seen that re-
gardless of whether the GRAPES_GFS2.3.1 model is cold-
started with reanalysis data (FOO, Fig. 4a) or warm-started
with the 4D-VAR analysis field as the initial field (G21,
Fig. 4b), the TGNC experiences rapid generation and growth
during the 3 h after the beginning of integration in the two
experiments, especially in the middle- and low-cloud regions
below 300 hPa. After 3 h of integration, the TGNC grows rel-
atively slowly, while after 6 h of integration, the TGNC be-
comes basically stable. However, the time required for the
TGNC to reach the equilibrium state is slightly different at
different heights. In FOO, the integration time required for
the TGNC to gradually reach the statistical equilibrium state
below 850hPa is 6h. Note that the statistical equilibrium
state is defined when the difference of TGNC with respect
to the 24 h integration is insignificant (the difference is less
than 20% of TGNC at 24 h). However, it takes 6—12h for
the TGNC to get stable and it completes the spin-up above
850 hPa. For G21, the TGNC of the middle and low cloud
below 300 hPa needs 6 h to reach the statistical equilibrium
state, while the TGNC of the high cloud above 300 hPa needs
6—12h. It can be seen that the GRAPES_GFS2.3.1 using the
analysis field from its own data assimilation cycling enables
the cloud field in middle and upper layers to reach the equi-
librium state earlier than that using FNL data for the cold
start. In addition, GRAPES_GFS2.3.1 is gradually adjusted
from the lower to the upper layers of the model to reach the
equilibrium state, which is consistent with the evolution char-
acteristics of the thermodynamic process in the troposphere.
For the cloud above 500 hPa, the TGNC in F0O is signifi-
cantly more than that in G21, which is related to a higher
relative humidity of the initial field. Compared with G21,
FOO has a wetter water vapor environment at the upper levels
(Fig.6d), which tends to quickly condense the water vapor
into more hydrometeors through the cloud scheme to elimi-
nate supersaturated water vapor at the beginning of the inte-
gration (Fig. 2a). Thus, FOO has a higher hydrometeor content
value and a wider distribution of cloud region (Fig. 5a and e),
and its TGNCs are also larger than those of G21 at the upper
layers.

In GOO (Fig. 4c), the growth of TGNC is found to be much
slower than that in G21, especially for the TGNC of the mid-
dle and upper cloud. For example, at 3 h after the beginning
of GO0, the TGNC of the middle cloud is mostly between 15
and 20, while the TGNC in G21 can reach 25-30. The rea-
son may be that the humidity and temperature fields of the
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model in G21 are already in a relative equilibrium state after
3 h spin-up. Meanwhile, as the restart of GRAPES_GFS2.3.1
has lost the cloud-field information (dotted light blue line)
from the 3 h integration, the TGNC cannot reach the previ-
ous magnitude in the middle and upper layers even if it has
been integrated for 24 h in GOO (Fig. 4c, solid purple line).

Figure 5 shows the distributions of THC at 400 hPa at dif-
ferent forecast time in the three experiments. It can be seen
that the temporal variation characteristics of THC and its hor-
izontal distribution at 400 hPa have consistent results with
those shown in Fig. 4. In FOO and G21, as supersaturated wa-
ter vapor is removed from the initial field, the cloud is quickly
generated at the first integration step of the model. The THC
rapidly increases within 1 h, and the cloud area with high hy-
drometeor content is constantly expanding. For example, at
1 h into the integration in FOO, the THC in most areas of the
Pacific Warm Pool is 0.2 gkg~!. With the further adjustment
of the spin-up, the THC in this area gradually decreases and
maintains a relatively equilibrium state after 6 h of integra-
tion. The variation characteristics of the THC in the storm
track area (60—30° S) in the Southern Hemisphere are similar
to those in the warm pool area but are less significant.

Experiments using the 4D-VAR analysis field to provide
the initial field (Fig. Se-h) show that the variation character-
istics of THC at 400 hPa are generally consistent with those
in FOO. After the first integration step of GRAPES_GFS2.3.1,
cloud areas are quickly generated in tropical and midlatitude
areas. Due to the rapid development of convection processes
in tropical areas, more cloud with THC of 0.0-0.05 gkg™!
appears. After 3h of integration, the development of the
cloud area gradually weakens. After 6h of integration, the
variations of the range and shape of the cloud area are no
longer obvious, and it can be considered that a relatively
equilibrium state is reached. From the view of absolute value
of THC in the cloud area, although the difference in the
distribution range of the cloud is insignificant, the THC in
G21 is significantly less than that in FOO due to the differ-
ent temperature and humidity conditions in their initial fields
(Fig. 6).

Since GO0 does not retain the cloud-field information af-
ter 3h of integration in G21 (the THC in Fig. 5g), the
model needs to undergo a new cloud-generation process
when restarting the integration. However, as the dynamic and
thermal fields are obtained after 3 h of adjustments in G21,
the relative humidity has undergone a condensation process,
making the atmosphere of GO0 have a much weaker supersat-
uration at the initial time than that in G21. Therefore, unlike
FOO (Fig. 5a) or G21 (Fig. Se), in which large-scale cloud
appears instantaneously, the cloud field in GOO can only be
gradually generated by the dynamic and physical processes
of the model. It can be seen from Fig. Si—k that this process is
relatively slow, and a relatively stable cloud distribution does
not appear until 3 h after the integration. The cloud range in
GOO at that time is smaller than that in G21, and it generally
reaches the equilibrium state after 6 h of integration. The in-
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fluence of slower generation and smaller range of the cloud
in GOO on the model forecast results will be analyzed and
explained in Sect. 3.2.

To reveal the reason why the TGNC (Fig. 4) and the THC
(Fig. 5) in the upper layers of the model in FOO are signifi-
cantly higher than those in G21, the difference of water vapor
content and relative humidity at 400 hPa is analyzed, and the
results are shown in Fig. 6. Figure 6¢ shows that the spe-
cific humidity in the initial field of FOO is generally higher
than that of G21 in the tropical areas and the midlatitude and
high-latitude areas of the Northern Hemisphere, especially
in the tropical warm pool area where the difference is mostly

Geosci. Model Dev., 14, 205-221, 2021

over 0.2 gkg™!. The relative humidity reflects the degree of
water vapor saturation. Figure 6d shows that the humidity of
the initial field from the FNL reanalysis data is high relative
to that from the 4D-VAR analysis field in the tropical warm
pool, Intertropical Convergence Zone (ITCZ), and midlati-
tude and high-latitude areas at 400 hPa. This means that the
water vapor is more likely to get saturated using the FNL
reanalysis data as initial field. Thus, the cloud area is larger
and the THC is higher at the beginning of the integration. It is
not difficult to conclude that there are differences in the struc-
ture of atmospheric temperature and humidity among differ-
ent initial field data, which significantly impacts the spin-up
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characteristics of the model and the cloud formation and de-
velopment. It also suggests that we need to pay more atten-
tion to the analysis quality of water vapor in data assimilation
(DA). It has been also confirmed by previous studies (Wey-
gandt et al., 2002; Ge et al., 2013) that having an accurate
moisture initial field by DA is an effective way to improve
the forecast performance of supercell storms in numerical
weather prediction models.

3.2 Impacts on later forecast results

It can be seen from Sect. 3.1 that the cloud-field informa-
tion formed in the first 3 h of integration has not been saved
operationally; thus, the model must restart the spin-up, and
THC appears to be significantly less in the new spin-up. In or-
der to discuss the impact of the restarted spin-up and the de-
creased THC on the later forecasts by GRAPES_GFS2.3.1,
the global radiation field and synoptic field (temperature and
geopotential height) are analyzed in this section. The cloud
and precipitation fields and the track of the super typhoon
Lekima that made landfall in China during the simulation
period will be analyzed as well.

https://doi.org/10.5194/gmd-14-205-2021

3.2.1 Impacts on global radiation

Figure 7 shows the zonal mean distributions of averaged col-
umn cloud water content (CCWC), the outgoing longwave
(OLR) at the atmosphere top and the downward longwave at
ground (GDLW) level simulated by G21 and G0O from 00:00
to 03:00 UTC on 9 August 2019, as well as the distributions
of difference between them. It can be seen from Fig. 7a that
the total zonal-averaged CCWC forecasted in GOO is system-
atically smaller than that forecasted in G21. The areas with
smaller CCWC are mainly located in the Southern Hemi-
sphere storm track, tropical low-latitude areas, and midlati-
tude and high-latitude areas in the Northern Hemisphere with
active cloud. Among them, the area with the smallest CCWC
is the active area of Southern Hemisphere storm track, with
the CCWC difference reaching 240 gm~2, and there are also
some areas with the CCWC difference over 200 gm™2 in the
Northern Hemisphere. From the OLR and GDLW predicted
in the two experiments, it can be seen that the OLR pre-
dicted in GOO is systematically larger than that in G21, with
the maximum bias (20 Wm?s~!) appearing in the Southern
Hemisphere storm track. This is due to the interaction be-
tween clouds and radiation, as well as the underestimation of

Geosci. Model Dev., 14, 205-221, 2021
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the CCWC. In terms of GDLW, the reduced CCWC weakens
the atmospheric warming effect, resulting in systematically
smaller GDLW in GOO than in G21. In most areas, the GDLW
is smaller than the observation by over 10 Wm~2s7 !, and
the regions with the largest bias are the midlatitude and high-
latitude areas of the Southern Hemisphere and high-latitude
areas of the Northern Hemisphere.

3.2.2 Impacts on the global temperature and
geopotential height fields

The change in the calculation of the radiation flux induced
by cloud would seriously affect the atmospheric temperature
field and geopotential height field. Figure 8 shows the dif-
ference distributions of the 500 hPa temperature field and the
geopotential height field at four lead time between GOO and
G21. It can be found that as there is less hydrometeor in the
cloud in GOO than in G21, the temperature field in GOO at
different forecast times shows a systematic warming of more
than 0.1 K in the tropical low-latitude and midlatitude and
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high-latitude areas with active cloud. With the increase of
the lead time, the warming area is expanding and the degree
of warming gradually increases. For example, after 72h of
integration, the warming in many areas is larger than 0.2 K,
and it can reach 0.5 K in some areas. Systematic biases also
appear in the corresponding geopotential height field. Com-
pared with those in G21, the geopotential height fields in GOO
have also systematic positive biases. For example, in the first
24h of integration, the systematic biases in the geopoten-
tial height field are above 0.5 gpm, and the positive bias can
exceed 1 gpm in areas with active cloud. After 72 h of inte-
gration, the geopotential height field in the tropical area still
shows a systematic positive bias, while in the midlatitude and
high-latitude areas, the bias of the geopotential height field
shows the structure with an alternation of positive biases and
negative biases due to the biases of the weather system loca-
tion predicted in the two experiments, but in most areas the
forecast fields are still higher than the observation.

3.2.3 Impacts on typhoon forecasts

This section analyzes the biases of the cloud field, precip-
itation field, and the track of the super typhoon Lekima
(no. 1909) and typhoon “Krosa” (No. 1910) in 2019 dur-
ing the forecast period to evaluate the impact of the lost
hydrometeor information on typhoon forecast operation in
GRAPES_GFS2.3.1. During the forecast, Lekima and Krosa
appear as double typhoons in the western Pacific. Lekima
made landfall in northern China, while Krosa remained off-
shore. Since the conclusions for both Lekima and Krosa are
the same, only Lekima will be presented in this study. Here,
we show the impact on the cloud and precipitation of Lekima
by the lost hydrometeor information on typhoon forecast
operation of GRAPES_GFS2.3.1. In the last part, the path-
forecast biases for the two typhoons are both given.

Figure 9 shows the evolutions of the averaged CCWC
and column cloud ice content (CCIC) within the main cloud
area of Lekima (22-34° N, 117-130° E) simulated in GOO
and G21 from 00:00 UTC on 9 August to 00:00 UTC on
10 August 2019. It can be seen that the CCIC predicted in
GO0 at the early stage of integration is obviously underes-
timated. The averaged CCIC values in G21 are maintained
within 850-1000 gm~2 from 00:00 to 09:00 UTC on 9 Au-
gust, while the CCIC is only 480 gm ™2 at the initial time of
G00. GOO needs to restart the spin-up. During the spin-up,
the CCIC predicted in GOO increases rapidly, with the great-
est increase during 00:00 to 06:00 UTC. After 3 h of the inte-
gration, the CCIC increases rapidly from 480 to 820 gm™2.
After 6h of integration, the CCIC is close to 900 gm~2. In
GO0, the CCIC is not as large as that in G21 until 9h after
the beginning of integration.

Figure 10 shows the difference distributions of both 3 and
24 h accumulated precipitation (since 00:00 UTC 8 August
2019) of Lekima between forecasts of GOO and G21.The
most significant difference of the 3h cumulated precipita-
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tion appears within the first 3h of integration in G0O. The
00:00-03:00 UTC precipitation forecasted in GOO presents a
systematic underestimation when compared with G21, and
the biases are all above 1 mm. The precipitation bias in the
center of Lekima can even exceed 5 mm (Fig. 10a). As shown
in Fig. 9, after 3 h of adjustments, the total CWP and CCIC
in the typhoon system in GOO grows rapidly and gets close to
the magnitudes in G21. Therefore, the difference of the 3h
precipitation between forecasts of GO0 and G21 is no longer
significant during 03:00-06:00 and 06:00-09:00 UTC, and
there is no more systematic bias (Fig. 10b and c). The phase
differences of the weather system lead to the structure with
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alternating positive biases and negative biases for the precip-
itation difference.

It can be found from Fig. 10d that the lack of cloud-field
information has a significant impact on the simulation of the
accumulated precipitation in the first 24 h of Lekima. The
negative biases dominate the central area of the typhoon; i.e.,
there is an underestimation of precipitation with the maxi-
mum bias of 5-10 mm. In contrast, in the spiral cloud zone
around the typhoon, there is a structure with an alternation of
positive and negative biases, which is related to the location
bias of the weather system simulated in the two experiments
in this area.

Figure 11 shows the forecast track evolution of Lekima
and Krosa in GO0 and G21 within the lead time of 72 h. Over-
all, G21 performs better than GOO in predicting the tracks
of these two typhoons, and there are different characteristics
for the track forecast biases of the two different typhoons.
Lekima landed on the coast of Chengnan Town, Wenling
City, Zhejiang Province, at 15:45UTC on 9 August 2019.
There is not much difference in the biases of the track fore-
cast between GOO and G21 before the Lekima landing. In
contrast, the biases appear to be different after the landfall
(16:00 UTC), and the track forecast in G21 is slightly bet-
ter than that in GOO around the landfall. After the landfall,
the track biases change continuously during the 27th to 42th
hour and 54th to 60th hour of the forecast, the track bias in
G21 is smaller than that in G20. The maximum difference be-
tween the two track forecasts can reach 32 km. From the 65th
to 72th hour, the forecast track bias in G21 is slightly larger.
For Krosa, during the first 42 h, the biases of the tracks fore-
casted in GOO and G21 are not much different. But the fore-
cast tracks of the two become different after the 42th hour,
with the track bias in GO0 becoming larger. In most forecasts
after the 42th hour, the track biases in GOO are over 20 km and

Geosci. Model Dev., 14, 205-221, 2021



218

Z. Ma et al.: Spin-up characteristics and restart effects on forecast accuracy in GRAPES_GFS

(a):00-03hr (b):03—-06hr
35°N — —35°N —
57 57
30°N+ 2 30°N ;
25°N - : O A 25°N- : O
20°N . °N

T T T y 0
110°E 115°E 120°E 125°E 130°E 135°E 140°E

{10°E 115°E 120°E 125°E 130°E 135°E 140°E

] (c):06—09hr (d):00—24hr

35°N —— W .
30°N 1

25°N 1

20°N T y T y y 20°N ; 7 T T -+
110°E 115°E 120°E 125°E 130°E 135°E 140°E 110°E 115°E 120°E 125°E 130°E 135°E 140°E

-20 -15 -10 -5 -3

-1

(mm)

1 3 5 10 15 20

Figure 10. Distribution of the differences (GO0 minus G21) of 3-hourly and 24 h accumulated precipitation (since 00:00 UTC 8 August 2019)
of the typhoon Lekima simulated by GO0 and G21 experiments (values are given in mm).

250{ (a)
€200-
S
= 150
°
&

1004
—é ——g00
ﬁ 50 —e—g21

0 —— T T

0 6 12 18 24 30 36 42 48 54 60 66 72
Forecast Time
200
(b)

5150- !
76' \ o]
£ 100 M
s}
4
g 50 J ——g00
= W ——g2]

0+ T T T T T T T T T T T

0 6 12 18 24 30 36 42 48 54 60 66 72

Forecast Time

Figure 11. Time evolution of the forecasted track errors of GOO and
G21 experiments for the typhoons Lekima and Krosa during the
forecast period of 72 h (values are given in km).

larger than those in G21. The abrupt track difference after
42th hour is most likely caused by the continuous accumula-
tion of the direct cloud-radiation process and the systematic
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temperature bias in the typhoon peripheral cloud area dur-
ing the re-undergone spin-up of GO0 experiment, along with
their impacts on the typhoon eye (track) through dynamic
processes with the model integration.

Overall, G21 performs better than GOO in the track fore-
casts of Lekima and Krosa within the lead time of 72 h, espe-
cially in the forecast of Krosa. For Krosa, the forecast track
on the ocean is less affected by other factors, so the forecast
track biases at the later stage of the forecast are significantly
smaller. It shows that GRAPES_GFS2.3.1 performs better in
continuous-integration forecasts, and the interruption in the
operation is destructive to the typhoon track forecast.

4 Conclusions and discussion

To analyze the characteristics of the spin-up at the early stage
of integration in GRAPES_GFS2.3.1, this study adopted
three different initial fields, namely the 4D-VAR analysis
field (G21), the field obtained by interrupting and restarting
the 4D-VAR analysis field after 3 h of integration (G00), and
the field based on FNL reanalysis data for a cold start (F0O0).
Moreover, the differences between GO0 and G21 on the later
model forecast results were analyzed to evaluate the im-
pact of current operational procedure on GRAPES_GFS2.3.1
forecasts. The main conclusions are as follows.

All three experiments using different initial fields show
that the spin-up of GRAPES_GFS2.3.1 has to go through
two stages: the dramatic adjustment in the initial half-hour
of integration and the slow dynamic and thermal adjustment
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afterwards. In the middle and lower layers of the model, the
spin-up takes 6h to reach the equilibrium state and takes
longer in the upper layers. The dynamic and thermal ad-
justment is gradually completed from the lower to the upper
layer of the model.

The GRAPES_GFS2.3.1 using its own analysis field as the
initial field (G21) is gentler in the water vapor and tempera-
ture adjustment in the spin-up than the GRAPES_GFS2.3.1
using FNL reanalysis data for cold start (FO0), and the time
required is slightly shorter. Due to the different structures of
temperature and humidity in the two initial fields, the differ-
ences of physical processes in the model spin-up adjustment
are obvious, especially regarding the convections and cloud
physical processes. However, the differences in dynamic pro-
cesses are not obvious. GOO needs to repeat the spin-up. Its
dynamic and thermal adjustments are similar to that in G21.
The temperature and humidity adjustment in GOO is slightly
weaker than that in G21, and its spin-up is slightly shorter.

In GOO, the cloud-field information is not retained during
the current operation of GRAPES_GFS2.3.1. It shows that
GO0 significantly underestimates the atmospheric CCWC
and CCIC at the early stage of forecast, which would affect
the calculation accuracy of radiation and result in systematic
positive biases in temperature and geopotential height fields
at 500 hPa. Due to the lack of cloud-field information, the ac-
cumulated precipitation in the first 3 h of integration in GO0 is
significantly underestimated. The 24 h accumulated precipi-
tation in the typhoon center is also less than that in G21, and
a destructive effect is made on the typhoon track forecast.

Regarding the influence of the lost cloud-field informa-
tion in the GRAPES_GFS2.3.1 operation on the forecast re-
sults, this paper mainly analyzes the differences of simula-
tion results between G21 and GO0, and evaluates the possi-
ble changes brought to the GRAPES_GFS2.3.1. But an in-
depth analysis of how the simulation results can improve the
forecast performance is absent in this paper. The reason is
that the forecast biases of the numerical model result from a
combination of various factors, and it is difficult to explain
the improvement of the GRAPES_GFS2.3.1 forecast system
just with a single case. Therefore, a batch of experiments are
needed later in our future study. Since the absence of cloud-
field information at a single time can bring systematic biases
to the simulated temperature field and geopotential height
field, in the cycling numerical forecasting operational sys-
tem, the cloud-field information that has formed should be
retained as much as possible. Moreover, the temperature and
humidity structure in the initial field, especially the water va-
por, can significantly affect the dynamic and physical pro-
cesses in the numerical model. Thus, in addition to the im-
provement of dynamic and physical processes, more atten-
tion should be paid to the assimilation of water vapor data, to
improve the data quality of water vapor in the initial field of
GRAPES_GFS2.3.1.
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