Articles | Volume 14, issue 3
https://doi.org/10.5194/gmd-14-1553-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-14-1553-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
MLAir (v1.0) – a tool to enable fast and flexible machine learning on air data time series
Lukas Hubert Leufen
CORRESPONDING AUTHOR
Jülich Supercomputing Centre, Research Centre Jülich, Jülich, Germany
Institute of Geosciences, Rhenish Friedrich Wilhelm University of Bonn, Bonn, Germany
Felix Kleinert
Jülich Supercomputing Centre, Research Centre Jülich, Jülich, Germany
Institute of Geosciences, Rhenish Friedrich Wilhelm University of Bonn, Bonn, Germany
Martin G. Schultz
Jülich Supercomputing Centre, Research Centre Jülich, Jülich, Germany
Related authors
Felix Kleinert, Lukas H. Leufen, Aurelia Lupascu, Tim Butler, and Martin G. Schultz
Geosci. Model Dev., 15, 8913–8930, https://doi.org/10.5194/gmd-15-8913-2022, https://doi.org/10.5194/gmd-15-8913-2022, 2022
Short summary
Short summary
We examine the effects of spatially aggregated upstream information as input for a deep learning model forecasting near-surface ozone levels. Using aggregated data from one upstream sector (45°) improves the forecast by ~ 10 % for 4 prediction days. Three upstream sectors improve the forecasts by ~ 14 % on the first 2 d only. Our results serve as an orientation for other researchers or environmental agencies focusing on pointwise time-series predictions, for example, due to regulatory purposes.
Felix Kleinert, Lukas H. Leufen, and Martin G. Schultz
Geosci. Model Dev., 14, 1–25, https://doi.org/10.5194/gmd-14-1-2021, https://doi.org/10.5194/gmd-14-1-2021, 2021
Short summary
Short summary
With IntelliO3-ts v1.0, we present an artificial neural network as a new forecasting model for daily aggregated near-surface ozone concentrations with a lead time of up to 4 d. We used measurement and reanalysis data from more than 300 German monitoring stations to train, fine tune, and test the model. We show that the model outperforms standard reference models like persistence models and demonstrate that IntelliO3-ts outperforms climatological reference models for the first 2 d.
Biplob Dey, Toke Due Sjøgren, Peeyush Khare, Georgios I. Gkatzelis, Yizhen Wu, Sindhu Vasireddy, Martin Schultz, Alexander Knohl, Riikka Rinnan, Thorsten Hohaus, and Eva Y. Pfannerstill
EGUsphere, https://doi.org/10.5194/egusphere-2025-3779, https://doi.org/10.5194/egusphere-2025-3779, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Trees release reactive gases that affect air quality and climate. We studied how these emissions from European beech and English oak change under realistic scenarios of combined and single heat and ozone stress. Heat increased emissions, while ozone reduced most of them. When stressors were combined, the effects were complex and varied by species. Machine learning identified key stress-related compounds. Our findings show that future tree stress may alter air quality and climate interactions.
Ramiyou Karim Mache, Sabine Schröder, Michael Langguth, Ankit Patnala, and Martin G. Schultz
EGUsphere, https://doi.org/10.5194/egusphere-2025-1399, https://doi.org/10.5194/egusphere-2025-1399, 2025
Short summary
Short summary
The TOAR-classifier model is a data-driven tool that allows for an objective classification of air quality measuring stations as urban, rural, or suburban. Such classification is important in the analysis of air pollutant trends and regional signatures. The model is employed in the second Tropospheric Ozone Assessment Report but can also be used in other research work.
Yugo Kanaya, Roberto Sommariva, Alfonso Saiz-Lopez, Andrea Mazzeo, Theodore K. Koenig, Kaori Kawana, James E. Johnson, Aurélie Colomb, Pierre Tulet, Suzie Molloy, Ian E. Galbally, Rainer Volkamer, Anoop Mahajan, John W. Halfacre, Paul B. Shepson, Julia Schmale, Hélène Angot, Byron Blomquist, Matthew D. Shupe, Detlev Helmig, Junsu Gil, Meehye Lee, Sean C. Coburn, Ivan Ortega, Gao Chen, James Lee, Kenneth C. Aikin, David D. Parrish, John S. Holloway, Thomas B. Ryerson, Ilana B. Pollack, Eric J. Williams, Brian M. Lerner, Andrew J. Weinheimer, Teresa Campos, Frank M. Flocke, J. Ryan Spackman, Ilann Bourgeois, Jeff Peischl, Chelsea R. Thompson, Ralf M. Staebler, Amir A. Aliabadi, Wanmin Gong, Roeland Van Malderen, Anne M. Thompson, Ryan M. Stauffer, Debra E. Kollonige, Juan Carlos Gómez Martin, Masatomo Fujiwara, Katie Read, Matthew Rowlinson, Keiichi Sato, Junichi Kurokawa, Yoko Iwamoto, Fumikazu Taketani, Hisahiro Takashima, Monica Navarro Comas, Marios Panagi, and Martin G. Schultz
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-566, https://doi.org/10.5194/essd-2024-566, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
The first comprehensive dataset of tropospheric ozone over oceans/polar regions is presented, including 77 ship/buoy and 48 aircraft campaign observations (1977–2022, 0–5000 m altitude), supplemented by ozonesonde and surface data. Air masses isolated from land for 72+ hours are systematically selected as essentially oceanic. Among the 11 global regions, they show daytime decreases of 10–16% in the tropics, while near-zero depletions are rare, unlike in the Arctic, implying different mechanisms.
Sebastian H. M. Hickman, Makoto Kelp, Paul T. Griffiths, Kelsey Doerksen, Kazuyuki Miyazaki, Elyse A. Pennington, Gerbrand Koren, Fernando Iglesias-Suarez, Martin G. Schultz, Kai-Lan Chang, Owen R. Cooper, Alexander T. Archibald, Roberto Sommariva, David Carlson, Hantao Wang, J. Jason West, and Zhenze Liu
EGUsphere, https://doi.org/10.5194/egusphere-2024-3739, https://doi.org/10.5194/egusphere-2024-3739, 2025
Short summary
Short summary
Machine learning is being more widely used across environmental and climate science. This work reviews the use of machine learning in tropospheric ozone research, focusing on three main application areas in which significant progress has been made. Common challenges in using machine learning across the three areas are highlighted, and future directions for the field are indicated.
Hantao Wang, Kazuyuki Miyazaki, Haitong Zhe Sun, Zhen Qu, Xiang Liu, Antje Inness, Martin Schultz, Sabine Schröder, Marc Serre, and J. Jason West
EGUsphere, https://doi.org/10.5194/egusphere-2024-3723, https://doi.org/10.5194/egusphere-2024-3723, 2025
Short summary
Short summary
We compare six datasets of global ground-level ozone, developed using geostatistical, machine learning, or reanalysis methods. The datasets show important differences from one another in ozone magnitude, greater than 5 ppb, and trends, globally and regionally. Compared with measurements, performance varies among datasets, and most overestimate ozone, particularly at lower concentrations. These differences among datasets highlight uncertainties for applications to health and other impacts.
Bing Gong, Michael Langguth, Yan Ji, Amirpasha Mozaffari, Scarlet Stadtler, Karim Mache, and Martin G. Schultz
Geosci. Model Dev., 15, 8931–8956, https://doi.org/10.5194/gmd-15-8931-2022, https://doi.org/10.5194/gmd-15-8931-2022, 2022
Short summary
Short summary
Inspired by the success of deep learning in various domains, we test the applicability of video prediction methods by generative adversarial network (GAN)-based deep learning to predict the 2 m temperature over Europe. Our video prediction models have skill in predicting the diurnal cycle of 2 m temperature up to 12 h ahead. Complemented by probing the relevance of several model parameters, this study confirms the potential of deep learning in meteorological forecasting applications.
Felix Kleinert, Lukas H. Leufen, Aurelia Lupascu, Tim Butler, and Martin G. Schultz
Geosci. Model Dev., 15, 8913–8930, https://doi.org/10.5194/gmd-15-8913-2022, https://doi.org/10.5194/gmd-15-8913-2022, 2022
Short summary
Short summary
We examine the effects of spatially aggregated upstream information as input for a deep learning model forecasting near-surface ozone levels. Using aggregated data from one upstream sector (45°) improves the forecast by ~ 10 % for 4 prediction days. Three upstream sectors improve the forecasts by ~ 14 % on the first 2 d only. Our results serve as an orientation for other researchers or environmental agencies focusing on pointwise time-series predictions, for example, due to regulatory purposes.
Swantje Preuschmann, Tanja Blome, Knut Görl, Fiona Köhnke, Bettina Steuri, Juliane El Zohbi, Diana Rechid, Martin Schultz, Jianing Sun, and Daniela Jacob
Adv. Sci. Res., 19, 51–71, https://doi.org/10.5194/asr-19-51-2022, https://doi.org/10.5194/asr-19-51-2022, 2022
Short summary
Short summary
The main aspect of the paper is to obtain transferable principles for the development of digital knowledge transfer products. As such products are still unstandardised, the authors explored challenges and approaches for product developments. The authors report what they see as useful principles for developing digital knowledge transfer products, by describing the experience of developing the Net-Zero-2050 Web-Atlas and the "Bodenkohlenstoff-App".
Clara Betancourt, Timo T. Stomberg, Ann-Kathrin Edrich, Ankit Patnala, Martin G. Schultz, Ribana Roscher, Julia Kowalski, and Scarlet Stadtler
Geosci. Model Dev., 15, 4331–4354, https://doi.org/10.5194/gmd-15-4331-2022, https://doi.org/10.5194/gmd-15-4331-2022, 2022
Short summary
Short summary
Ozone is a toxic greenhouse gas with high spatial variability. We present a machine-learning-based ozone-mapping workflow generating a transparent and reliable product. Going beyond standard mapping methods, this work combines explainable machine learning with uncertainty assessment to increase the integrity of the produced map.
Clara Betancourt, Timo Stomberg, Ribana Roscher, Martin G. Schultz, and Scarlet Stadtler
Earth Syst. Sci. Data, 13, 3013–3033, https://doi.org/10.5194/essd-13-3013-2021, https://doi.org/10.5194/essd-13-3013-2021, 2021
Short summary
Short summary
With the AQ-Bench dataset, we contribute to shared data usage and machine learning methods in the field of environmental science. The AQ-Bench dataset contains air quality data and metadata from more than 5500 air quality observation stations all over the world. The dataset offers a low-threshold entrance to machine learning on a real-world environmental dataset. AQ-Bench thus provides a blueprint for environmental benchmark datasets.
Felix Kleinert, Lukas H. Leufen, and Martin G. Schultz
Geosci. Model Dev., 14, 1–25, https://doi.org/10.5194/gmd-14-1-2021, https://doi.org/10.5194/gmd-14-1-2021, 2021
Short summary
Short summary
With IntelliO3-ts v1.0, we present an artificial neural network as a new forecasting model for daily aggregated near-surface ozone concentrations with a lead time of up to 4 d. We used measurement and reanalysis data from more than 300 German monitoring stations to train, fine tune, and test the model. We show that the model outperforms standard reference models like persistence models and demonstrate that IntelliO3-ts outperforms climatological reference models for the first 2 d.
Cited articles
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado,
G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp,
A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M.,
Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C.,
Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P.,
Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P.,
Wattenberg, M., Wicke, M., Yu, Y., and Zheng, X.: TensorFlow: Large-Scale
Machine Learning on Heterogeneous Systems,
available at: https://www.tensorflow.org/ (last access: 10 March 2021), 2015. a
Bentayeb, M., Wagner, V., Stempfelet, M., Zins, M., Goldberg, M., Pascal, M.,
Larrieu, S., Beaudeau, P., Cassadou, S., Eilstein, D., Filleul, L., Le
Tertre, A., Medina, S., Pascal, L., Prouvost, H., Quénel, P., Zeghnoun, A.,
and Lefranc, A.: Association between long-term exposure to air pollution and
mortality in France: a 25-year follow-up study, Environ. Int.,
85, 5–14, https://doi.org/10.1016/j.envint.2015.08.006, 2015. a
Bishop, C. M.: Pattern recognition and machine learning, Springer, New York, 2006. a
Brunner, D., Savage, N., Jorba, O., Eder, B., Giordano, L., Badia, A.,
Balzarini, A., Baró, R., Bianconi, R., Chemel, C., Curci, G., Forkel, R.,
Jiménez-Guerrero, P., Hirtl, M., Hodzic, A., Honzak, L., Im, U., Knote, C.,
Makar, P., Manders-Groot, A., van Meijgaard, E., Neal, L., Pérez, J. L.,
Pirovano, G., San Jose, R., Schröder, W., Sokhi, R. S., Syrakov, D., Torian,
A., Tuccella, P., Werhahn, J., Wolke, R., Yahya, K., Zabkar, R., Zhang, Y.,
Hogrefe, C., and Galmarini, S.: Comparative analysis of meteorological
performance of coupled chemistry-meteorology models in the context of
AQMEII phase 2, Atmos. Environ., 115, 470–498,
https://doi.org/10.1016/j.atmosenv.2014.12.032, 2015. a
Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F.,
Schwenk, H., and Bengio, Y.: Learning Phrase Representations using RNN
Encoder-Decoder for Statistical Machine Translation, arXiv:
1406.1078, available at: http://arxiv.org/abs/1406.1078 (last access: 10 March 2021), 2014. a
Cohen, A. J., Anderson, H. R., Ostro, B., Pandey, K. D., Krzyzanowski, M.,
Künzli, N., Gutschmidt, K., Pope, A., Romieu, I., Samet, J. M., and Smith,
K.: The Global Burden of Disease Due to Outdoor Air Pollution, J.
Toxicol. Env. Hea. A, 68, 1301–1307,
https://doi.org/10.1080/15287390590936166, 2005. a
Elliott, T.: The State of the Octoverse: machine learning, The GitHub Blog,
available at: https://github.blog/2019-01-24-the-state-of-the-octoverse-machine-learning/,
(last access: 23 June 2020), 2019. a
European Parliament and Council of the European Union: Directive 2008/50/EC
of the European Parliament and of the Council of 21 May 2008 on ambient air
quality and cleaner air for Europe, Official Journal of the European Union,
available at: http://data.europa.eu/eli/dir/2008/50/oj (last access: 10 March 2021), 2008. a
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair,
S., Courville, A., and Bengio, Y.: Generative Adversarial Nets, in: Advances
in Neural Information Processing Systems 27, edited by: Ghahramani, Z.,
Welling, M., Cortes, C., Lawrence, N. D., and Weinberger, K. Q., pp.
2672–2680, Curran Associates, Inc.,
available at: http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf (last access: 10 March 2021),
2014. a
Goodfellow, I., Bengio, Y., and Courville, A.: Deep Learning, MIT Press,
http://www.deeplearningbook.org (last access: 10 March 2021), 2016. a
Gruber, J.: Markdown,
available at: https://daringfireball.net/projects/markdown/license,
(last access: 7 January 2021), 2004. a
Hochreiter, S. and Schmidhuber, J.: Long Short-Term Memory, Neural
Computation, 9, 1735–1780, https://doi.org/10.1162/neco.1997.9.8.1735, 1997. a
Hoyer, S. and Hamman, J.: xarray: N-D labeled arrays and datasets in
Python, J. Open Res. Softw., 5, 10, https://doi.org/10.5334/jors.148, 2017. a
Hoyer, S., Hamman, J., Roos, M., Fitzgerald, C., Cherian, D., Fujii, K.,
Maussion, F., crusaderky, Kleeman, A., Kluyver, T., Clark, S., Munroe, J.,
keewis, Hatfield-Dodds, Z., Nicholas, T., Abernathey, R., Wolfram, P. J.,
MaximilianR, Hauser, M., Markel, Gundersen, G., Signell, J., Helmus, J. J.,
Sinai, Y. B., Cable, P., Amici, A., lumbric, Rocklin, M., Rivera, G., and
Barna, A.: pydata/xarray v0.15.0, Zenodo, https://doi.org/10.5281/zenodo.3631851, 2020. a
ISO Central Secretary: Information technology – The JSON data interchange
syntax, Standard ISO/IEC 21778:2017, International Organization for
Standardization, Geneva, Switzerland,
available at: https://www.iso.org/standard/71616.html (last access: 10 March 2021), 2017. a
Kingma, D. P. and Welling, M.: Auto-Encoding Variational Bayes, arXiv:
1312.6114, available at: https://arxiv.org/abs/1312.6114 (last access: 10 March 2021), 2014. a
Kleinert, F., Leufen, L. H., and Schultz, M. G.: IntelliO3-ts v1.0: a neural network approach to predict near-surface ozone concentrations in Germany, Geosci. Model Dev., 14, 1–25, https://doi.org/10.5194/gmd-14-1-2021, 2021. a, b, c
Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B., Bussonnier, M.,
Frederic, J., Kelley, K., Hamrick, J., Grout, J., Corlay, S., Ivanov, P.,
Avila, D., Abdalla, S., Willing, C., and development team, J.: Jupyter
Notebooks – a publishing format for reproducible computational workflows, in:
Positioning and Power in Academic Publishing: Players, Agents and Agendas,
edited by: Loizides, F. and Scmidt, B., IOS Press, the Netherlands, 87–90,
available at: https://eprints.soton.ac.uk/403913/ (last access: 10 March 2021), 2016. a
Koranne, S.: Hierarchical data format 5: HDF5, in: Handbook of Open Source
Tools, 191–200, Springer, Boston, MA, HDF5 is maintained by The HDF Group,
http://www.hdfgroup.org/HDF5 (last access: 10 March 2021), 2011. a
Krizhevsky, A., Sutskever, I., and Hinton, G. E.: ImageNet Classification with
Deep Convolutional Neural Networks, in: Advances in Neural Information
Processing Systems 25, edited by: Bartlett, P. L., Pereira, F. C. N., Burges,
C. J. C., Bottou, L., and Weinberger, K. Q., Curran
Associates, Inc., 1106–1114,
available at: http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks (last access: 10 March 2021),
2012. a
LaTeX Project: LaTeX, available at: https://www.latex-project.org/,
(last access: 7 January 2021), 2005. a
Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P.: Gradient-based learning
applied to document recognition, Proceedings of the IEEE, 86, 2278–2324,
https://doi.org/10.1109/5.726791, 1998. a
Lefohn, A. S.,
Malley, C. S.,
Smith, L.,
Wells, B.,
Hazucha, M.,
Simon, H.,
Naik, V.,
Mills, G.,
Schultz, M. G.,
Paoletti, E.,
De Marco, A.,
Xu, X.,
Zhang, L.,
Wang, T.,
Neufeld, H. S.,
Musselman, R. C.,
Tarasick, D.,
Brauer, M.,
Feng, Z.,
Tang, H.,
Kobayashi, K.,
Sicard, P.,
Solberg, S., and
Gerosa, G.: Tropospheric ozone
assessment report: Global ozone metrics for climate change, human health, and
crop/ecosystem research, Elementa: Science of the Anthropocene, 1, 1,
https://doi.org/10.1525/elementa.279, 2018. a
Leufen, L. H., Kleinert, F., and Schultz, M. G.: MLAir (v1.0.0) – a tool to
enable fast and flexible machine learning on air data time series – Source
Code, EUDAT Collaborative Data Infrastructure,
https://doi.org/10.34730/fcc6b509d5394dad8cfdfc6e9fff2bec, 2020. a
Mills, G., Pleijel, H., Malley, C., Sinha, B., Cooper, O., Schultz, M.,
Neufeld, H., Simpson, D., Sharps, K., Feng, Z., Gerosa, G., Harmens, H.,
Kobayashi, K., Saxena, P., Paoletti, E., Sinha, V., and Xu, X.: Tropospheric
Ozone Assessment Report: Present-day tropospheric ozone distribution and
trends relevant to vegetation, Elementa: Science of the Anthropocene, 6, 47,
https://doi.org/10.1525/elementa.302, 2018. a
Murphy, A. H. and Daan, H.: Forecast evaluation, in: Probability, statistics,
and decision making in the atmospheric sciences, edited by: Murphy, A. H. and
Katz, R. W., Westview Press, Boulder, USA, 379–437, 1985. a
Murphy, A. H. and Winkler, R. L.: A General Framework for Forecast
Verification, Mon. Weather Rev., 115, 1330–1338,
https://doi.org/10.1175/1520-0493(1987)115<1330:AGFFFV>2.0.CO;2, 1987. a
Murphy, A. H., Brown, B. G., and Chen, Y.-S.: Diagnostic Verification of
Temperature Forecasts, Weather Forecast., 4, 485–501,
https://doi.org/10.1175/1520-0434(1989)004<0485:DVOTF>2.0.CO;2, 1989. a, b
Musgrave, K., Belongie, S., and Lim, S.-N.: A Metric Learning Reality Check,
arXiv: 2003.08505, available at: https://arxiv.org/abs/2003.08505 (last access: 10 March 2021), 2020. a
Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen,
T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E.,
DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L.,
Bai, J., and Chintala, S.: PyTorch: An Imperative Style, High-Performance
Deep Learning Library, in: Advances in Neural Information Processing Systems
32, edited by: Wallach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox, E., and Garnett, R., Curran
Associates, Inc., Vancouver, Canada, 8024–8035,
available at: http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf (last access: 10 March 2021),
2019. a
Python Software Foundation: Python Language Reference, release 3.6.8, PEP
494, available at: https://www.python.org/dev/peps/pep-0494/ (last access: 10 March 2021), 2018. a
Reback, J., McKinney, W., jbrockmendel, Van den Bossche, J., Augspurger, T.,
Cloud, P., gfyoung, Sinhrks, Klein, A., Roeschke, M., Tratner, J., She, C.,
Hawkins, S., Ayd, W., Petersen, T., Schendel, J., Hayden, A., Garcia, M.,
MomIsBestFriend, Jancauskas, V., Battiston, P., Seabold, S., chris-b1,
h-vetinari, Hoyer, S., Overmeire, W., alimcmaster1, Mehyar, M., Dong, K.,
and Whelan, C.: pandas-dev/pandas: Pandas v1.0.1, Zenodo,
https://doi.org/10.5281/zenodo.3644238, 2020. a
Rezende, D. J., Mohamed, S., and Wierstra, D.: Stochastic Backpropagation and
Approximate Inference in Deep Generative Models, arXiv: 1401.4082,
available at: https://arxiv.org/abs/1401.4082 (last access: 10 March 2021), 2014. a
Schultz, M. G.,
Schröder, S.,
Lyapina, O.,
Cooper, O. R.,
Galbally, I.,
Petropavlovskikh, I.,
von Schneidemesser, E.,
Tanimoto, H.,
Elshorbany, Y.,
Naja, M.,
Seguel, R. J.,
Dauert, U.,
Eckhardt, P.,
Feigenspan, S.,
Fiebig, M.,
Hjellbrekke, A.-G.,
Hong, Y.-D.,
Kjeld, P. C.,
Koide, H.,
Lear, G.,
Tarasick, D.,
Ueno, M.,
Wallasch, M.,
Baumgardner, D.,
Chuang, M.-T.,
Gillett, R.,
Lee, M.,
Molloy, S.,
Moolla, R.,
Wang, T.,
Sharps, K.,
Adame, J. A.,
Ancellet, G.,
Apadula, F.,
Artaxo, P.,
Barlasina, M. E.,
Bogucka, M.,
Bonasoni, P.,
Chang, L.,
Colomb, A.,
Cuevas-Agulló, E.,
Cupeiro, M.,
Degorska, A.,
Ding, A.,
Fröhlich, M.,
Frolova, M.,
Gadhavi, H.,
Gheusi, F.,
Gilge, S.,
Gonzalez, M. Y.,
Gros, V.,
Hamad, S. H.,
Helmig, D.,
Henriques, D.,
Hermansen, O.,
Holla, R.,
Hueber, J.,
Im, U.,
Jaffe, D. A.,
Komala, N.,
Kubistin, D.,
Lam, K.-S.,
Laurila, T.,
Lee, H.,
Levy, I.,
Mazzoleni, C.,
Mazzoleni, L. R.,
McClure-Begley, A.,
Mohamad, M.,
Murovec, M.,
Navarro-Comas, M.,
Nicodim, F.,
Parrish, D.,
Read, K. A.,
Reid, N.,
Ries, L.,
Saxena, P.,
Schwab, J. J.,
Scorgie, Y.,
Senik, I.,
Simmonds, P.,
Sinha, V.,
Skorokhod, A. I.,
Spain, G.,
Spangl, W.,
Spoor, R.,
Springston, S. R.,
Steer, K.,
Steinbacher, M.,
Suharguniyawan, E.,
Torre, P.,
Trickl, T.,
Weili, L.,
Weller, R.,
Xiaobin, X.,
Xue, L., and
Zhiqiang, M.: Tropospheric Ozone Assessment Report: Database and metrics
data of global surface ozone observations, Elementa: Science of the
Anthropocene, 5, 58, https://doi.org/10.1525/elementa.244, 2017a. a, b
Schultz, M. G., Schröder, S.,Lyapina, O., Cooper, O. R., Galbally, I., Petropavlovskikh, I., von Schneidemesser, E., Tanimoto, H., Elshorbany, Y., Naja, M., Seguel, R. J., Dauert, U., Eckhardt, P., Feigenspan, S., Fiebig, M., Hjellbrekke, A.-G., Hong, Y.-D., Kjeld, P. C., Koide, H., Lear, G., Tarasick, D., Ueno, M., Wallasch, M., Baumgardner, D., Chuang, M.-T., Gillett, R., Lee, M., Molloy, S., Moolla, R., Wang, T., Sharps, K., Adame, J. A., Ancellet, G.., Apadula, F., Artaxo, P., Barlasina, M. E., Bogucka, M., Bonasoni, P., Chang, L., Colomb, A., Cuevas-Agulló, E., Cupeiro, M., Degorska, A., Ding, A., Fröhlich, M., Frolova, M., Gadhavi, H., Gheusi, F., Gilge, S., Gonzalez, M. Y., Gros, V., Hamad, S. H., Helmig, D., Henriques, D., Hermansen, O., Holla, R., Hueber, J., Im, U., Jaffe, D. A., Komala, N., Kubistin, D., Lam, K.-S., Laurila, T., Lee, H.,Levy, I., Mazzoleni, C., Mazzoleni, L. R., McClure-Begley, A., Mohamad, M., Murovec, M., Navarro-Comas, M., Nicodim, F., Parrish, D., Read, K. A., Reid, N., Ries, L., Saxena, P., Schwab, J. J.,Scorgie, Y., Senik, I., Simmonds, P., Sinha, V., Skorokhod, A. I., Spain, G., Spangl, W., Spoor, R., Springston, S. R., Steer, K., Steinbacher, M., Suharguniyawan, E., Torre, P., Trickl, T., Weili, L., Weller, R., Xu, X., Xue, L., and Zhiqiang, M.: Tropospheric Ozone Assessment Report, links to Global
surface ozone datasets, PANGAEA, https://doi.org/10.1594/PANGAEA.876108, 2017b. a
Schultz, M. G., Betancourt, C., Gong, B., Kleinert, F., Langguth, M., Leufen,
L. H., Mozaffari, A., and Stadtler, S.: Can deep learning beat numerical
weather prediction?, Philos. T. Roy. Soc. A, 379, 2194,
https://doi.org/10.1098/rsta.2020.0097, 2021.
a, b
Szegedy, C., Wei Liu, Yangqing Jia, Sermanet, P., Reed, S., Anguelov, D.,
Erhan, D., Vanhoucke, V., and Rabinovich, A.: Going deeper with convolutions,
in: 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), IEEE, Boston, MA, USA, 1–9,
https://doi.org/10.1109/CVPR.2015.7298594, 2015. a
TensorFlow: GPU support,
available at: https://www.tensorflow.org/install/gpu, last access: 6 June 2020. a
TOAR: Tropospheric Ozone Assessment Report (TOAR): Global metrics for climate
change, human health and crop/ecosystem research, International Global
Atmospheric Chemistry (IGAC),
available at: https://igacproject.org/activities/TOAR (last access: 29 January
2021), 2014–2021. a
US Environmental Protection Agency: Integrated science assessment for ozone
and related photochemical oxidants, US Environmental
Protection Agency, Washington, D.C., ePA-HQ-ORD-2018-0274, 2020. a
van der Walt, S., Colbert, S. C., and Varoquaux, G.: The NumPy Array: A
Structure for Efficient Numerical Computation, Comput. Sci.
Eng., 13, 22–30, https://doi.org/10.1109/MCSE.2011.37, 2011. a
Vautard, R.: Evaluation of the meteorological forcing used for the Air
Quality Model Evaluation International Initiative (AQMEII) air
quality simulations, Atmos. Environ., 53, 15–37,
https://doi.org/10.1016/j.atmosenv.2011.10.065, 2012. a
Wes McKinney: Data Structures for Statistical Computing in
Python, in: Proceedings of the 9th Python in Science Conference,
edited by: Stéfan van der Walt and Jarrod Millman, SciPy Organizers, Austin, Texas, 56–61,
https://doi.org/10.25080/Majora-92bf1922-00a, 2010. a
Wilks, D. S. (Ed.): Statistical methods in the atmospheric sciences, pp.
178–186, International Geophysics Series, Elsevier Academic Press,
Amsterdam, 3rd edn., 2011. a
World Health Organization: Health risks of air pollution in Europe – HRAPIE
project recommendations for concentration–response functions for
cost–benefit analysis of particulate matter, ozone and nitrogen dioxide,
Ozone and Nitrogen Dioxide,
available at: https://www.euro.who.int/__data/assets/pdf_file/0006/238956/Health_risks_air_pollution_HRAPIE_project.pdf (last access: 10 March 2021),
2013. a
Short summary
MLAir provides a coherent end-to-end structure for a typical time series analysis workflow using machine learning (ML). MLAir is adaptable to a wide range of ML use cases, focusing in particular on deep learning. The user has a free hand with the ML model itself and can select from different methods during preprocessing, training, and postprocessing. MLAir offers tools to track the experiment conduction, documents necessary ML parameters, and creates a variety of publication-ready plots.
MLAir provides a coherent end-to-end structure for a typical time series analysis workflow using...