Articles | Volume 14, issue 3
https://doi.org/10.5194/gmd-14-1553-2021
https://doi.org/10.5194/gmd-14-1553-2021
Model description paper
 | 
17 Mar 2021
Model description paper |  | 17 Mar 2021

MLAir (v1.0) – a tool to enable fast and flexible machine learning on air data time series

Lukas Hubert Leufen, Felix Kleinert, and Martin G. Schultz

Related authors

Representing chemical history in ozone time-series predictions – a model experiment study building on the MLAir (v1.5) deep learning framework
Felix Kleinert, Lukas H. Leufen, Aurelia Lupascu, Tim Butler, and Martin G. Schultz
Geosci. Model Dev., 15, 8913–8930, https://doi.org/10.5194/gmd-15-8913-2022,https://doi.org/10.5194/gmd-15-8913-2022, 2022
Short summary
IntelliO3-ts v1.0: a neural network approach to predict near-surface ozone concentrations in Germany
Felix Kleinert, Lukas H. Leufen, and Martin G. Schultz
Geosci. Model Dev., 14, 1–25, https://doi.org/10.5194/gmd-14-1-2021,https://doi.org/10.5194/gmd-14-1-2021, 2021
Short summary
Calculating the turbulent fluxes in the atmospheric surface layer with neural networks
Lukas Hubert Leufen and Gerd Schädler
Geosci. Model Dev., 12, 2033–2047, https://doi.org/10.5194/gmd-12-2033-2019,https://doi.org/10.5194/gmd-12-2033-2019, 2019
Short summary

Related subject area

Atmospheric sciences
Exploring the footprint representation of microwave radiance observations in an Arctic limited-area data assimilation system
Máté Mile, Stephanie Guedj, and Roger Randriamampianina
Geosci. Model Dev., 17, 6571–6587, https://doi.org/10.5194/gmd-17-6571-2024,https://doi.org/10.5194/gmd-17-6571-2024, 2024
Short summary
Analysis of model error in forecast errors of extended atmospheric Lorenz 05 systems and the ECMWF system
Hynek Bednář and Holger Kantz
Geosci. Model Dev., 17, 6489–6511, https://doi.org/10.5194/gmd-17-6489-2024,https://doi.org/10.5194/gmd-17-6489-2024, 2024
Short summary
Description and validation of Vehicular Emissions from Road Traffic (VERT) 1.0, an R-based framework for estimating road transport emissions from traffic flows
Giorgio Veratti, Alessandro Bigi, Sergio Teggi, and Grazia Ghermandi
Geosci. Model Dev., 17, 6465–6487, https://doi.org/10.5194/gmd-17-6465-2024,https://doi.org/10.5194/gmd-17-6465-2024, 2024
Short summary
AeroMix v1.0.1: a Python package for modeling aerosol optical properties and mixing states
Sam P. Raj, Puna Ram Sinha, Rohit Srivastava, Srinivas Bikkina, and Damu Bala Subrahamanyam
Geosci. Model Dev., 17, 6379–6399, https://doi.org/10.5194/gmd-17-6379-2024,https://doi.org/10.5194/gmd-17-6379-2024, 2024
Short summary
Impact of ITCZ width on global climate: ITCZ-MIP
Angeline G. Pendergrass, Michael P. Byrne, Oliver Watt-Meyer, Penelope Maher, and Mark J. Webb
Geosci. Model Dev., 17, 6365–6378, https://doi.org/10.5194/gmd-17-6365-2024,https://doi.org/10.5194/gmd-17-6365-2024, 2024
Short summary

Cited articles

Bentayeb, M., Wagner, V., Stempfelet, M., Zins, M., Goldberg, M., Pascal, M., Larrieu, S., Beaudeau, P., Cassadou, S., Eilstein, D., Filleul, L., Le Tertre, A., Medina, S., Pascal, L., Prouvost, H., Quénel, P., Zeghnoun, A., and Lefranc, A.: Association between long-term exposure to air pollution and mortality in France: a 25-year follow-up study, Environ. Int., 85, 5–14, https://doi.org/10.1016/j.envint.2015.08.006, 2015. a
Bishop, C. M.: Pattern recognition and machine learning, Springer, New York, 2006. a
Brunner, D., Savage, N., Jorba, O., Eder, B., Giordano, L., Badia, A., Balzarini, A., Baró, R., Bianconi, R., Chemel, C., Curci, G., Forkel, R., Jiménez-Guerrero, P., Hirtl, M., Hodzic, A., Honzak, L., Im, U., Knote, C., Makar, P., Manders-Groot, A., van Meijgaard, E., Neal, L., Pérez, J. L., Pirovano, G., San Jose, R., Schröder, W., Sokhi, R. S., Syrakov, D., Torian, A., Tuccella, P., Werhahn, J., Wolke, R., Yahya, K., Zabkar, R., Zhang, Y., Hogrefe, C., and Galmarini, S.: Comparative analysis of meteorological performance of coupled chemistry-meteorology models in the context of AQMEII phase 2, Atmos. Environ., 115, 470–498, https://doi.org/10.1016/j.atmosenv.2014.12.032, 2015. a
Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., and Bengio, Y.: Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation, arXiv: 1406.1078, available at: http://arxiv.org/abs/1406.1078 (last access: 10 March 2021), 2014. a
Download
Short summary
MLAir provides a coherent end-to-end structure for a typical time series analysis workflow using machine learning (ML). MLAir is adaptable to a wide range of ML use cases, focusing in particular on deep learning. The user has a free hand with the ML model itself and can select from different methods during preprocessing, training, and postprocessing. MLAir offers tools to track the experiment conduction, documents necessary ML parameters, and creates a variety of publication-ready plots.